15-859(M) Randomized Algorithms

Game Theory
Avrim Blum

Plan for Today

- · 2-player zero-sum games
 - Minimax optimality
 - Minimax theorem and connection to regret minimization
- · 2-player general-sum games
 - Nash equilibria & Proof of existence
 - Correlated equilibria and connection to "internal"-regret minimization

In general, game theory is a place where randomized algorithms are crucial

2-Player Zero-Sum games

- Two players Row and Col. Zero-sum means that what's good for one is bad for the other.
- Game defined by matrix with a row for each of Row's options and a column for each of Col's options. Matrix tells who wins how much.
 - an entry (x,y) means: x = payoff to row player, y = payoff to column player. "Zero sum" means that x+y = 0.

Game Theory terminolgy

- · Rows and columns are called pure strategies.
- · Randomized algs called mixed strategies.
- "Zero sum" means that game is purely competitive. (x,y) satisfies x+y=0. (Game doesn't have to be fair).

Minimax-optimal strategies

- Minimax optimal strategy is the best randomized algorithm against opponent who knows your algorithm (but not your random choices). [maximizes the minimum]
- I.e., the thing to play if your opponent knows you well.

Minimax Theorem (von Neumann 1928)

- Every 2-player zero-sum game has a unique value V.
- Minimax optimal strategy for R guarantees R's expected gain at least V.
- Minimax optimal strategy for C guarantees C's expected loss at most V.

Counterintuitive: Means it doesn't hurt to publish your strategy if both players are optimal. (Borel had proved for symmetric 5x5 but thought was false for larger games)

Nice proof of minimax thm

- · Suppose for contradiction it was false.
- This means some game G has $V_C > V_R$:
 - If Column player commits first, there exists a row that gets the Row player at least V_r.
 - But if Row player has to commit first, the Column player can make him get only $V_{\rm R}$.
- Scale matrix so payoffs to row are in [-1,0]. Say $V_R = V_C \delta$.

Proof, contd

- Now, consider playing randomized weightedmajority alg as Row, against Col who plays optimally against Row's distrib.
- · In T steps,
 - Alg gets $\geq (1-\epsilon)$ [best row in hindsight] log(n)/ ϵ
 - BRi $H \geq T \cdot V_{\mathcal{C}}$ [Best against opponent's empirical distribution]
 - Alg $\leq \text{T-V}_R$ [Each time, opponent knows your randomized strategy]
 - Gap is $\delta T.$ Contradicts assumption if use $\epsilon \text{=} \delta/2$, once T > 2log(n)/\$\epsilon^2\$.

Can use notion of minimax optimality to explain bluffing in poker

Simplified Poker (Kuhn 1950)

- Two players A and B.
- Deck of 3 cards: 1,2,3.
- Players ante \$1.
- · Each player gets one card.
- · A goes first. Can bet \$1 or pass.
 - · If A bets, B can call or fold.
 - If A passes, B can bet \$1 or pass.
 - If B bets, A can call or fold.
- · High card wins (if no folding). Max pot \$2.

- Two players A and B. 3 cards: 1,2,3.
- Players ante \$1. Each player gets one card.
- A goes first. Can bet \$1 or pass.
 - If A bets, B can call or fold.
 - If A passes, B can bet \$1 or pass.
 - If B bets, A can call or fold.

Writing as a Matrix Game

- For a given card, A can decide to
 - · Pass but fold if B bets. [PassFold]
 - · Pass but call if B bets. [PassCall]
 - Bet. [Bet]
- · Similar set of choices for B.

Can look at all strategies as a big matrix... [FP,FP,CB] [FP,CP,CB] [FB,FP,CB] [FB,CP,CB] PE PE PC | 0 0 -1/6 -1/6

	[LL'LL'CR]	[LL,CL,CR]	[LR'LL'CR][LR'CL'CR]
[PF,PF,PC]	0	0	-1/6	-1/6
[PF,PF,B]	0	1/6	-1/3	-1/6
[PF,PC,PC]	1 //	0	0	1/6
Г	-1/6	-1/6	1/6	1/6
[PF,PC,B]	-1/0	0	0	1/6
[B,PF,PC]	1,0	-1/3	0	-1/2
[B,PF,B]		-1/6	-1/6	-1/2
[B,PC,PC]	0	-1/2	1/3	-1/6
[B,PC,B]	0	-1/3	1/6	-1/6

And the minimax optimal

- · A: strategies are...
 - If hold 1, then 5/6 PassFold and 1/6 Bet.
 - If hold 2, then $\frac{1}{2}$ PassFold and $\frac{1}{2}$ PassCall.
 - If hold 3, then $\frac{1}{2}$ PassCall and $\frac{1}{2}$ Bet. Has both bluffing and underbidding...
- B:
 - If hold 1, then 2/3 FoldPass and 1/3 FoldBet.
 - If hold 2, then 2/3 FoldPass and 1/3 CallPass.
 - If hold 3, then CallBet

Minimax value of game is -1/18 to A.

Now, to General-Sum games...

<u>General-sum games</u>

- In general-sum games, can get win-win and lose-lose situations.
- and lose-lose situations.

 E.g., "what side of sidewalk to walk on?":

Nash Equilibrium

- A Nash Equilibrium is a stable pair of strategies (could be randomized).
- Stable means that neither player has incentive to deviate on their own.
- · E.g., "what side of sidewalk to walk on":

	Left	Right
Left	(1,1)	(-1,-1)
Right	(-1,-1)	(1,1)

NE are: both left, both right, or both 50/50.

General-sum games

- In general-sum games, can get win-win and lose-lose situations.
- E.g., "which movie should we go to?":

	Eagle	Kings	speech
Eagle	(8,2)	(0,0)	
Kings speech	(0,0)	(2,8)	

No longer a unique "value" to the game.

Uses

- Economists use games and equilibria as models of interaction.
- E.g., pollution / prisoner's dilemma:
 - (imagine pollution controls cost \$4 but improve everyone's environment by \$3)

don't pollute pollute don't pollute (2,2) (-1,3) pollute (3,-1) (0,0)

Need to add extra incentives to get good overall behavior.

NE can do strange things

- Braess paradox:
 - Road network, traffic going from s to t.
 - travel time as function of fraction x of traffic on a given edge.

Fine. NE is 50/50. Travel time = 1.5

NE can do strange things

- · Braess paradox:
 - Road network, traffic going from s to t.
 - travel time as function of fraction x of traffic on a given edge.

Add new superhighway. NE: everyone uses zig-zag path. Travel time = 2.

One more interesting game

"Ultimatum game":

- Two players "Splitter" and "Chooser"
- 3rd party puts \$10 on table.
- Splitter gets to decide how to split between himself and Chooser.
- Chooser can accept or reject.
- If reject, money is burned.

One more interesting game

"Ultimatum game": E.g., with \$4

Splitter: how much

Existence of NE

- Nash (1950) proved: any general-sum game must have at least one such equilibrium.
 - Might require mixed strategies.
- This also yields minimax thm as a corollary.
 - Pick some NE and let V = value to row player in that equilibrium.
 - Since it's a NE, neither player can do better even knowing the (randomized) strategy their opponent is playing.
 - So, they're each playing minimax optimal.

Existence of NE in 2-player games

- · Proof will be non-constructive.
- Unlike case of zero-sum games, we do not know any polynomial-time algorithm for finding Nash Equilibria in n × n general-sum games. [known to be "PPAD-hard"]
- Notation:
 - Assume an nxn matrix.
 - Use $(p_1,...,p_n)$ to denote mixed strategy for row player, and $(q_1,...,q_n)$ to denote mixed strategy for column player.

Proof

- We'll start with Brouwer's fixed point theorem.
 - Let S be a compact convex region in R^n and let $f\!:\!S\to S$ be a continuous function.
 - Then there must exist $x \in S$ such that f(x)=x.
 - x is called a "fixed point" of f.
- Simple case: S is the interval [0,1].
- · We will care about:
 - $S = \{(p,q): p,q \text{ are legal probability distributions on 1,...,n}\}$. I.e., $S = \text{simplex}_n \times \text{simplex}_n$

Proof (cont)

- $S = \{(p,q): p,q \text{ are mixed strategies}\}.$
- Want to define f(p,q) = (p',q') such that:
 - f is continuous. This means that changing p or q a little bit shouldn't cause p' or q' to change a lot.
 - Any fixed point of f is a Nash Equilibrium.
- · Then Brouwer will imply existence of NE.

Try #1

- What about f(p,q) = (p',q') where p' is best response to q, and q' is best response to p?
- · Problem: not necessarily well-defined:
 - E.g., penalty shot: if p = (0.5,0.5) then q' could be anything.

	Left	Right
Left	(0,0)	(1,-1)
Right	(1,-1)	(0,0)

Try #1

- What about f(p,q) = (p',q') where p' is best response to q, and q' is best response to p?
- · Problem: also not continuous:
 - E.g., if p = (0.51, 0.49) then q' = (1,0). If p = (0.49, 0.51) then q' = (0,1).

Left Right

Left (0,0) (1,-1)Right (1,-1) (0,0)

<u>Instead we will use...</u>

- f(p,q) = (p',q') such that:
 - q' maximizes [(expected gain wrt p) $||q-q'||^2$]
 - p' maximizes [(expected gain wrt q) $||p-p'||^2$]

Note: quadratic + linear = quadratic.

Instead we will use...

- f(p,q) = (p',q') such that:
 - q' maximizes [(expected gain wrt p) $||q-q'||^2$]
 - p' maximizes [(expected gain wrt q) $||p-p'||^2$]

Note: quadratic + linear = quadratic.

Instead we will use...

- f(p,q) = (p',q') such that:
 - q' maximizes [(expected gain wrt p) $||q-q'||^2$]
 - p' maximizes [(expected gain wrt q) $||p-p'||^2$]
- f is well-defined and continuous since quadratic has unique maximum and small change to p,q only moves this a little.
- Also fixed point = NE. (even if tiny incentive to move, will move little bit).
- · So, that's it!

Internal regret and correlated equilibria

What if all players in a game run a regret-minimizing algorithm like RWM?

- In 2-player zero-sum games, time-average distributions (p₁+...+p_T)/T, (q₁+...+q_T)/T quickly approach minimax optimal.
- In general-sum games, does behavior approach a Nash equilibrium? (after all, a Nash Eq is exactly a set of distributions that are no-regret wrt each other).
- Well, unfortunately, no. (Wouldn't expect to since finding Nash equilibrium or even getting FPTAS is PPADhard.)
- So, what can we say?

A bad example for general-sum games

- Augmented Shapley game from [Z04]: "RPSF"
 - First 3 rows/cols are Shapley game (rock / paper / scissors but if both do same action then both lose).
 - 4th action "play foosball" has slight negative if other player is still doing r/p/s but positive if other player does 4th action too.
 - NR algs will cycle among first 3 and have no regret, but do worse than only Nash Equilibrium of both playing foosball.
- We didn't really expect this to work given how hard NE can be to find...

What *can* we say?

- If algorithms minimize "internal" or "swap" regret, then empirical distribution of play approaches correlated equilibrium.
 - Foster & Vohra, Hart & Mas-Colell,...
 - Though doesn't imply play is stabilizing.

What are internal regret and correlated equilibria?

Internal/swap-regret

- E.g., each day we pick one stock to buy shares in.
- Don't want to have regret of the form "every time I bought IBM, I should have bought Microsoft instead".
- Formally, regret is wrt optimal function f:{1,...,N}→{1,...,N} such that every time you played action j, it plays f(j).
- Motivation: connection to correlated equilibria.

Internal/swap-regret

"Correlated equilibrium"

- Distribution over entries in matrix, such that if a trusted party chooses one at random and tells you your part, you have no incentive to deviate.
- E.g., Shapley game

me.	R	Р	5
R	-1,-1	-1,1	1,-1
Р	1,-1	-1,-1	-1,1
5	-1,1	1,-1	-1,-

Internal/swap-regret

- If all parties run a low internal/swap regret algorithm, then empirical distribution of play is an apx correlated equilibrium.
 - Correlator chooses random time t ∈ {1,2,...,T}.
 Tells each player to play the action j they played in time t (but does not reveal value of t).
 - Expected incentive to deviate:∑_jPr(j)(Regret|j)
 = (swap-regret of algorithm)/T.
 - So, although CE are less natural-looking than NE, they are objects players can get close to by optimizing for themselves in a natural way.

Internal/swap-regret, contd

Algorithms for achieving low regret of this form:

- Foster & Vohra, Hart & Mas-Colell, Fudenberg & Levine.
- Can also convert any "best expert" algorithm into one achieving low swap regret.

Internal/swap-regret, contd

Can convert any "best expert" algorithm A into one achieving low swap regret. Idea:

- Instantiate one copy A_i responsible for expected regret over times we play i.
- Each time step, if we play $p=(p_1,...,p_n)$ and get loss vector $l=(l_1,...,l_n)$, then A_i gets loss-vector $p_i l$.
- If each A_i proposed to play q_i , so all together we have matrix Q_i , then define $p = pQ_i$.
- Allows us to view p_i as prob we chose action i or prob we chose algorithm A_i.