15-859(M) Randomized Algorithms

An Intro to Machine Learning

Avrim Blum
Lecture #12

Plan for today

- Machine Learning intro: models and basic issues
- How much data do I need to see to be confident in generalizations I make from it?
- Connections of this to notion of Occam's razor
- A cool idea: "shatter coefficients", VCdimension, and a very nice probabilistic argument.

Plan for Monday

- An interesting algorithm for online decision making. Problem of "combining expert advice"
- Algorithms for online decision making from very limited feedback. The "multiarmed bandit problem"

Machine learning can be used to...

- · recognize speech,
- · identify patterns in data,
- · steer a car.
- · play games,
- · adapt programs to users,
- · improve web search, ...

From a scientific perspective: can we develop models to understand learning as a computational problem, and what types of guarantees might we hope to achieve?

A typical setting

- Imagine you want a computer program to help filter which email messages are spam and which are important.
- Might represent each message by n features. (e.g., return address, keywords, spelling, etc.)
- Take sample S of data, labeled according to whether they were/weren't spam.
- Goal of algorithm is to use data seen so far produce good prediction rule (a "hypothesis") h(x) for future data.

The concept learning setting

E.g., money pills Mr. bad spelling known-sender spam?

The concept learning setting

E.g.,	money	pills	Mr.	bad spelling	known-sender	spam?
9.,	Y	N	Y	Y	N	Y
a positive	N	Ν	N	Y	Y	N
example	N	Υ	N	N	N	Y
a negative	Y	Ν	N	N	Υ	N
example	N	Ν	Y	N	Υ	N
	Y	Ν	Ν	Y	N	Y
	N	Ν	Y	N	N	N
	N	V	N	~	N	V

Given data, some reasonable rules might be:
•Predict SPAM if ¬known AND (money OR pills)

·Predict SPAM if money + pills - known > 0.

•...

Big questions

(A)How might we automatically generate rules that do well on observed data?

[algorithm design]

(B)What kind of confidence do we have that they will do well in the future?

[confidence bound / sample complexity]

for a given learning alg, how much data do we need...

Natural formalization (PAC)

Email msg | Spam or not?

- We are given sample $S = \{(x,y)\}.$
 - View labels y as being produced by some target function f.
- Alg does optimization over S to produce some hypothesis (prediction rule) h.
- Assume S is a random sample from some probability distribution D. Goal is for h to do well on new examples also from D.

I.e., $Pr_{D}[h(x)\neq f(x)] < \varepsilon$.

Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.

- Design an efficient algorithm A that will find a consistent DL if one exists.
- 2. Show that if sample S is of reasonable size, $Pr[exists consistent DL \ h \ with \ err(h) > \epsilon] < \delta$.
- 3. This means that A is a good algorithm to use if f is, in fact, a DL.

(a bit of a toy example since would want to extend to "mostly consistent" DL)

How can we find a consistent DL?

	x_1	x_2	x_3	x_4	x_5	label	
	1	0	0	1	1	+	
_	0	1	1	0	-0	_	
_	1	1	1	0	0	+	-
_	 0	0	0	-1	0	_	₩
	1	1	0	1	1	+	
	1	0	0	0	1	<u> </u>	

if $(x_1=0)$ then -, else

if $(x_2=1)$ then +, else

if $(x_4=1)$ then +, else -

<u>Decision List algorithm</u>

- · Start with empty list.
- Find if-then rule consistent with data.
 (and satisfied by at least one example)
- Put rule at bottom of list so far, and cross off examples covered. Repeat until no examples remain.

If this fails, then:

- ·No rule consistent with remaining data.
- ·So no DL consistent with remaining data.
- ·So, no DL consistent with original data.

OK, fine. Now why should we expect it to do well on future data?

Confidence/sample-complexity

- Consider some DL h with err(h)>ε, that we're worried might fool us.
- Chance that h survives |S| examples is at most $(1-\epsilon)^{|S|}$.
- Let |H| = number of DLs over n Boolean features. |H| < (4n+2)!. (really crude bound)
- So, $Pr[some DL h with err(h) \ge is consistent]$ $< |H|(1-\epsilon)^{|S|}.$
- This is <0.01 for $|S| > (1/\epsilon)[\ln(|H|) + \ln(100)]$ or about $(1/\epsilon)[n \ln n + \ln(100)]$

Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.

1 Design an efficient algorithm A that will find a consistent DL if one exists.

3. So, if f is in fact a DL, then whp A's hypothesis will be approximately correct. "PAC model"

Confidence/sample-complexity

- What's great is there was nothing special about DLs in our argument.
- All we said was: "if there are not too many rules to choose from, then it's unlikely one will have fooled us just by chance."
- And in particular, the number of examples needs to only be proportional to log(|H|).

(the "log" is important here)

Occam's razor

William of Occam (~1320 AD):

"entities should not be multiplied unnecessarily" (in Latin)

Which we interpret as: "in general, prefer simpler explanations".

Why? Is this a good policy? What if we have different notions of what's simpler?

Occam's razor (contd)

A computer-science-ish way of looking at it:

- Say "simple" = "short description".
- · At most 2s explanations can be < s bits long.
- · So, if the number of examples satisfies:

Think of as 10x #bits to write down h. Think of as $(1/\epsilon)[s \ln(2) + \ln(100)]$

Then it's unlikely a bad simple explanation will fool you just by chance.

Occam's razor (contd)2

Nice interpretation:

- Even if we have different notions of what's simpler (e.g., different representation languages), we can both use Occam's razor.
- Of course, there's no guarantee there will be a short explanation for the data. That depends on your representation.

Extensions

We said: if $|S| \ge (1/\epsilon)[\ln(|H|) + \ln(1/\delta)]$, then with probability $\ge 1-\delta$, all $h \in H$ with $err_D(h) \ge \epsilon$ have $err_S(h) > 0$.

What if no perfect rule, and best we find is rule with error (say) 10% on training set? What can we say?

Thm: If $|S| \ge (1/(2\epsilon^2))[\ln(|H|) + \ln(2/\delta)]$, then with prob $\ge 1-\delta$, all h \in H have $|\text{err}_D(h) - \text{err}_S(h)| < \epsilon$.

Proof: apply Hoeffding bounds.

- Chance of failure at most $2|H|e^{-2|S|\epsilon^2}$.
- Set to δ and solve.

One more extension

 What about something like the class H of linear separators? What is |H|?

- There are infinitely many linear separators, but not that many really different ones.
- Union bound is too weak.

A cool idea: shatter coefficient

- Let H[S] be the number of ways of splitting set S using functions in H.
- Let H[m] = max_{|S|=m} H[S].

- E.g., linear separators in Rd: H[m] = O(md).
- E.g., intervals on a line: H[m] = O(m²).

A cool idea: shatter coefficient

- Let H[S] be the number of ways of splitting set S using functions in H.
- Let H[m] = max_{|S|=m} H[S].

• E.g., linear separators in Rd: H[m] = O(md).

Thm: if $m=|S| \geq (2/\epsilon)[lg(2H[2m]) + lg(1/\delta)]$, then with probability $\geq 1-\delta$, all $h \in H$ with $err_b(h) \geq \epsilon$ have $err_s(h) > 0$.

A cool idea: shatter coefficient

Thm: if $m \ge (2/\epsilon)[lg(2H[2m]) + lg(1/\delta)]$, then with probability $\ge 1-\delta$, all $h \in H$ with $err_{D}(h) \ge \epsilon$ have $err_{S}(h) > 0$.

Note 1: For linear separators in R^d, H[2m] = O(m^d), so bound is O(1/ε)[d lg(1/ε) + lg(1/δ)]

Note 2: VC-dimension(H) = max value m such that H[m] = 2^m

Sauer's lemma: $H[m] = O(m^{VCdim(H)})$.

A cool idea: shatter coefficient

Thm: if $m \ge (2/\epsilon)[lg(2H[2m]) + lg(1/\delta)]$, then with probability $\ge 1-\delta$, all $h \in H$ with $err_b(h) \ge \epsilon$ have $err_s(h) > 0$.

Proof of Thm:

- · Consider drawing 2 sets 5, 5' of m examples each.
- Let A be the event: exists $h \in H$ with $err_{D}(h) \ge \epsilon$ and $err_{S}(h) = 0$.
- Let B be the event: exists h∈H with err_s(h)≥ε/2 and err_s(h)=0.
- Claim 1: $Pr[A]/2 \le Pr[B]$ (because $Pr[B|A] \ge \frac{1}{2}$)
- So, just need to show Pr[B] is low.

A cool idea: shatter coefficient

Thm: if $m \ge (2/\epsilon)[lg(2H[2m]) + lg(1/\delta)]$, then with probability $\ge 1-\delta$, all $h \in H$ with err_b(h) $\ge \epsilon$ have err_s(h)>0.

Proof cont'd:

- · Consider drawing 2 sets 5, 5' of m examples each.
- Let B be the event: exists h∈H with err_s(h)≥ε/2 and err_s(h)=0. Suffices to show Pr[B] is low.
- · Now, define T, T' as follows:
 - For i=1 to m, flip a fair coin:
 - If heads, put ith element of S into T and ith element of S' into T'.
 - · If tails, do it other way around.

A cool idea: shatter coefficient

Thm: if $m \ge (2/\epsilon)[lg(2H[2m]) + lg(1/\delta)]$, then with probability $\ge 1-\delta$, all $h \in H$ with $err_b(h) \ge \epsilon$ have $err_s(h) > 0$.

Proof cont'd:

- Consider drawing 2 sets 5, 5' of m examples each.
- Let C be the event: exists $h \in H$ with $err_T(h) \ge \ell/2$ and $err_T(h) = 0$. Suffices to show Pr[C] is low.
- Now, define T, T' as follows:
 - For i=1 to m, flip a fair coin:
 - If heads, put ith element of S into T and ith element of S' into T'.
 - · If tails, do it other way around.

A cool idea: shatter coefficient

Thm: if $m \ge (2/\epsilon)[lg(2H[2m]) + lg(1/\delta)]$, then with probability $\ge 1-\delta$, all $h \in H$ with $err_h(h) \ge \epsilon$ have $err_s(h) > 0$.

Proof cont'd:

- Will show that for all $S,S', Pr_{swap}[C]$ is low.
- Let C be the event: exists $h \in H$ with $err_T(h) \ge \ell/2$ and $err_T(h) = 0$. Suffices to show Pr[C] is low.
- · Now, define T, T' as follows:
 - For i=1 to m, flip a fair coin:
 - If heads, put ith element of S into T and ith element of S' into T'.
 - · If tails, do it other way around.

A cool idea: shatter coefficient

Thm: if $m \ge (2/\epsilon)[lg(2H[2m]) + lg(1/\delta)]$, then with probability $\ge 1-\delta$, all $h \in H$ with err_b $(h) \ge \epsilon$ have err_s(h) > 0.

Proof cont'd:

- Will show that for all S,S', Pr_{swap}[C] is low.
- Let C be the event: exists $h \in H$ with $err_T(h) \ge \ell/2$ and $err_T(h) = 0$. Suffices to show Pr[C] is low.
- Fix some splitting h of S ∪ S' (at most H[2m])
- If for any i, h makes mistake on ith element of both S and S', then $\Pr[C_h]=0$. Also, if h makes fewer than $\epsilon m/2$ mistakes on $S\cup S'$, then $\Pr[C_h]=0$.
- Else, $Pr[C_h] \le 2^{-\epsilon m/2}$. Set $H[2m] \times 2^{-\epsilon m/2} = \delta/2$. Done!

Online learning

- What if we don't want to make assumption that data is coming from some fixed distribution? Or any assumptions on data?
- Can no longer talk about past performance predicting future results.

Using "expert" advice

Say we want to predict the stock market.

- We solicit n "experts" for their advice. (Will the market go up or down?)
- We then want to use their advice somehow to make our prediction. E.g.,

Expt 1	Expt 2	Expt 3	neighbor's dog	truth
down	up	up	up	up
down	up	up	down	down

Basic question: Is there a strategy that allows us to do nearly as well as best of these in hindsight?

["expert" = someone with an opinion. Not necessarily someone who knows anything.]

Simpler question

- · We have n "experts".
- One of these is perfect (never makes a mistake).
 We just don't know which one.
- Can we find a strategy that makes no more than lg(n) mistakes?

Answer: sure. Just take majority vote over all experts that have been correct so far.

- > Each mistake cuts # available by factor of 2.
- >Note: this means ok for n to be very large.

What if no expert is perfect?

Intuition: Making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority Alg:

- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

weights	1	1	1	1		
predictions	Y	Y	Y	N	Y	Y
weights	1	1	1	.5		
predictions	Y	N	N	Y	N	Y
weights	1	.5	.5	.5		

Analysis: do nearly as well as best expert in hindsight

- M = # mistakes we've made so far.
- m = # mistakes best expert has made so far.
- · W = total weight (starts at n).
- After each mistake, W drops by at least 25%.
 So, after M mistakes, W is at most n(3/4)^M.
- Weight of best expert is (1/2)^m. So,

$$(1/2)^m \le n(3/4)^M$$

 $(4/3)^M \le n2^m$
 $M < 2.4(m + \lg n)$

So, if m is small, then M is pretty small too.

Randomized Weighted Majority

- 2.4(m + lg n) not so good if the best expert makes a mistake 20% of the time. Can we do better? Yes.
- Instead of taking majority vote, use weights as probabilities. (e.g., if 70% on up, 30% on down, then pick 70:30) Idea: smooth out the worst case.
- Also, generalize $\frac{1}{2}$ to 1- ϵ .

Solves to:
$$M \leq \frac{-m \ln(1-\varepsilon) + \ln(n)}{\varepsilon} \approx (1+\varepsilon/2)m + \frac{1}{\varepsilon} \ln(n)$$

$$M \leq \frac{1.39m + 2 \ln n}{\# \text{mistakes}}$$

$$M \leq 1.15m + 4 \ln n \quad \leftarrow \varepsilon = 1/4$$

$$M \leq 1.07m + 8 \ln n \quad \leftarrow \varepsilon = 1/8$$

Analysis

- Say at time t we have fraction \boldsymbol{F}_t of weight on experts that made mistake.
- So, we have probability $F_{\rm t}$ of making a mistake, and we remove an $\epsilon F_{\rm t}$ fraction of the total weight.
 - W_{final} = $n(1-\epsilon F_1)(1 \epsilon F_2)...$
 - $\ln(W_{\text{final}}) = \ln(n) + \sum_{t} \left[\ln(1 \epsilon F_{t})\right] \le \ln(n) \epsilon \sum_{t} F_{t}$ (using $\ln(1-x) < -x$) $= \ln(n) \epsilon M.$ ($\sum F_{t} = E[\# \text{mistakes}]$)
- If best expert makes m mistakes, then $ln(W_{final}) > ln((1-\epsilon)^m)$.
- Now solve: $ln(n) \varepsilon M > m ln(1-\varepsilon)$.

$$M \leq \frac{-m \ln(1-\varepsilon) + \ln(n)}{\varepsilon} \approx (1+\varepsilon/2)m + \frac{1}{\varepsilon}\log(n)$$

Additive regret

- So, have $M \leq OPT + \epsilon OPT + 1/\epsilon \log(n)$.
- Say we know we will play for T time steps. Then can set $\epsilon\!\!=\!\!(\log(n)\slash\,T)^{1/2}.$ Get M \le OPT + $2(T*\log(n))^{1/2}.$
- If we don't know $\mathbf T$ in advance, can guess and double.
- These are called "additive regret" bounds.

$$M \ \leq \ \frac{-m \ln(1-\varepsilon) + \ln(n)}{\varepsilon} \ \approx \ (1+\varepsilon/2)m + \frac{1}{\varepsilon} \log(n)$$

Extensions

- What if experts are actions? (rows in a matrix game, choice of deterministic alg to run,...)
- At each time t, each has a loss (cost) in $\{0,1\}$.
- Can still run the algorithm
 - Rather than viewing as "pick a prediction with prob proportional to its weight",
 - View as "pick an expert with probability proportional to its weight"
- Same analysis applies.

Extensions

- What if losses (costs) in [0,1]?
- Here is a simple way to extend the results.
- Given cost vector c, view c; as bias of coin. Flip to create boolean vector c', s.t. $E[c'_i] = c_i$. Feed c' to alg A. world \xrightarrow{c} \$ $\xrightarrow{c'}$ A
- For any sequence of vectors c', we have: Cost' = cost on

E_A[cost'(A)] ≤ min_i cost'(i) + [regret term]

- So, $E_s[E_A[cost'(A)]] \le E_s[min_i cost'(i)] + [regret term]$
- LHS is $E_A[cost(A)]$.
- RHS $\leq \min_i E_s[cost'(i)] + [r.t.] = \min_i[cost(i)] + [r.t.]$

In other words, costs between 0 and 1 just make the problem easier..

What can we use this for?

- · Can use to combine multiple algorithms to do nearly as well as best in hindsight.
 - E.g., do nearly as well as best strategy in hindsight in repeated play of matrix game.
- Extension: "sleeping experts". E.g., one for each possible keyword. Try to do nearly as well as best "coalition".
- · More extensions: "bandit problem", movement costs.

Online pricing

- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world expo).
- Protocol #1: for t=1,2,...T
 - Seller sets price pt
 - Buyer arrives with valuation v^t
 - If $v^{\dagger} \geq p^{\dagger}$, buyer purchases and pays p^{\dagger} , else doesn't.

\$2

- v^t revealed to algorithm.
- repeat

Protocol #2: same as protocol without v[†] revealed.

Assume all valuations in [1,h &

Goal: do nearly as well as best price in hindsight.

Online pricing

- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world expo).
- Protocol #1: for t=1,2,...T
 - Seller sets price pt
 - Buyer arrives with valuation v^t
 - If $v^{\dagger} \ge p^{\dagger}$, buyer purchases and pays p^{\dagger} , else doesn't.
 - v^t revealed to algorithm.
- Bad algorithm: "best price in past"
 - What if sequence of buyers = 1, h, 1, ..., 1, h, 1, ..., 1, h, ...
 - Alg makes T/h, OPT makes T.

Factor of h worse!

Online pricing

- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world expo).
- Protocol #1: for t=1,2,...T
 - Seller sets price pt
 - Buyer arrives with valuation v^t
 - If $v^{\dagger} \ge p^{\dagger}$, buyer purchases and pays p^{\dagger} , else doesn't.
 - v[†] revealed to algorithm.
- Good algorithm: Randomized Weighted Majority!
 - Define one expert for each price $p = (1+\epsilon)^i \in [1,h]$.
 - Best price of this form gives profit \geq OPT/(1+ ϵ). - Run RWM algorithm. Get expected gain at least:
 - (best expert)/(1+ ϵ) $O(\epsilon^{-1} \text{ h log n})$

= OPT/ $(1+\epsilon)^2$ - $O(\epsilon^{-1} h \log(\epsilon^{-1} \log h))$

[extra factor of h coming from range of gains]

- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world expo).
- What about Protocol #2? [just see accept/reject decision]
- Now we can't run RWM directly since we don't know how to penalize the experts!
- Called the "adversarial multiarmed bandit problem"

- How can we solve that?

Extensions (of expert or bandit problem)

[KV] setting:

- Implicit set S of feasible points in R^m. (E.g., m=#edges, S={indicator vectors 011010010 for possible paths})
- Assume have oracle for offline problem: given vector c, find x ∈ S to minimize c·x. (E.g., shortest path algorithm)
- Use to solve online problem: on day t, must pick x_t∈ S
 before c_t is given.
- $(c_1 \cdot x_1 + ... + c_T \cdot x_T)/T \rightarrow min_{x \in S} x \cdot (c_1 + ... + c_T)/T$.

[Z] setting:

- Assume S is convex.
- Allow c(x) to be a convex function over S.
- Assume given any y not in S, can algorithmically find nearest $x \in S$.

Other models in learning

Lots of other models considered as well for different kinds of problems.

- "Active learning": have large unlabeled sample and alg may choose among these.
 - E.g., web pages, image databases.
- "Membership query learning": Algorithm can construct its own examples.
 - E.g., features represent variable-settings in some experiment, label represents outcome.
- "Semi-supervised learning": use of labeled+unlabeled data in passive setting.