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An Intro to Machine 
Learning

Avrim Blum
Lecture #12

15-859(M) Randomized Algorithms
Plan for todayPlan for today

• Machine Learning intro: models and 
basic issues

• How much data do I need to see to be 
confident in generalizations I make 
from it?

• Connections of this to notion of Occam’s 
razor

• A cool idea: “shatter coefficients”, VC-
dimension, and a very nice probabilistic 
argument.

Plan for MondayPlan for Monday
• An interesting algorithm for online 
decision making.   Problem of “combining 
expert advice”

• Algorithms for online decision making 
from very limited feedback.  The “multi-
armed bandit problem”

Machine learning can be used to...Machine learning can be used to...
• recognize speech,
• identify patterns in data,
• steer a car,
• play games,
• adapt programs to users,
• improve web search, ...

From a scientific perspective: can we develop 
models to understand learning as a computational 
problem, and what types of guarantees might we 
hope to achieve?

A typical settingA typical setting
• Imagine you want a computer program to 
help filter which email messages are spam
and which are important.

• Might represent each message by n features. 
(e.g., return address, keywords, spelling, etc.)

• Take sample S of data, labeled according to 
whether they were/weren’t spam.

• Goal of algorithm is to use data seen so far 
produce good prediction rule (a “hypothesis”) 
h(x) for future data. 

The concept learning settingThe concept learning setting
E.g., 
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The concept learning settingThe concept learning setting
E.g., 

Given data, some reasonable rules might be:
•Predict SPAM if ¬known AND (money OR pills)

•Predict SPAM if money + pills – known > 0.

•...

a positive 
example

a negative 
example

Big questionsBig questions

(A)How might we automatically generate 
rules that do well on observed data?

[algorithm design]

(B)What kind of confidence do we have 
that they will do well in the future?

[confidence bound / sample complexity]

for a given learning alg, how 
much data do we need...

Natural formalization (PAC)Natural formalization (PAC)

• We are given sample S = {(x,y)}.
– View labels y as being produced by some target 
function f. 

• Alg does optimization over S to produce 
some hypothesis (prediction rule) h.

• Assume S is a random sample from some 
probability distribution D. Goal is for h to 
do well on new examples also from D.

I.e., PrD[h(x)≠f(x)] < ε.

Email msg Spam or not?

Example of analysis: Decision ListsExample of analysis: Decision Lists

Say we suspect there might be a good prediction 
rule of this form.

1. Design an efficient algorithm A that will find a 
consistent DL if one exists.

2. Show that if sample S is of reasonable size, 
Pr[exists consistent DL h with err(h) > ε] < δ.

3. This means that A is a good algorithm to use if 
f is, in fact, a DL.

(a bit of a toy example since would want to 
extend to “mostly consistent” DL)

How can we find a consistent DL?

if (x1=0) then -, else
if (x2=1) then +, else

if (x4=1) then +, else -

Decision List algorithmDecision List algorithm
• Start with empty list.

• Find if-then rule consistent with data. 
(and satisfied by at least one example)

• Put rule at bottom of list so far, and cross off 
examples covered. Repeat until no examples remain.

If this fails, then:
•No rule consistent with remaining data.
•So no DL consistent with remaining data.
•So, no DL consistent with original data.

OK, fine.  Now why should we expect it 
to do well on future data?
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Confidence/sampleConfidence/sample--complexitycomplexity
• Consider some DL h with err(h)>ε, that we’re 
worried might fool us.

• Chance that h survives |S| examples is at 
most (1-ε)|S| .

• Let |H| = number of DLs over n Boolean 
features.  |H| < (4n+2)! . (really crude bound)

So, Pr[some DL h with err(h)>ε is consistent] 
< |H|(1-ε)|S|.

• This is <0.01 for |S| > (1/ε)[ln(|H|) + ln(100)]
or about (1/ε)[n ln n + ln(100)]

Example of analysis: Decision ListsExample of analysis: Decision Lists

Say we suspect there might be a good prediction 
rule of this form.

1. Design an efficient algorithm A that will find a 
consistent DL if one exists.

2. Show that if |S| is of reasonable size, then 
Pr[exists consistent DL h with err(h) > ε] < δ.

3. So, if f is in fact a DL, then whp A’s hypothesis 
will be approximately correct.  “PAC model”

Confidence/sampleConfidence/sample--complexitycomplexity

• What’s great is there was nothing special 
about DLs in our argument.

• All we said was: “if there are not too many 
rules to choose from, then it’s unlikely one 
will have fooled us just by chance.”

• And in particular, the number of examples 
needs to only be proportional to log(|H|).

(the “log” is important here)

Occam’s razorOccam’s razor
William of Occam (~1320 AD):

“entities should not be multiplied 
unnecessarily” (in Latin)

Which we interpret as: “in general, prefer 
simpler explanations”.

Why?  Is this a good policy?  What if we 
have different notions of what’s simpler?

Occam’s razor (contd)Occam’s razor (contd)
A computer-science-ish way of looking at it:

• Say “simple” = “short description”.

• At most 2s explanations can be < s bits long.

• So, if the number of examples satisfies:

m > (1/ε)[s ln(2) + ln(100)]

Then it’s unlikely a bad simple explanation 
will fool you just by chance.

Think of as 
10x #bits to 

write down h.

Occam’s razor (contd)Occam’s razor (contd)22

• Even if we have different notions of what’s 
simpler (e.g., different representation 
languages), we can both use Occam’s razor.

• Of course, there’s no guarantee there will 
be a short explanation for the data.  That 
depends on your representation.

Nice interpretation:
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We said: if |S| ≥ (1/ε)[ln(|H|) + ln(1/δ)], then with 
probability ≥ 1-δ, all h∈H with errD(h)≥ε have 
errS(h)>0.

ExtensionsExtensions

Thm: If |S| ≥ (1/(2ε2))[ln(|H|) + ln(2/δ)], then with 
prob ≥ 1-δ, all h∈H have |errD(h)-errS(h)| < ε.

What if no perfect rule, and best we find is rule with 
error (say) 10% on training set?  What can we say?

Proof: apply Hoeffding bounds.
– Chance of failure at most 2|H|e-2|S|ε2.

– Set to δ and solve.

One more extensionOne more extension
• What about something like the class H of 
linear separators?  What is |H|?
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– There are infinitely many linear separators, but 
not that many really different ones.

– Union bound is too weak.

A cool idea: shatter coefficientA cool idea: shatter coefficient
• Let H[S] be the number of ways of splitting 
set S using functions in H.
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• Let H[m]  =
max|S|=m H[S].

• E.g., linear separators in Rd: H[m] = O(md).
• E.g., intervals on a line: H[m] = O(m2). 

[ ]

A cool idea: shatter coefficientA cool idea: shatter coefficient
• Let H[S] be the number of ways of splitting 
set S using functions in H.
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• Let H[m]  =
max|S|=m H[S].

• E.g., linear separators in Rd: H[m] = O(md). 

Thm: if m=|S| ≥ (2/ε)[lg(2H[2m]) + lg(1/δ)],
then with probability ≥ 1-δ, all h∈H with 
errD(h)≥ε have errS(h)>0. 

A cool idea: shatter coefficientA cool idea: shatter coefficient
Thm: if m ≥ (2/ε)[lg(2H[2m]) + lg(1/δ)], then 
with probability ≥ 1-δ, all h∈H with 
errD(h)≥ε have errS(h)>0. 

Note 1: For linear separators in Rd, H[2m] = 
O(md), so bound is O(1/ε)[d lg(1/ε) + lg(1/δ)]

Note 2: VC-dimension(H) = max value m such 
that H[m] = 2m

Sauer’s lemma: H[m] = O(mVCdim(H)).

A cool idea: shatter coefficientA cool idea: shatter coefficient
Thm: if m ≥ (2/ε)[lg(2H[2m]) + lg(1/δ)], then 
with probability ≥ 1-δ, all h∈H with 
errD(h)≥ε have errS(h)>0. 

Proof of Thm:
• Consider drawing 2 sets S, S’ of m examples each.
• Let A be the event: exists h∈H with errD(h)≥ε
and errS(h)=0.

• Let B be the event: exists h∈H with errS’(h)≥ε/2
and errS(h)=0.

• Claim 1: Pr[A]/2 ≤ Pr[B]  (because Pr[B|A] ≥ ½)
• So, just need to show Pr[B] is low.
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A cool idea: shatter coefficientA cool idea: shatter coefficient
Thm: if m ≥ (2/ε)[lg(2H[2m]) + lg(1/δ)], then 
with probability ≥ 1-δ, all h∈H with 
errD(h)≥ε have errS(h)>0. 

Proof cont’d:
• Consider drawing 2 sets S, S’ of m examples each.
• Let B be the event: exists h∈H with errS’(h)≥ε/2
and errS(h)=0. Suffices to show Pr[B] is low.

• Now, define T, T’ as follows:
• For i=1 to m, flip a fair coin:

• If heads, put ith element of S into T and ith
element of S’ into T’.

• If tails, do it other way around.

A cool idea: shatter coefficientA cool idea: shatter coefficient
Thm: if m ≥ (2/ε)[lg(2H[2m]) + lg(1/δ)], then 
with probability ≥ 1-δ, all h∈H with 
errD(h)≥ε have errS(h)>0. 

Proof cont’d:
• Consider drawing 2 sets S, S’ of m examples each.
• Let C be the event: exists h∈H with errT’(h)≥ε/2
and errT(h)=0. Suffices to show Pr[C] is low.

• Now, define T, T’ as follows:
• For i=1 to m, flip a fair coin:

• If heads, put ith element of S into T and ith
element of S’ into T’.

• If tails, do it other way around.

A cool idea: shatter coefficientA cool idea: shatter coefficient
Thm: if m ≥ (2/ε)[lg(2H[2m]) + lg(1/δ)], then 
with probability ≥ 1-δ, all h∈H with 
errD(h)≥ε have errS(h)>0. 

Proof cont’d:
• Will show that for all S,S’, Prswap[C] is low.
• Let C be the event: exists h∈H with errT’(h)≥ε/2
and errT(h)=0. Suffices to show Pr[C] is low.

• Now, define T, T’ as follows:
• For i=1 to m, flip a fair coin:

• If heads, put ith element of S into T and ith
element of S’ into T’.

• If tails, do it other way around.

A cool idea: shatter coefficientA cool idea: shatter coefficient
Thm: if m ≥ (2/ε)[lg(2H[2m]) + lg(1/δ)], then 
with probability ≥ 1-δ, all h∈H with 
errD(h)≥ε have errS(h)>0. 

Proof cont’d:
• Will show that for all S,S’, Prswap[C] is low.
• Let C be the event: exists h∈H with errT’(h)≥ε/2
and errT(h)=0. Suffices to show Pr[C] is low.

• Fix some splitting h of S ∪ S’ (at most H[2m])
• If for any i, h makes mistake on ith element of 
both S and S’, then Pr[Ch]=0.  Also, if h makes 
fewer than εm/2 mistakes on S ∪ S’, then Pr[Ch]=0.

• Else, Pr[Ch] ≤ 2−εm/2.  Set H[2m]×2−εm/2 = δ/2. Done!

Online learningOnline learning
• What if we don’t want to make assumption 
that data is coming from some fixed 
distribution?  Or any assumptions on data?

• Can no longer talk about past performance 
predicting future results.

• Can we hope to say anything interesting at 
all??

Idea: regret bounds.  
�Show that our algorithm does nearly as well 
as best predictor in some large class.

Using “expert” adviceUsing “expert” advice

• We solicit n “experts” for their advice. (Will the 
market go up or down?)

• We then want to use their advice somehow to 
make our prediction.  E.g.,

Say we want to predict the stock market.

Basic question: Is there a strategy that allows us to do 
nearly as well as best of these in hindsight?

[“expert” = someone with an opinion.  Not necessarily 
someone who knows anything.]
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Simpler questionSimpler question
• We have n “experts”.

• One of these is perfect (never makes a mistake).  
We just don’t know which one.

• Can we find a strategy that makes no more than 
lg(n) mistakes?

Answer: sure.  Just take majority vote over all 
experts that have been correct so far.

�Each mistake cuts # available by factor of 2.

�Note: this means ok for n to be very large.

What if no expert is perfect?What if no expert is perfect?
Intuition: Making a mistake doesn't completely 
disqualify an expert. So, instead of crossing 
off, just lower its weight.

Weighted Majority Alg:
– Start with all experts having weight 1.

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.

Analysis: do nearly as well as best Analysis: do nearly as well as best 
expert in hindsightexpert in hindsight

• M = # mistakes we've made so far.

• m = # mistakes best expert has made so far.

• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.

So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,

So, if m is small, then M is pretty small too.

Randomized Weighted MajorityRandomized Weighted Majority
2.4(m + lg n)) not so good if the best expert makes a 
mistake 20% of the time. Can we do better? Yes.

• Instead of taking majority vote, use weights as 
probabilities. (e.g., if 70% on up, 30% on down, then pick 
70:30) Idea: smooth out the worst case.

• Also, generalize ½ to 1- ε. 

M = expected 
#mistakes

AnalysisAnalysis
• Say at time t we have fraction Ft of weight on 
experts that made mistake.

• So, we have probability Ft of making a mistake, and 
we remove an εFt fraction of the total weight.
– Wfinal = n(1-ε F1)(1 - ε F2)...
– ln(Wfinal) = ln(n) + ∑t [ln(1 - ε Ft)] ≤ ln(n) - ε ∑t Ft

(using ln(1-x) < -x)

= ln(n) - ε M.            (∑ Ft = E[# mistakes])

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-ε)m).
• Now solve: ln(n) - ε M > m ln(1-ε).

Additive regretAdditive regret
• So, have M ≤ OPT + εOPT + 1/ε log(n).
• Say we know we will play for T time steps. Then can 
set ε=(log(n) / Τ)1/2.  Get M ≤ OPT + 2(Τ ∗ log(n))1/2.

• If we don’t know T in advance, can guess and 
double.

• These are called “additive regret” bounds.
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ExtensionsExtensions
• What if experts are actions? (rows in a matrix 
game, choice of deterministic alg to run,…)

• At each time t, each has a loss (cost) in {0,1}.

• Can still run the algorithm

– Rather than viewing as “pick a prediction with 
prob proportional to its weight” ,

– View as “pick an expert with probability 
proportional to its weight”

• Same analysis applies.

ExtensionsExtensions
• What if losses (costs) in [0,1]? 

• Here is a simple way to extend the results.

•• Given Given cost vector c, view cost vector c, view ccii as bias of coin.  Flip to as bias of coin.  Flip to 
create create booleanboolean vector c’, vector c’, s.ts.t. E[. E[c’c’ii] = ] = ccii.  Feed c’ to .  Feed c’ to 
algalg A.A.

•• For For any sequence of vectors c’, we have:any sequence of vectors c’, we have:
–– EEAA[cost’(A)] [cost’(A)] ≤≤ minminii cost’(cost’(ii) + [regret term]) + [regret term]

–– So, ESo, E$$[E[EAA[cost’(A)]] [cost’(A)]] ≤≤ EE$$[min[minii cost’(cost’(ii)] + [regret term])] + [regret term]

•• LHS is ELHS is EAA[cost(A)].[cost(A)].
•• RHS RHS ≤≤ minminii EE$$[cost’([cost’(ii)] + [)] + [r.tr.t.] = min.] = minii[cost([cost(ii)] + [)] + [r.tr.t.].]

In other words, costs between 0 and 1 just make the In other words, costs between 0 and 1 just make the 
problem easier…problem easier…

c $ c’world A

Cost’ = cost on 
c’ vectors

What can we use this for?What can we use this for?

• Can use to combine multiple algorithms to 
do nearly as well as best in hindsight.
– E.g., do nearly as well as best strategy in 
hindsight in repeated play of matrix game.

• Extension: “sleeping experts”.  E.g., one for 
each possible keyword.  Try to do nearly as 
well as best “coalition”.

• More extensions: “bandit problem”, 
movement costs.

Online pricing
• Say you are selling lemonade (or a cool new software tool, or 

bottles of water at the world expo).

• Protocol #1: for t=1,2,…T

– Seller sets price pt

– Buyer arrives with valuation vt

– If vt ≥ pt, buyer purchases and pays pt, else doesn’t.

– vt revealed to algorithm. 

–– repeatrepeat
• Protocol #2: same as protocol #1 but 

without vt revealed.
• Assume all valuations in [1,h]

$2

• Goal: do nearly as well as best fixed 
price in hindsight.

Online pricing
• Say you are selling lemonade (or a cool new software tool, or 

bottles of water at the world expo).

• Protocol #1: for t=1,2,…T

– Seller sets price pt

– Buyer arrives with valuation vt

– If vt ≥ pt, buyer purchases and pays pt, else doesn’t.

– vt revealed to algorithm. 

• Bad algorithm: “best price in past”

– What if sequence of buyers = 1, h, 1, …, 1, h, 1, …, 1, h, …

– Alg makes T/h, OPT makes T.

Factor of h worse!

Online pricing
• Say you are selling lemonade (or a cool new software tool, or 

bottles of water at the world expo).

• Protocol #1: for t=1,2,…T

– Seller sets price pt

– Buyer arrives with valuation vt

– If vt ≥ pt, buyer purchases and pays pt, else doesn’t.

– vt revealed to algorithm. 

• Good algorithm: Randomized Weighted Majority!
– Define one expert for each price p = (1+ǫ)i ∈ [1,h].

– Best price of this form gives profit ≥ OPT/(1+ǫ).

– Run RWM algorithm.  Get expected gain at least:
(best expert)/(1+ǫ) - O(ǫ-1 h log n)

= OPT/(1+ǫ)2 - O(ǫ-1 h log(ǫ-1 log h))
[extra factor of h coming from range of gains]
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Online pricing
• Say you are selling lemonade (or a cool new software tool, or 

bottles of water at the world expo).

• What about Protocol #2?  [just see accept/reject decision]

– Now we can’t run RWM directly since we don’t know how 
to penalize the experts!

– Called the “adversarial multiarmed bandit problem”

– How can we solve that?
$2

Multi-armed bandit problem
Exponential Weights for Exploration and Exploitation (exp3)

RWM

n = 
#experts

Exp3

Distrib pt

Expert i ~ qt

Gain git
Gain vector ĝt

qt

qt = (1-γ)pt + γ unif

ĝt = (0,…,0, git/qit,0,…,0)

OPT

OPT

1. RWM believes gain is: pt · ĝt  =  pit(git/qit)  ≡ gtRWM

3. Actual gain is: git  = gtRWM (qit/pit) ≥ gtRWM(1-γ)

2. ∑t gtRWM ≥ /(1+ǫ) - O(ǫ-1 nh/γ log n)OPT 

4. E[      ] ≥ OPT. OPT Because E[ĝjt] = (1- qjt)0 + qjt(gjt/qjt) = gjt ,

so E[maxj[∑t ĝjt]] ≥ maxj [ E[∑t ĝjt] ]  = OPT.

≤ nh/γ

[Auer,Cesa-Bianchi,Freund,Schapire]

Multi-armed bandit problem
Exponential Weights for Exploration and Exploitation (exp3)

RWM

n = 
#experts

Exp3

Distrib pt

Expert i ~ qt

Gain git
Gain vector ĝt

qt

qt = (1-γ)pt + γ unif

ĝt = (0,…,0, git/qit,0,…,0)

OPT

OPT

3. Actual gain is: git  = gtRWM (qit/pit) ≥ gtRWM(1-γ)

2. ∑t gtRWM ≥ /(1+ǫ) - O(ǫ-1 nh/γ log n)OPT 

4. E[      ] ≥ OPT. OPT Because E[ĝjt] = (1- qjt)0 + qjt(gjt/qjt) = gjt ,

so E[maxj[∑t ĝjt]] ≥ maxj [ E[∑t ĝjt] ]  = OPT.

≤ nh/γ

[Auer,Cesa-Bianchi,Freund,Schapire]

Multi-armed bandit problem
Exponential Weights for Exploration and Exploitation (exp3)

RWM

n = 
#experts

Exp3

Distrib pt

Expert i ~ qt

Gain git
Gain vector ĝt

qt

qt = (1-γ)pt + γ unif

ĝt = (0,…,0, git/qit,0,…,0)

OPT

OPT

Conclusion (γ = ǫ):  
E[Exp3] ≥ OPT/(1+ǫ)3 - O(ǫ-2 h n log(n)) 

[Auer,Cesa-Bianchi,Freund,Schapire]

≤ nh/γ

Almost as good as protocol 1!

Can even reduce ǫ-2 to 
ǫ-1  with more care in 

analysis. 

[Z] setting:

� Assume S is convex.  

� Allow c(x) to be a convex function over S.

� Assume given any y not in S, can algorithmically find 
nearest x ∈ S.

[KV][KV] setting:setting:

�� Implicit set S of feasible points in RImplicit set S of feasible points in Rmm. . (E.g., m=#edges, (E.g., m=#edges, 
S={indicator vectors 011010010 for possible paths})S={indicator vectors 011010010 for possible paths})

�� Assume have oracle for Assume have oracle for offlineoffline problem: given vector c, problem: given vector c, 
find x find x ∈∈ S to minimize S to minimize cc··xx. . (E.g., shortest path algorithm)(E.g., shortest path algorithm)

�� Use to solve Use to solve online online problem: on day problem: on day tt, must pick x, must pick xt∈∈ S S 
before cbefore ct is given.is given.

�� (c(c11··xx11+…++…+ccTT··xxTT)/T )/T →→ minminxx∈∈SSxx··(c(c11+…++…+ccTT)/T.)/T.

xx

Extensions (of expert or bandit problem) Other Other models in learningmodels in learning

• “Active learning”: have large unlabeled 
sample and alg may choose among these.
– E.g., web pages, image databases.

• “Membership query learning”: Algorithm can 
construct its own examples. 
– E.g., features represent variable-settings in 
some experiment, label represents outcome.

• “Semi-supervised learning”: use of 
labeled+unlabeled data in passive setting.

Lots of other models considered as well 
for different kinds of problems.


