Randomized Algorithms (Blum/Gupta) Homework 6
Date: Monday April 18, 2011 Due: Wednesday April 27, 2011

Groundrules

e Homeworks will generally consist of exercises, easier problems designed to give you practice, and
problems, that may be harder, trickier, and/or somewhat open-ended. You should do the exercises by
yourself, but you may work with a friend on the harder problems if you want. One exception: no fair
working with someone who has already figured out (or already knows) the answer. If you work with a
friend, then write down who you are working with.

e If you’ve seen a problem before (sometimes we’ll give problems that are “famous”), then say that in
your solution (it won’t affect your score, we just want to know). Also, if you use any sources other than
the textbook, write that down too (it’s fine to look up a complicated sum or inequality or whatever,
but don’t look up an entire solution).

Exercises

1. What is the VC-dimension d of axis-parallel rectangles in R3? Specifically, a legal target function
is specified by three intervals [Tin, Tmaz], [Ymin, Ymaz), a0d [Zmin, Zmaz], and classifies an example
(x,y,2) as positive iff © € [Tmin, Tmaz], ¥ € [YUmin, Ymaz), and 2 € [Zmin, Zmaz)- Recall that VC-
dimension is the size of the largest set S of points that can be labeled in all possible ways (shattered)
using functions in the class. Be sure to argue why no set of d + 1 points can be shattered.

Problems

1. Below, you will prove that the VC-dimension of the class H, of halfspaces in n dimensions is n + 1.
(H, is the set of functions a1x1 + ... + anxn > ag, where ag, ..., a, are real-valued.) We will use the
following definition: The convex hull of a set of points S is the set of all convex combinations of points
in S; this is the set of all points that can be written as Zwies iz, where each \; > 0, and ), A\; = 1.
It is not hard to see that if a halfspace has all points from a set S on one side, then the entire convex
hull of S must be on that side as well.

(a) [lower bound] Prove that VC-dim(H,) > n + 1 by presenting a set of n + 1 points in n-
dimensional space such that one can partition that set with halfspaces in all possible ways. (And,
show how one can partition the set in any desired way.)

(b) [upper bound part 1] The following is “Radon’s Theorem,” from the 1920’s.

Theorem. Let S be a set of n+ 2 points in n dimensions. Then S can be partitioned
into two (disjoint) subsets Sy and So whose convexr hulls intersect.

Show that Radon’s Theorem implies that the VC-dimension of halfspaces is at most n + 1. Con-
clude that VC-dim(H,) =n + 1.

(¢) [upper bound part 2] Now we prove Radon’s Theorem. We will need the following standard

fact from linear algebra. If x1,...,2,41 are n 4+ 1 points in n-dimensional space, then they are
linearly dependent. That is, there exist real values Ai,..., A\,4+1 not all zero such that A\jz; +
coiF At1Tpy1 = 0.
You may now prove Radon’s Theorem however you wish. However, as a suggested first step,
prove the following. For any set of n + 2 points x1,...,Z,42 in n-dimensional space, there exist
A1y - Ang2 not all zero such that Y, A;z; = 0and ), A; = 0. (This is called affine dependence.)
Now, think about the lambdas...



2. (These go to eleven.) In class we saw (most of) the construction of amplification for BPP algorithms
(see the notes and/or book for the full argument). For this problem, let us abstract out a useful lemma
using essentially the same techniques we used there, and use that to prove a weaker result, that of
amplifying success probability for RP algorithms.

(a) Given a regular graph G = (V, E), let M be the transition matrix of the natural random walk
on G. Recall that the top eigenvalue of this matrix is 1; suppose max(|Az|, |An|) < e. Fix some
subset S C V with size |V, with § < 1.

Show that if we pick a uniformly random vertex in GG, and take a random walk of length £ starting
at this vertex, the probability that we only see vertices in set S is at most (e + \/g)k

(b) Consider an RP algorithm A that uses r bits of randomness; i.e., one with Prgeo13-1[A(z, R) =
1] = 0 for  not in the language, and Prreyo,13-3[A(, R) = 1] > 1/2 for x in the language. (Note
that R is the randomness used by the algorithm.)

Here is a (slightly) simpler amplification procedure for such an RP algorithm.

Build a constant-degree expander graph on r-bit strings. Pick a random initial vertex
vo € {0,1}", and do a random walk vo,v1,...,v; of length k. Run the algorithm A(x,-)
using each of the k + 1 strings vg,v1,...,v; as the “random”strings—if the algorithm
accepts on any of these strings, then output “x € L”, else reject and output “z & L”.

This algorithm clearly uses r + O(k) bits of randomness, and if € L, we always reject. Use the
first part to show that if 2 € L, then we reject (and hence make a mistake) with probability at
most 27 k)



