15-859M: Randomized Algorithms Anupam Gupta
Lec 10: Polynomial Identity Testing and Parallel Matchings February 9, 2011

1 Matrix multiplication checking

The matriz multiplication checking problem is to verify the process of matrix multiplication:
Given three n x n matrices A, B, and C| is it the case that AB = C'? The fastest known
deterministic algorithm is to actually multiply A and B and compare the result to C—this
takes O(n*) time, where w is the exponent of matrix multiplication, and currently w = 2.376
due to an algorithm of Coppersmith and Winograd. Note that an easy lower bound on the
running time of any randomized algorithm for matrix multiplication verification is (n?)
since the input has to at least be read (see Lecture 4 for more details on this). We will now
give a randomized algorithm (in co-RP) which takes only O(n?) time.

Let us introduce some notation for the rest of the course: z € X means “choose x uniformly
at random from the set X”. Our checking problem algorithm is as follows:

e Pick a vector x € {0, 1}".

e Compare ABx with C'z. This takes O(n?) time, since we can first compute y = Br,
and then compute Ay = ABz. Each matrix-vector product takes only O(n?) time.

o If ABx = Cx, then output Yes, otherwise output No.

(We're imagining working over the reals; if the matrices are over the field IF, the computations
should also carried out over the field F. The proofs remain unchanged.) Now if AB = C,
our algorithm always outputs the correct answer. If AB # C, the algorithm may output the
wrong answer. We now bound the probability of such an error.

First, we need a simple lemma:

Lemma 1 Given n-digit strings a,b € R" and x €g {0,1}", Prla-z=b-x2] <

N

PROOF: Suppose a; # b;. Let a = Z#i ajr;and § = E#i bjx;. We can write a-z = a+a;;
and b-x = 8+ b;x;. This gives us

a-z—b-z=(a—pF)+ (a; — b;)x;.

We can invoke the Principle of Deferred Decisions (see Section 3.5 of M&R) to assume that
we've first picked all the values z; for j # 7. Then we can write
a—p

1
Prla- 2 —b-2=0]=P = < -,
rja - x z =0 r{x bi—&i] <3

1

where we use the fact that (o — 3)/(b; — a;) can only be either 0 or 1 (or neither), and a
randomly chosen z; will take that value with probability at most half. [J

Theorem 2 (Freivalds) If AB # C, our algorithm fails with probability at most %

PROOF: If AB # C, then there is at least one row in AB, say (AB);, that differs from the
corresponding row C; in C. Apply Lemma 1 with a = (AB); and b = C;. The probability
that a -z = b-x is at most 1/2. For the algorithm to output Yes, we must have a -z =0 x.
Therefore, the probability of failure for the algorithm is at most 1/2. O

2 Polynomial identity checking

In the polynomial identity checking problem, we are given two multi-variate polynomials
f(xq,...,z,) and g(xy,...,x,) each with degree d; again we are computing in some field
F. We may not be given the polynomials explicity, so we may not be able to read the
polynomials in poly-time — we just have “black-box” access for evaluating a polynomial.
Given these two polynomials, the problems is to determine if the polynomials are equal:
ie., if f = g, or equivalently, f — g = 0. Letting Q = f — g, it suffices to check if a given
polynomial is identically zero. There is no known poly-time algorithm for this problem. But
we will now show that it is in co-RP.

First consider the univariate case. We can pick d + 1 distinct values at random from F. If
Q(z) = 0 for all d+ 1 values for z, then) = 0. This follows from the basic and super-useful
fact, that for any field FF, a polynomial of degree at most d over that field can have at most
d roots.

This approach does not directly apply to the multivariate case; in fact, the polynomial over
two variables f(z,y) = xy — 3 over the reals has an infinite number of roots. Over the finite
field F,, the degree-d polynomial over n variables

Q(x1,z9, ..., 2p) = (x1 — 1) (21 — 2) -+ (1 — d)

has dg" ! roots (when d < q = |F|).

However, things still work out. Roughly speaking, we can handle the multivariate case by
fixing n—1 variables and applying the result from the univariate case. Consider the following
algorithm, which assumes we have some subset S C F with |S| > 2d.

e Pickry,...,7, €Er S.
e Evaluate Q(r1,...,75).

o If 0, return @) = 0.

Theorem 3 (Schwartz (1980), Zippel (1979)) If, in the above algorithm, the polyno-

mial Q # 0, we have
d

PriQ(ry,...,rn) =0] < —-.
5]
ProoF: By induction on n. The base case is the univariate case described above. With
Q@ # 0, we want to compute Pr[Q(rq,...,r,) = 0]. Let k be the largest power of z;. We can
rewrite
Q(x1,...,20) = 28 Ay, ..., 2,) + B(xy,. .., 1)

for some polynomials A and B. Now we consider two events. Let & be the event that
Q(ry,- -+,) evaluates to 0, and & be the event that A(ry,--- ,r,) evaluates to 0.

We can rewrite the probability that Q(rq, -+ ,7,) is 0 as:

PI‘[Q(T’) = 0] = Pr[é’l] = Pl'[gl | 82] PI'[EQ] + Pr[51 | _|52] PI‘[_'EQ]
S Pl"[gg] + Pr[é’l | _|€2]
Let us first bound the probability of &, or the probability that A(ry,---,7,) = 0. The
polynomial A has degree d — k and fewer varaibles, so we can use the inductive hypothesis
to obtain
d—k

PI'[(C:Q] = PI'[A('I"Q, c. ,?“n) = O] S W
Similarly, given =& (or A(rg,--- ,7,) # 0), the univariate polynomial Q(zy,79,...,7,) has
degree k. Therefore, again by inductive hypothesis,

k

Pr[& | &) = Pr[Q(z1,79, ..., r0) =0 | A(re, ... 1) #0] < m

We can substitute into the expression above to get

Pr[Q(r) =0] < Pr[&] + Pr[& | &)
Cdk, kb d
R L B A B o)

This completes the inductive step. [

Polynomial identity testing is a powerful tool, both in algorithms and in complexity theory.
We will use it to find matchings in parallel, but it arises all over the place. Also, as mentioned
above, there is no poly-time deterministic algorithm currently known for this problem. A
result of Impagliazzo and Kabanets (2003) shows that proving that the polynomial identity
checking problem is in P would imply that either N EX P cannot have poly-size non-uniform
circuits, or Permanent cannot have poly-size non-uniform circuits. Since we are far from
proving such strong lower bounds, the Impagliazzo-Kabanets result suggest that determin-
istic algorithms for polynomial identity checking may require us to develop significantly new
techniques.

http://www.cs.sfu.ca/~kabanets/Research/poly.html

For more on the polynomial identity checking problem, see Section 7.2 in M&R. Dick Lipton’s
blog has an interesting post on the history of the theorem, as well as comparisons of the
results of Schwartz, Zippel, and DeMillo-Lipton. One of the comments points out that the
case when S = F, was known at least as far back as Ore in 1922; his proof appears as
Theorem 6.13 in the book Finite Fields by Lidl and Niederreiter; a different proof by Dana
Moshkowitz appears here.

3 Perfect matchings in bipartite graphs

We will look at a simple sequential algorithm to determine whether a perfect matching exists
in a given bipartite graph or not. The algorithm is based on polynomial identity testing from
the previous section.

A bipartite graph G = (U, V, E) is specified by two disjoint sets U and V' of vertices, and
a set E of edges between them. A perfect matching is a subset of the edge set E such
that every vertex has exactly one edge incident on it. Since we are interested in perfect
matchings in the graph G, we shall assume that |[U| = |V| = n. Let U = {ug,ug, -+ ,un}
and V = {vy,vq,- -+ ,v,}. The algorithm we study today has no error if G does not have a
perfect matching (no instance), and errs with probability at most % if G does have a perfect
matching (yes instance). This is unlike the algorithms we saw in the previous lecture, which
erred on no instances.

Definition 4 The Tutte matriz of bipartite graph G = (U, V, E) is an n X n matriz M with
the entry at row v and column j,

W i 5 if(ui,vj) cF

(Apparently, Tutte came up a matrix for general graphs, and this one for bipartite graphs

is due to Jack Edmonds, but we'll stick with calling it the Tutte matrix.)

The determinant of the Tutte matrix is useful in testing whether a graph has a perfect
matching or not, as the following lemma shows. Note that we do not think of this determinant
as taking on some numeric value, but purely as a function of the variables z; ;.

Lemma 5 det(M) # 0 <= There exists a perfect matching in G

PrROOF: We have the following expression for the determinant :

n

det(M) = Z (_1)sgn(ﬂ) H M, (i

TES, i=1

where S, is the set of all permutations on [n|, and sgn(r) is the sign of the permutation 7.
There is a one to one correspondence between a permutation © € S,, and a (possible) perfect

4

http://rjlipton.wordpress.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/
http://books.google.com/books?id=xqMqxQTFUkMC&lpg=PA320&pg=PA275#v=onepage&q&f=false
http://eccc.uni-trier.de/report/2010/096/

matching {(u1,vxqa)), (U2, Vr2)); -+, (Un, Vzm))} in G. Note that if this perfect matching
does not exist in G (i.e. some edge (u;, V(;)) ¢ £) then the term corresponding to 7 in the
summation is 0. So we have

det(M) = Z(—l)sgn(w) ﬁ T (4)
i=1

meP

where P is the set of perfect matchings in G. This is clearly zero if P = (), i.e., if G has no
perfect matching. If G' has a perfect matching, there is a 7 € P and the term corresponding
to w is H?:l Tix() 7 0. Additionally, there is no other term in the summation that contains

the same set of variables. Therefore, this term is not cancelled by any other term. So in this
case, det(M) # 0. O

This lemma gives us an easy way to test a bipartite graph for a perfect matching — we use
the polynomial identity testing algorithm of the previous lecture on the Tutte matrix of G.
We accept if the determinant is not identically 0, and reject otherwise. Note that det(M)
has degree at most n. So we can test its identity on the field Z,, where p is a prime number
larger than 2n. From the analysis of the polynomial testing algorithm, we have the following

e (has no perfect matching = Pr[accept] = 0.

e G has a perfect matching = Praccept] > 1.

The above algorithm shows that Perfect Matching for bipartite graphs is in RP. (The non-
bipartite case may appear as a homework exercise.) Also, this algorithm for checking the
existence of a perfect matching can be easily converted to one that actually computes a
perfect matching as follows:

1. Pick (Ui,’l)j) e k.
2. Check if G\{w;,v;} has a perfect matching.

3. If “Yes”, output (u;,v;) to be in the matching and recurse on G\{w;,v;}, the graph
obtained after the removal of vertices u; and v;.

4. If “No”, recurse on G' — (u;,v;), the graph obtained after removing the edge (u;,v;).

Note that this algorithm seems inherently sequential; it’s not clear how to speed up its
running time considerably by using multiple processors. We’ll consider the parallel algorithm
in the next section.

Some citations: the idea of using polynomial identity testing to test for matchings is due to
Lovasz. The above algorithm to find the matching runs in time mn*, where n“ is the time
to multiply two n x n-matrices. (It is also the time to compute determinants, and matrix

http://www.math.uwaterloo.ca/~harvey/W11/1979-Lovasz-OnDeterminantsMatchingsAndRandomAlgs.pdf

inverses.) Rabin and Vazirani showed how to compute perfect matchings in general graphs
in time O(n**!), where n. Recent work of Mucha and Sankowski, and Harvey show how
to use these ideas (along with many other cool ones) to find perfect matchings in general
graphs in time n®“.

4 A parallel algorithm for finding perfect matchings

However, we can give a slightly different algorithm (for a seemingly harder problem), that
indeed runs efficiently on parallel processors. The model here is that there are polynomially
many processors run in parallel, and we want to solve the problem in poly-logarithmic depth
using polynomial work. We will use the fact that there exist efficient parallel algorithms for
computing the determinant of a matrix to obtain our parallel algorithm for finding perfect
matchings.

We could try the following “strawman” parallel algorithm:

Use a processor for every edge (u;,v;) that tests (in parallel) if edge (u;,v;) is
in some perfect matching or not. For each edge (u;,v;) that lies in some perfect
matching, the processor outputs the edge, else it outputs nothing.

We are immediately faced with the problem that there may be several perfect matchings in
the graph, and the resulting output is not a matching. The algorithm may in fact return all
the edges in the graph. It will only work if there is a unique perfect matching.

So instead of testing whether an edge (u;, v;) is in some perfect matching or not, we want to
test whether an edge (u;,v;) is in a specific perfect matching or not. The way we do this is
to put random weights on the edges of the graph and test for the minimum weight perfect
matching. Surprisingly, one can prove that the minimum weight perfect matching is unique
with a good probability, even when the weights are chosen from a set of integers from a
relatively small range.

Lemma 6 Let S = {e1, -+ ,en} and Sy, -+ Sp C S. For every element e; there is a weight
w; picked w.a.r. from {0,1,---,2m — 1}. The weight of subset Sj is w(S;) = -, s, Wi-

Then)
Pr[minimum weight set among Sy, -+ , Sk is unique | > 3

Proor: We will estimate the probability that the minimum weight set is not unique. Let
us define an element e; to be tied if
min w(S;) = min w(S;
Sj|€i€5j (j) Sj‘&‘%Sj (j>
It is easy to see that there exists a tied element if and only if the minimum weight subset is

not unique. Below we bound the probability that a fixed element e; is tied. The result will
then follow using a union bound.

http://dx.doi.org/10.1016/0196-6774(89)90005-9
http://doi.ieeecomputersociety.org/10.1109/FOCS.2004.40
http://www.math.uwaterloo.ca/~harvey/Publications/AlgebraicMatching/AlgebraicMatching.pdf

We use the principle of deferred decisions. Let us fix the weights wy,--- ,w,, of all the
elements except w;. We want to bound Pr,, [e; is tied | wy, -+, w;—1, Wit1, W] Let

W~ = min w(S5)) and W+ = min w(9))
Sjlei¢S; Sjlei€S;

with w; assigned the value 0. It is easy to see that e; is tied iff W~ = W+ 4+ w;. So,

Pry,le; is tied | wy, -+ w1, Wit1, W)
= Prwi[wi = W_ — W+ | Wi, ,wi_l,wiﬂ,wm]
1
< —.
~ 2m
The last inequality is because there is at most on value for w; for which W~ = W+ + w,.
This holds irrespective of the particular values of the other wys. So Prle; is tied | < ﬁ, and
Pr[3 a tied element | < i Prle; is tied] < 1
e -2
Thus Pr[minimum weight set is unique | > % U

Now we can look at the parallel algorithm for finding a perfect matching. For each edge
(ui,v;), we pick a random weight w; j, from [2m — 1], where m = |E| is the number of edges in
G. Let the sets S; denote all the perfect matchings in G. Then the Isolation Lemma implies
that there is a unique minimum weight perfect matching with at least a half probability.
We assign the value x;; = 2% to the variables in the Tutte matrix M. Let D denote the
resulting matrix. We use the determinant of D to determine the weight of the min-weight
perfect matching, if it is unique, as suggested by the following lemma.

Lemma 7 Let Wy be the weight of the minimum weight perfect matching in G. Then,

e G has no perfect matching = det(D) = 0.

e G has a unique min-weight perfect matching —> det(D) # 0 and the largest power
of 2 dividing det(D) is Wj.

e G has more than one min-weight perfect matching = either det(D) = 0 or the

largest power of 2 dividing det(D) is at least Wj.

PRrOOF: If G has no perfect matching, it is clear from lemma 5 that det(D) = 0.

Now consider that case when G has a unique min-weight perfect matching. From the ex-
pression of the determinant, we have

det(D) — Z(_l)sgn(ﬂ) H QWi m (i) — Z(_I)SQW(W)QZ?ﬂ Wi (i) — Z(_l)sgn(ﬁ)Qw(W)
=1

TeP TeP TeP

where w(m) is the weight of the perfect matching corresponding to 7 and P is the set of
all perfect matchings in G. Since there is exactly one perfect matching of weight W, and
other perfect matchings have weight at least Wy + 1, this evaluates to an expression of the
form £2%Wo £ 2Wotl. .. 4 other powers of 2 larger than W,. Clearly, this is non-zero, and the
largest power of 2 dividing this is W,

Now consider the case when G has more than one min-weight perfect matchings. In this

case, if the determinant is non-zero, every term in the sumation is a power of 2, at least 20,
So 2o divides det(D). O

We refer to the submatrix of D obtained by removing the i-th row and j-th column by D; ;.
Note that this is a matrix corresponding to the bipartite graph G\{w;,v;}. The parallel
algorithm would run as follows.

1. Pick random weights w; ; for the edges of G. (In the following steps, we assume that
we’ve isolated the min-weight perfect matching.)

2. Compute the weight Wy of the min-weight perfect matching from det(D) (using the
parallel algorithm for computing the determinant): this is just the highest power of 2
that divides det(D).

3. If det(D) = 0, output “no perfect matching”.
4. For each edge (u;,v;) € E do, in parallel,:

(a) Evaluate det(D; ;).
(

)
b) If det(D; ;) = 0, output nothing.

(c) Else, find the largest power of 2, W, ;, dividing det(D; ;).
(d) If W, ; +w;; = W, output (u;, v;).

(e) Else, output nothing.

It is clear that, if G has no perfect matching, this algorithm returns the correct answer.
Now suppose G has a unique minimum weight perfect matching, we claim Lemma 7 ensures
that precisely all the edges in the unique min-weight perfect matching are output. To see
this, consider an edge (u;,v;) not in the unique min weight perfect matching. From the
lemma, det(D; ;) is either zero (so the edge will not be output), or W;; is at least as large
as the min-weight perfect matching in G\{w;,v;}. Since the min-weight perfect matching
is unique and does not contain edge (u;,v;), this implies w;; + W; ; will be strictly larger
than W), and this edge will not be output in this case either. Finally, if an edge (u;,v;) is
in the unique min-weight perfect matching, removing this edge from the matching gives us
the unique min-weight perfect matching in G\{u;,v;}. So, in this case W, ; = Wy — w; ; and
the edge is output.

Thus, if G has a perfect matching, this algorithm will isolate one with probability at least %,
and will output it—hence we get an RNC algorithm that succeeds with probability at least
1/2 on “Yes” instances, and never makes mistakes on “No” instances.

Finally, some more citations. This algorithm is due to Mulmuley, Vazirani and Vazirani; the
first RNC algorithm for matchings had been given earlier by Karp, Upfal, and Wigderson.
It is an open question whether we can find perfect matchings deterministically in parallel
using poly-logarithmic depth and polynomial work, even for bipartite graphs.

http://www.cs.berkeley.edu/~vazirani/pubs/matching.pdf
http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/KUW86/KUW86.pdf

	Matrix multiplication checking
	Polynomial identity checking
	Perfect matchings in bipartite graphs
	A parallel algorithm for finding perfect matchings

