15-859M: Randomized Algorithms Anupam Gupta
Lec 13/14: Metric Embeddings March 2, 2011

1 Metric Spaces

A metric space is a set V' of points, with a distance function d : V' x V' — R that satisfies
d(z,x) =0 for all x € V| symmetry (i.e., d(z,y) = d(y,x)), and the triangle inequality (i.e.,
d(z,y)+d(y,z) > d(z,z) for all z,y,z € V). Most of the computer science applications deal
with finite metrics, and then n denotes the number of points |V].

There are many popular problems which are defined on metric spaces:

e The Traveling Salesman Problem (TSP): the input is a metric space, and the goal is to
find a tour vy, va, . . ., Uy, Vpt1 = v on all the n nodes whose total length >~ | d(v;, viy1)
is as small as possible. This problem is sometimes defined on non-metrics as well, but
most of the time we consider the metric version.

The best approximation algorithm for the problem is a (3/2 — €)-approximation due
to Oveis-Gharan, Saberi and Singh (2010). Their paper uses randomization to beat
the 3/2-approximation of Cristofides (1976), and make progress on this long-standing
open problem. The best hardness result for this problem is something like 1.005 due
to Papadimitriou and Vempala.

e The k-Center/k-Means/k-median problems: the input is a metric space (V,d), and
the goal is to choose some k positions F' from V as “facilities”, to minimize some
objective function. In k-center, we minimize max,cy d(v, F), the largest distance from
any client to its closest facility; here, we define the distance from a point v to a set
S as d(v,S) := mingeg d(v, s). In k-median, we minimize), ., d(v, F'), the total (or
equivalently, the average) distance from any client to its closest facility. In k-means,
we minimize Y - d(v, F)?, the average squared distance from any client to its closest
facility. (Note: to see why these problems are called what they are, consider what
happens for the 1-means/medians problem on the line.)

The best algorithms for k-center give us a 2-approximation, and this is the best possible
unless P=NP. The best k-median algorithm gives an (3 + €)-approximation, whereas
the best hardness known for the version of the problem stated above is (1 + 1/e)
unless P=NP. For k-means, gap between the best algorithm and hardness results is
worse for general metric spaces. For geometric spaces, better algorithms are known for
k-means/medians.

e The k-server problem: this is a classic online problem, where the input is a metric
space (given up-front); a sequence of requests oy, 09, -+ arrives online, each request
being some point in the metric space. The algorithm maintains k servers, one each at

some k positions in the metric space. When the request o; arrives, one of the servers
must be moved to g; to serve the request. The cost incurred by the algorithm in this
step is the distance moved by the server, and the total cost is the sum of these per-step
costs. The goal is to give a strategy that minimizes the total cost of the algorithm.

The best algorithm for k-server is a 2k — 1-competitive deterministic algorithm due
to Koutsoupias and Papadimitriou. Since k-server contains paging as a special case
(why?), no deterministic algorithm can do better than k-competitive. It is a long-
standing open problem whether we can do better than 2k —1CC deterministically—but
far more interesting is the question of whether randomization can help beat 2k — 1;
the best lower bound against oblivious adversaries is (log k), again from the paging
problem.

1.1 Approximating Metrics by Trees: Attempt I

A special kind of metric space is a tree metric: here we are given a tree T' = (V, E) where
each edge e € E has a length f.. This defines a metric (V,dr), where the distance dr(x,y)
is the length of the (unique) shortest path between x and y, according to the edge lengths
.. In general, given any graph G = (V, E') with edge lengths, we get a metric (V,dg).

Tree metrics are especially nice because we can use the graph theoretic idea that it is “gen-
erated” by a tree to understand the structure of the metric better, and hence give better
algorithms for problems on tree metrics. For instance:

e TSP on tree metrics can be solved exactly: just take an Euler tour of the points in the
tree.

e k-median can be solved exactly on tree metrics using dynamic programming.

e k-server on trees admits a simple k-competitive deterministic algorithm.

So if all metrics spaces were well-approximable by trees (e.g., if there were some small factor
a such that for every metric M = (V,d) we could find a tree T" such that

d(z,y) < dr(z,y) < ad(z,y) (1)

for every z,y € V, then we would have an a-approximation for TSP and k-median, and
an ak-competitive algorithm for k-server on all metrics. Sadly, this is not the case: for the
metric generated by the cycle graph C,,, the best factor we can get in (1) is « = n — 1. This
is what we would get if we just approximated the tree by a line.

So even for simple metrics like that generated by the cycle (on which we can solve these
problems really easily), this approach hits a dead-end really fast. Pity.

1.2 Approximating Metrics by Trees: Attempt II

Here’s where randomization will come to our help: let’s illustrate the idea on a cycle. Suppose
we delete a uniformly random edge of the cycle, we get a tree T' (in fact, a line). Note that
the distances in the line are at least those in the cycle.

How much more? For two vertices x, y adjacent in the cycle, the edge (x,y) still exists in the
tree with probability 1 — 1/n, in which case dr(x,y) = d(z,y); else, with probability 1/n, =
and y lie at distance n — 1 from each other. So the expected distance between the endpoints
of an edge (z,y) of the cycle is

(1-=1/n)-1+1/n-n—1=2(1—-1/n)-d(z,y)
And indeed, this also holds for any pair z,y € V' (check!),

Erldr(z,y)] <2(1 = 1/n) - d(z,y)

But is this any good for us?

Suppose we wanted to k-median on the cycle, and let F™* be the optimal solution. For each
x, let fX be the closest facility in F™* to z; hence the cost of the solution is:

OPT = "d(x, f.).

zeV

By the expected stretch guarantee, we get that

> Erldr(z, f.)] < 20PT.

zeV

I.e., the expected cost of this solution F™* on the random tree is at most 2 OPT. And hence,
if OPTr is the cost of the optimal solution on 7', we get

Er[OPTy] < 20PT

Great—we know that the optimal solution on the random tree does not cost too much. And
we know we can find the optimal solution on trees in poly-time.

Let’s say Fr C V is the optimal solution for the tree T, where the closest facility in Fr
to x is fI, giving OPTr =Y dr(z, fI'). How does this solution Fr perform back on the
cycle? Well, each distance in the cycle is less than that in the tree T', so the expected cost
of solution Frr on the cycle will be

E

> d(z, fg“)] = Eld(z, f)] <Y Eldr(x, f])] = Er[OPTr] < 20PT.
And we have a randomized 2-approximation for k-median on the cycle!

3

1.3 Popping the Stack

To recap, here’s the algorithm: pick a random tree T' from some nice distribution. Find an
optimal solution Fr for the problem, using distances according to the tree T', and output
this set as the solution for the original metric.

And what did we use to show this was a good solution? That we had a distribution over
trees such that

e every tree in the distribution had distances no less than that in the original metric,
and

e the expected tree distance between any pair x,y € V satisfies Er[dr(x,y)] < a-d(z,y)
for some small o; here a = 2.

And last but not least

e that the objective function was linear in the distances, and so we could use linearity
of expectations.

Note that TSP, k-median, k-server, and many other metric problems have cost functions
that are linear in the distances, so as long as the metrics we care about can be “embedded
into random trees” with small a, we can translate algorithms on trees for these problems
into (randomized) algorithms for general metrics! This approach gets used all the time, and
is worth remembering. (BTW, note that this general approach does not work for non-linear
objective functions, like k-center, or k-means.)

But can we get a small o in general? In the next section, we show that for any n-point

metric with aspect ratio %&’3 = A, we can get « = O(lognlog A); and we indicate how

to improve this to O(logn), which is the best possible!

2 Embeddings into Distributions over Trees

In this section, we prove the following theorem using tree embeddings (and then, in the
following section, we improve it further to O(logn)).

Theorem 1 Given any metric (V,d) with |V| = n and aspect ratio A, there exists a effi-
ciently sampleable distribution D over spanning trees of V' such that for all u,v € V:

1. For all T € Support(D), dr(u,v) > d(u,v), and
2. Erpldr(u,v)] < O(lognlog A) d(u,v).

To prove this theorem, we will use the idea of a low diameter decomposition. Given a metric
space (V,d) on |V| = n points and a parameter r € R,, a (randomized) low-diameter
decomposition is an efficiently sampleable probability distribution over partitions of V' into
S Sy S3W--- WS, such that

1. (Low Radius/Diameter) For all S;, there exists ¢; € V such that for all u € S;, d(¢;, u) <
r/2. Hence, for any u,v € S;, d(u,v) <r.

d(u,v)

2. (Low Cutting Probability) For each pair u, v, Pr[u, v lie in different Sis] < 3 with

B = O(logn).

We'll show how to construct such a decomposition in the next section (next lecture), and
use such a decomposition to prove Theorem 1.

Consider the following recursive algorithm, which takes as input a pair (U, i) where U C V
is a set of vertices of diameter at most 2°, and returns a rooted tree (T, 7).

TreeEmbed(U, i):

1. Apply the low-diameter decomposition to (U, d) with the parameter r = 2:~!
to get the partition Si,...,5;.

2. Recurse: Let (1}, root;) < TreeEmbed(S;,i—1). As a base case, when S;
is a single point, simply return that point.

3. For every tree T; with j > 1, add the edge (rooty,root;) with length 2°.
This is a new tree which we denote T

4. Return the tree/root pair (T, root;).

Recall that since the low diameter decomposition is randomized, this algorithm defines a
distribution over trees over U. To build the tree for V, we first rescale so that for all
u,v € V, d(u,v) > 1 and d(u,v) < A ~ 2°. We define the distribution D as the one
obtained by calling TreeEmbed(V).

Lemma 2 For all z,y € V, dp(x,y) > d(x,y) for all T € support(D).

PROOF: Fix x and y, and let ¢ be such that d(x,y) € (271,27]. Consider the invocation
of TreeEmbed(U, i) such that x € U. First, we examine the case in which y € U. By
the definition of the low diameter decomposition, since d(z,y) > 27!, x and y will fall into
separate parts of the partition obtained in Step 1, and so we will have dp(z,y) > 2¢, the
length of the edge placed between different subtrees. In the case in which y ¢ U, then it must
be that x and y have been separated at a higher level i’ of the recursion, are consequently
separated by a higher subtree edge, and hence dr(x,y) > 2" > 21 [

Lemma 3 For all x,y € V, Erpldr(z,y)] < d(z,y) - O(log A logn)

5

PROOF: We begin with two easy subclaims. Suppose (T, root) <— TreeEmbed (U, i):

1. Claim 1: dg, (root,z) < 2! for all z € U. By induction, z lies in some piece S; of the
partition having diameter at most 2°~! and hence inductively is at distance at most
20711 from its root root;. That root is connected to the root root by an intertree edge
of weight 2¢, giving us 2! in total.

2. Claim 2: If z,y € U, then dr, (z,y) < 2-2""1. From the previous claim, each = and y is
at distance at most 2°! from root, distances are symmetric, and the triangle inequality
applies.

We now have from the definition:

0
dr(z,y) < Z Pr[(z, y) first separated at level i] - 4 - 2°
i=5

0
= Z/B 9i—1 204
i=05

— (5+1) 88d(x,y)

where the first inequality follows from our subclaims, the second follows from the property
of the low diameter decomposition. Setting 5 = O(logn) and § = O(log A) completes the
proof. [

The two lemmas above prove Theorem 1. How do we implement these low diameter decom-
positions? And how can we get the promised O(logn)? Keep reading...

3 Low Diameter Decompositions

Recall the definition of a (randomized) low-diameter decomposition from above: given a
metric (V, d) and a bound r, we want a partition with pieces of radius at most r/2, and want
vertices to be separated with “small” probability £ dzy) (i.e., proportional to their distance,

'
and inversely proportional to r).

Before we proceed, think about how you’d get such a decomposition for a line metric, or a
tree metric, with 8 = O(1); moreover, you cannot hope to get subconstant 8 = o(1) for even
the line. So the theorem says that general graphs lose a factor O(logn) more, which is not
bad at all! (And this factor is existentially optimal, we will show a tight example.)

3.1 Algorithm I: Geometric Region Growing

To make our life easier, we’ll assume that all distances in the metric are at least r/n?. (We
can enforce this via a pre-processing without much effort, I'll come back to it.)

6

The algorithm just picks a “truncated” geometric distance R, carves out a piece of radius R
around some vertex, and repeats until the metric is eaten up.

Geom-Regions(V,d, r):

1. Choose R ~ Geom(*2%): if R > r/2, then set R < r/2.
2. Pick an arbitrary vertex u € V, and set Sy < {v € V | d(u,v) < R}.
3. Return {S;}U Geom-Regions(V \ S,d,r).

Clearly, the radius bound is maintained by the fact that X < r/2 with probability 1.

What’s the chance that x,y lie in separate parts? So let’s view this process as picking a
vertex u and starting with a ball of radius zero around it; then we flip a coin with bias
p = r/(4Inn), increasing the radius by one after each tails, until either we see a heads or
we reach 7/2 tails, when we cut out the piece. And then we pick another vertex, and repeat
the process.

Consider the first time when one of these lies in the current ball. Note that either this ball
will eventually contain both of them, or will separate them. And to separate them, it must
make a cut within the next d(x,y) steps. The chance of this is at most the chance of seeing
a heads from a bias-p coin in d(x,y) steps, plus the chance that a Geom(p) r.v. sees more
than (2Inn)/p tails in a row. Using a naive union bound for the former, we get

d(z,y)

1
~2lnn+—2.
r n

d(z,y) p+ (1 —p)Emm/r <

@ and hence

We now use the fact that all distances are at least r/ n? to claim that 1 / n? < d
the probability of x,y separated is at most (4Inn + 1)d(z,y)/r, which proves the second

property of the decomposition.

Finally, the loose ends: to enforce the minimum-distance condition that d(z,y) > r/n?, just
think of the metric as a complete graph with edge-lengths ¢,, = d(z,y), contract all edges
(x,y) with d(z,y) < r/n?, and recompute edge lengths to get the new metric d < d. Running
the decomposition Geom-Regions(V,d’,r/2) on this shrunk metric, and then unshrinking
the edges, will ensure that each pair is separated with probability either 0 (if it has length
< r/n?), or probability at most (8Inn+2)d(x,y)/r. And finally, since the output had radius
at most r/4 according to d’, any path has at most n nodes and its length can change by at
most n - 7/n? < r/4 for n > 4, the new radius is at most r/2!.

Another advantage of this shrinking preprocessing: a pair x,y is separated only when
r < d(z,y) - n? and it is separated for sure when r > d(z,y). Using this observa-
tion in the calculation from the previous section can change the O(lognlogA) to just
O(log n min(logn,log A)). But to get the ultimate O(logn) guarantee, we’ll need a different
decomposition procedure.

3.2 Algorithm II: The CKR Decomposition

Theorem 4 (The Better Decomposition) There exists an efficiently sampleable proba-
bility distribution D over partitions with parts having radius at most r/2 such that

4 d(u,v) |Ball(u,r/2)|
;08 (|Ball(u, r/8)|)

Pru,v separated by the partition] <

where Ball(z,r) = {y : d(z,y) <r}.

The procedure for the decomposition is a little less intuitive, but very easy to state:

CKR Decomposition(V,d, r):

1. Choose R €p [, 5] uniformly at random.

2. Choose a random permutation 7: V' — V uniformly at random.

3. Consider the vertices one by one, in the order given by 7. When we consider
w, we assign all the yet-unassigned vertices v with d(w,v) < R to w’s
partition.

For example, suppose the ordering given by 7 is vy, vs,v3,v4. The figure below illustrates
the coverage when the vertices are visited by this process.

P

This construction directly implies the low-radius property, restated in the following claim.

Lemma 5 (Low Radius) The output of the algorithm has the property that for all S;, there
exists ¢; € V' such that for all u € S;, d(c;,u) < r/2.

The real work is in showing that for each pair (u,v), it is separated with small probability.
Before proving this, let us state two definitions useful for the proof. For the analysis only:
suppose we re-number the vertices wi, ws, ..., w, in order of the distance from the closer of
U, v.

e (Settling) At some time instant in this procedure, one (or both) of u or v gets assigned
to some w;. We say that w; settles the pair (u,v).

e (Cutting) At the moment the pair is settled, if only one vertex of this pair is assigned,
then we say that w; cuts the pair (u,v).

According to these definitions, each pair is settled at exactly one time instant in the proce-
dure, and it may or may not be cut at that time. Of course, once the pair is settled (with
or without being cut), it is never cut in the future.

Now to bound the separation probability. Consider w;, and let d(w;,u) = a; and d(w;,v) =
b;. Assume a; < b; (the other case is identical). If w; cuts (u,v) when the random values
are R and 7, the following two properties must hold:

1. The random variable R must lie in the interval [a;, b;] (else either none or both end-
points of e would get marked).

2. The node w; must come before wy, ..., w;_; in the permutation .

Suppose not, and one of them came before w; in the permutation. Since all these vertices
are closer to the pair than w; is, then for the current value of R, they would have settled the
pair (either capturing one or both of the endpoints) at some previous time point, and hence
w; would not settle—and hence not cut—the pair (u,v).

With these two properties, we establish
Pr[pair (u,v) is separated] = Z Pr[w; cuts the pair (u,v)]
J

< Z Pr[R € [a;,b;] and w; comes before wy, ..., w;_1 in 7]

d(u,v) 1 _4d(u,v) d(u,v)
E S Qi S A =
- r/2 —r/4) j r Hn r Ollogn)

But we wanted to do better than that! No worries, the fix is easy, but clever. First, note
that if d(u,v) > r/8 then the probability of separating u,v is at most 1 < 8d(u,v)/r. So
suppose d(u,v) < r/8. Now, for w; to cut (u,v), it is not enough for R € [a;,b;] and w;
comes before all w; for i < j. It also must be the case that w; be at most /2 from the closer
of the pair (say u) to even reach one of the vertices, let alone separate then. And at least
r/4 from the further one (say v) so that some setting of R would have a chance to separate

9

the two. So the distance of w; from w must be at most r, and at least /4 — d(u,v) > r/8,
and the same for its distance from v. If we restrict the harmonic sum in the final expression
over just the vertices that satisfy these bounds, we get the bound

d(u,v) (1 1 1)
+ +i =,
r/4 \|B(u,r/8)[+1 " |B(u,r/8)] +2 |B(u,7)|
and hence the bound in Theorem 4.

Theorem 6 (FRT 2003) Using the decomposition procedure from Theorem 4 in the Tree Em-
bed algorithm, we get that for all x,y € V:

Erldr(z,y)] < d(z,y) - O(logn)

The proof for the TreeEmbed algorithm remains essentially unchanged, except for the final
calculations:

0
Erldr(z,y)] < Z Pr[(z,y) separated at level i] - 4 - 2°

=5
" ddey) (B2 L
< 2o oz sy) 2
§
= 32d(x=y)Z(10g(|B(%2i)|)—log(|B($72i_3)D)
= 32d(z,y)(log(|B(x,2°)]) + log(| B(z,2°")|) + log(|B(x,2°7%)))
< 96d(x,y)logn

where the last equality follows from observing that we have a telescoping sum.

Citations: The O(min(log A,logn)logn) construction was due to Yair Bartal (1996); this
substantially improved on the first non-trivial guarantee of exp(y/lognloglogn) due to Alon,
Karp, Peleg and West (1992). The low-diameter decomposition is also from Bartal. The
O(logn) algorithm is by Fakcharoenphol, Rao, and Talwar (2003), based on the improved
decomposition scheme due to Calinescu, Karloff and Rabani (2000).

4 Lower Bounds

Let us show two lower bounds: first, that no randomized low-diameter decomposition can
achieve better than 8 = O(logn) for general metrics. And that no random tree embeddings
can do better than o = O(logn) either.

10

4.1 Lower Bounds for Decompositions

First, given a graph G = (V, E) with unit length edges, if we apply a 8 decomposition
with parameter r to the graph metric dg, we will cut each edge with probability §/r. The
expected number of cut edges will be fm/r. So, for each r the probabilistic method says
there exists a diameter-r partition that cuts at most Sm/r edges.

Let G be a graph with n nodes and cn edges (with ¢ > 1), where the girth of the graph (the
length of the shortest simple cycle) is at least g = ¢ logn (for constant ¢ < 1). Such graphs
are known to exist, this can be shown by the probabilistic method.

Now, if we set r = %logn = ¢/3 and consider any diameter-r partition: we claim no set S
in this partition can induce a cycle. Indeed, since every cycle is of length g, two furthest
points in the cycle would be ¢g/2 = % logn > r distance from each other. So all sets induce a
forest, which means the number of internal edges is at most n — 1 < n. This means at least
(¢ — 1)n edges are cut.

Cool. For every diameter-r partition, at least (¢ — 1)n edges are cut because of the large
girth property. But there exists one that cuts at most Sm/r = Scn/r edges, because we
have a good decomposition algorithm. So now we put the two facts together.

(c—l)ngﬁ% — ﬁzc_lr:Q(logn).

4.2 Lower Bounds for Random Tree Embeddings

Suppose there is a distribution D that achieves expected stretch « for the large-girth graphs
above. Let’s use this to obtain a low-diameter decomposition with cutting parameter § =
O(«); this will mean o = Q(8) = Q(logn).

Sample a tree T from the distribution, pick an arbitrary vertex v, pick a random value
R €r [0,7/2). Delete all edges that contain points at distance exactly in {R,7/2 + R, +
R,3r/2+ R, ...} from v. The remaining forest has components with radius at most /2, and
diameter r in the tree. Since distances on the original graph are only smaller, the diameter
of each part will only be less in the original graph.

Moreover, given the tree T, a pair will be separated with probability at most %. Taking
expectations, the total probability of x,y separated is at most
2d d
ET[T(xvy)] §20é (xay)
r r

So we have a decomposition scheme with parameter 2a. And combining this with the
previous lower bound on any decomposition scheme, we get v = Q(logn).

11

	Metric Spaces
	Approximating Metrics by Trees: Attempt I
	Approximating Metrics by Trees: Attempt II
	Popping the Stack

	Embeddings into Distributions over Trees
	Low Diameter Decompositions
	Algorithm I: Geometric Region Growing
	Algorithm II: The CKR Decomposition

	Lower Bounds
	Lower Bounds for Decompositions
	Lower Bounds for Random Tree Embeddings

