

Advanced Techniques for RTL Debugging
Yu-Chin Hsu Bassam Tabbara Yirng-An Chen Furshing Tsai

Novas Software Inc., 2025 Gateway Place, #480, San Jose, CA 95110

{ychsu, bassam, yachen, fstsai}@novas.com

www.novas.com

ABSTRACT
Conventional register transfer level (RTL) debugging is based on
overlaying simulation results on structural connectivity
information of the Hardware Description Language (HDL) source.
This process is helpful in locating errors but does little to help
designers reason about the how and why. Designers usually have
to build a mental image of how data is propagated and used over
the simulation run. As designs get more and more complex, there
is a need to facilitate this reasoning process, and automate the
debugging. In this paper, we present innovative debug techniques
to address this shortage in adequate facilities for reasoning about
behavior, and debugging errors. Our approach delivers significant
technology advances in RTL debugging; it is the first
comprehensive and methodical approach of its kind that extracts,
analyzes, traces, explores, and queries a design’s multi-cycle
temporal behavior. We show how our automatic tracing scheme
can shorten debugging time by orders of magnitude for unfamiliar
designs. We also demonstrate how the advanced debug techniques
reduce the number of regression iterations.

Categor ies and Subject Descr iptors
M1.6: Testing, test generation, and debugging
M1.5: Functional design verification
T2.2: Transaction-level, TTL and gate-level modeling and
validation, simulation, equivalence checking, functional formal
(and semi-formal) verification

General Terms
Algorithm, Design, Verification

Keywords
Verification, Simulation, Debug, Reasoning, Visualization

1. INTRODUCTION
Debugging is generally a major endeavor for the designer with
large and complex designs since these are typically:
• Heterogeneous: composed of varied components possibly

intellectual property (IP) blocks from several (best-in-class)
providers;

• Mixed: made up of portions described at different abstraction

levels — behavioral as well as structural; and
• Diverse: composed of multiple computation domains that

model real world interaction such as sensors, transducers,
digital-to-analog and/or analog-to-digital converters.

The stimulus and response data used to exercise and observe
design behavior is also a large and varied data set. Manipulating,
studying, and analyzing this data and its correlation with expected
or desired behavior, and the design’s implementation (i.e., actual)
behavior is a horrendous undertaking. The process of debugging
involves locating the logic that is associated with an error,
isolating the pertinent cause and effect relationships, and
understanding exactly how the design is supposed to behave and
why it is not behaving that way as shown in Figure 1. Debug, with
its demands for time and energy from expert designers, is quickly
becoming the bottleneck in the verification process for today’s
complex system-on-chip (SoC) designs.

Figure 1: RTL Debugging

Current day approaches rely entirely on the engineer’s ability to
deduce the design’s behavior from its structure. No matter how
well the structure is revealed, time is wasted making the wrong
assumptions and following false paths. The more unfamiliar the
design, the greater the difficulty and the more time required to
reach adequate understanding. Engineers unfamiliar with portions
of a design — owing to design reuse, purchased IP, or
diverse/dispersed design teams — struggle to grasp how the
design is supposed to work, or why it does not, which leads to
long integration and debug cycles. As designs become more
complex, debugging approaches must keep track and not lag
behind. In this paper, we present new techniques for debugging
temporal behavior from source code and simulation results. Our
goal is to improve debug productivity by automating the process,
and removing the mental burden of surmising (incorrectly) about
the design’s behavior over time. With behavior analysis as the
debug infrastructure, advanced debug approaches for behavior
exploration are proposed for engineers to query a design’s
temporal behavior.

The rest of this paper is divided as follows. Section 2 describes
our behavior-based debugging approach: infrastructure,
exploration, and query. The experimental results are presented in
Section 3. Section 4 provides conclusions and discusses future
work.

2. BEHAVIOR-BASED RTL DEBUG
Behavior analysis automatically infers the design’s temporal
behavior using the information in the HDL source and simulation
result. Given an analysis scope, we extract the temporal behavior
of the design from the design’s logical model and the simulation
data. The analysis procedure is divided into logic extraction and
timing activity analysis.

Logic model: An inference step converts an HDL description into
a logic behavioral model. This step builds an internal model for
the actual circuit logic operation. The inference engine uses a
“ rules-based” approach to infer behavioral components from the
HDL. The logic model is built in such a way that each statement is
represented as a component block. No optimization is performed
on the logic model so that one can easily trace back to the source
code of the corresponding statement. The inputs of a statement
block are classified into data-path and control inputs using a pre-
defined set of rules for the specific matched component. The
primary rules are as follows:

• Latch Inference: A latch is inferred when a conditional
statement is incompletely specified. The missing signal
becomes the latch enable.

• Register Inference: Happens when an “always” block is edge
sensitive. A flip-flop (posedge or negedge) register is
inferred in this case.

• Incomplete Sensitivity List: To prevent possible simulation
and synthesis mismatch, we interpret the missing signal to be
an unintended latch output. A complete sensitivity list
indicates nothing but a combinational circuit.

• 2-D memory array: a memory is inferred.

• MUX/priority-encoder Inference: In case of “ if” statements,
either latches or priority encoders are inferred depending on
the context; for “case” statements, latches or muxes are
inferred depending on context.

• The non-inferable RTL such as algorithmic computation
blocks (e.g., tasks) and interfaces to the environment (e.g.,
testbench) will be treated as a black box. Black boxes,
therefore, surround any block whose internals cannot be
directly analyzed and modeled. On the other hand, the
block’s interaction with, and effect on, the rest of the system
can still be modeled.

Timing model and activity analysis: Once the logic model is
built, the simulation result is used to extract the temporal behavior
for an identified (problem) signal. The analysis starts with the
problem signal. Its fan-in logic is traversed until flip-flops or
inputs are hit. The active clock transition time of each flip-flop in
the fan-in is determined using the logic model and simulation
result. Using the active transition time, the values of all fan-in
signals are fetched from the simulation result. The fan-in cone
logic is evaluated to determine which signals are (in)active. With
this analysis, we are able to determine when a signal is written
during simulation, and where (i.e., in which statement). This
activity analysis serves as the basis for enabling automation of
debug in the time domain.

Behavior analysis provides new design abstractions, debug views,
and techniques for multi-cycle tracing. This novel debug
infrastructure is presented in the next section.

2.1 Behavior-Based Debug Infrastructure
Starting from an error source, debug traces back towards the cause
of this error by marrying the logical model and the timing activity
models discussed in the previous section to build a behavior trace
of the signal in question. This expansion can be performed
interactively again and again moving backwards in time thus
creating a temporal behavior representation that leads all the way
back to the error source. In order to make the presentation more
concrete, let us consider a simple illustrative micro-programmed
CPU design example shown in Figure 2. Its primary registers
are shown in Figure 3.

CCU ALU PCU

CPU

PRAM
(Contains microprogram code)

CPUsystem

tb_CPUsystem (Testbench)

ALU
CCU
CPU
PCU

= Arithmetic Logic Unit
= Computer Control Unit
= Central Processing Unit
= Peripheral (I/O) Control Unit

Figure 2: Block Level View of a Simple CPU Design

RegisterModule Full Name

ACC

CPU

CF
IDR
IR

IXR
PC
TR
ZF

Accumulator
Carry flag
Intermediate data register
Instruction register
Index register
Program counter
Temporary register
Zero flag

CWR
CCU

MA
Control word register
Microcode address

Figure 3: Pr imary Registers in the CPU Design

Let us assume we want to understand the cause of a suspicious
value of 55 for signal ACC (accumulator) at time 800 as shown in
Figure 4. We first traverse the fan-in cone of signal ACC
backward until we hit the registers or input signals. Then, based
on the clock signals of the registers and the simulation result, we
can determine when each register was activated. For this example,
fan-in register ACC is activated at time 700 by CK3 and IDR and
CWR registers are activated at at time 725 by CK2. The next step
is to determine which components are (in)active in the cycle.
Based on the value from the simulation result and the function of
each component, we can determine the signals that actively
contribute to the fan-out register. In this example, IDR and CWR
are in active fan-in while ACC and In1 are not.

During behavior debug, designers are able to incrementally build
and analyze every additional sequential logic stage, one at a time,
determining which fan-in signals they want to continue to trace.
This continues until they find the cycle that is causing the error
output. The tracing may cross multiple clock cycles boundaries,

so the debugger must be able to handle this as well as present the
tracing to the user in a prominent visual fashion. With the ability
to reason about the debug temporal behavior, one is able to debug
the cause of a specific value statement by statement through the
effect-and-cause chain.

Figure 4: Tracing and Clocking

Incremental behavior analysis enables automatic tracing in the
time-domain. A trace value cause command is used to trace
backward through a set of statements over time, traversing more
than one stage in the time domain from a single invocation, stop at
the first appearance of the value in any path and then display the
trace results. For example, in Figure 5, we want to know from
where the erroneous value 55 in ACC at time 800 comes. The
system traces back through time and finds the first appearance of
value 55 on signal d at time 700, which is generated by signals a,
b and c. It should be obvious that the longer the paths of the
causes are, the more debug speed up this tracing feature can
provide for users.

Figure 5: Tracing a Suspicious Value

Value tracing can also be specialized to search for the first
unknown (X) that propagates to the output. The idea is to
recursively apply the behavior analysis to the active fan-in’s that
are also unknown until it stops at the cycle where all the fan-ins
are not X. Another tracing application is determining when the
content of a 2-D array element has been written and with what
value. Through inference, one can extract the write conditions for
a 2-D array. Then based on the write condition and the simulation
dump file, determine the latest write of each memory element.
We use this debug infrastructure to build advanced debug
approaches for behavior exploration and query:

1) Behavior exploration: a dynamic exploration layer, built on
top of the aforementioned debug infrastructure, that allows
engineers to interact with the behavior abstraction by
changing simulation values, and quickly determining the
consequences of those changes in order to understand the
effect of alternatives before committing changes to the source
files and re-simulating.

2) Behavior query: a dynamic query, reasoning and debug layer
built on top of the exploration layer. This layer goes beyond
the simple “where did this specific signal value come from”
reasoning provided by the foundation layers. Users can write
complex queries in the supported assertion languages to ask
about the (in)validity of a (un)desired design scenario. The
assertion language permits the user to make temporal queries
that involve many design signals, design states, and can span
many simulation cycles. This layer not only gives a
valid/invalid response, but also assists the user in the design
behavior reasoning and error diagnosis by adequately
exercising the debug infrastructure.

The sections that follow discuss these advanced debug layers in
more detail.

2.2 Behavior Exploration Layer
The behavior exploration layer enables users to explore possible
behaviors of their designs in the debugging environment.
Behavior exploration applies sophisticated formal methods to
reduce tremendously the time required to comprehend how a
design works or why it does not. The behavior exploration
techniques come in two flavors: “ what-if” analysis and “ how-
can” analysis.
“ What-if” analysis provides users the ability to quickly evaluate
a potential bug fix by changing the current values associated with
one or more signals in the design with new values. For example,
in Figure 5, the correct value of signal d is 20. We can change its
value to 20 and then perform “what- if” analysis to evaluate the
effect to see whether the signal ACC has the correct value or not.
Given a set of signals with set values, a target time or a collection
of target signals, “what-if” analysis first performs fan-out marking
on the logic model starting from the given signals until the fan-
outs are exhausted. Backward timing expansion then starts from
the target signals or time to the starting signals. For example, in
Figure 6, assume signal x is set from 1 to 0, the shaded region
would be the expanded model if signal y is the target signal. If a
“Target Time” were specified as in the Figure, then the left
triangle would be the expanded model. Constant evaluation is
then performed on this expanded model going forward, and the re-
evaluated results are shown.

tim e

x
y

Target Timerange
Figure 6: I llustration of " what-if" Analysis

The performance of “what-if” analysis depends on the size of the
expanded model, which depends on the time range between the
earliest time of setting signals and the latest time of the target
signals. The longer the time range, the larger the expanded model
and consequently the larger the computation resources (time and
memory) needed to perform the analysis. The challenge is then to
complete the analysis within minutes, not hours, especially for
large time ranges. This problem is alleviated in two ways:

a) By making this feature user interactive; the practicality of
viewing a trace and setting meaningful values at key points
limits the time and space of the re-evaluations.

b) We improve the runtime performance by optimizing the
representation of the time-expanded model, and by speeding
constant evaluation [1].

“ How-can” analysis provides the inverse capability to “what if”
evaluation; it gives users a way to find all possible combinations
of a set of signals that achieve a specific value for a target signal
at a specific time. Both “what-if” and “how-can” are used in a
complementary fashion in debugging. For example, in Figure 53,
after “what-if” helps us determine we need to set d signal to 20,
this technique can find all possible combinations of a, b, and c to
satisfy d=F(a,b,c)=20, i.e., it solves { (a,b,c)} = F-1(d=20). Given a
set of signals with symbolic values and a target signal with a
desired value, the time-expanded model is built. For example, in
Figure 7, signal x is set to symbol and signal g is the target signal
with a desired value. The time-expanded model is the shaded
region.

This analysis is performed using formal techniques such as Binary
Decision Diagrams (BDDs) [2] and Automatic Test Pattern
Generation (ATPG) [3]. In the BDD approach, the forward
symbol propagation is first performed from the set signals to the
target. Once the trimmed BDDs for the target signals are
available, the remaining task is to extract the minterms in the
BDDs, which satisfy the desired values of the target signal. In the
ATPG approach, the symbol effect analysis is first performed
forward, starting from the set signals to the target signal and
trimming the representation when possible by constant reduction
(e.g., 0 is controlling in case of AND). Then, a backward ATPG
justification search is performed on signals with symbolic values
to find the solution combinations.

tim e

x
yg

Set symbol Set target value

range
Figure 7: I llustration of " how-can" Analysis

The performance of “how-can” analysis not only depends on the
size of the expanded model as in “what-if” analysis, it also
depends on the numbers of set symbolic values: The smaller the
number of symbolic values, the faster the response time. Again,
the challenge here is to complete the analysis within minutes
especially for a large time range and a large number of symbolic
set values. As we mentioned earlier, practicality of debug
interaction alleviates this somewhat. We also limit the maximum
number of symbolic values to 70 symbolic bits.

2.3 Behavior Query Layer
This debugging layer is aimed at assisting the user in asking about
the presence or absence of desired or undesired design scenarios.
The entry language for query specification can be any assertion
language that the user is familiar with and has been using in
assertion-based verification. In addition, the user can reason about
an assertion failure using the trace slicing and dicing techniques

as described later in this paper. The debug flow for this layer is as
follows:

1) Enter the query using an assertion language. Assertion
languages are becoming increasingly popular as a means to
quickly and concisely describe a design specification. These
languages are typically formal and declarative aimed at
precise behavior descriptions of design specs that involve
concurrency, sequencing and so on. Since the intent of debug
is to validate the trace observation sequence of a specific
design run, language subsets with finite and existential (i.e.,
linear) path semantics are used [7]. Such languages include
OVA [4], Sugar PSL [5], Temporal E [6], and ForSpec [8],
all with more expressive constructs than plain LTL. In our
examples here, we use a language neutral pseudo-code to get
the point across.

2) Validate the query on the simulation run data. For this step,
we developed a design trace Verilog Change Dump (VC) or
Novas’ mixed HDL Fast Signal Database (FSDB) checker
tool that checks the (desired or undesired) behavior query
against the simulation data. The results are overlaid on the
simulation trace to flag the failures or successes. Depending
on the debug level, results can consist of simple success/fail
time tags or more detailed assertion evolution tags. The latter
approach keeps the tags of the intermediate window
evaluations in a sequence. For example, if we were checking
a followed by b followed by c, then the tags for the start of
the evaluation (i.e., a) and the intermediate window b can be
kept as well. Here we assume that a full debug mode is
enabled.

3) Debug the query starting from a failure instance. Here the
debug infrastructure we introduced earlier is “driven” by the
assertion result, and automatically invokes building of an
assertion-driven design trace slice and dice to help
automatically locate the suspicious error injection region.
Trace slicing and dicing will be explained shortly.
Subsequent value tracing and exploration can lead to
successful error diagnosis and surmised fix, respectively

Our unique approaches of trace slicing and dicing, starting from
assertion and design knowledge, have been influenced strongly by
program slicing of Weiser [9] introduced for software debug, and
the, later introduced, dynamic slicing approaches. To explain, let
us consider our simple assertion of a followed by b one cycle
later, followed by c one cycle later.

Figure 8: I llustration of Slicing and Dicing

An assertion fail instance at time 100, for example, means that the
c expression was not satisfied. Debugging starts by adding c’ s
expression signal support (c in this case) as the starting error
signal source. We then build a trace backward from this starting
point and (set of) signal(s) to the trigger time of the assertion. This
is shown in Figure 8.
A trace slice is the backward trace from c to the trigger time of the
assertion. If we had another support signal of the failing
expression, we could generate another slice starting from that
reference signal. The assertion and its dynamic validation data,
however, give us more information for isolating the failure. We
know that not all the drivers of signal c caused the failure because
only a limited number of paths in the previous cycle are valid,
namely those where b holds. This is a dice where additional info
is used to limit the paths to be traced. Signal a provides for an
additional dice in the earlier cycle again limiting the valid paths to
trace for finding the cause of the failure. The cause can be from
one (single fault) or more of the paths (multiple faults) involved,
so the debug infrastructure discussed earlier is needed to find the
real cause of the bug. Also, incorporating more assertions that
share some of the expression support (some segments are subset
of both) and their failure or success can help bias the path choice
consideration; a path involved in a successful assertion is less
likely to be the cause of a particular failure, and one involved in a
failure more likely.

Let us now consider the simplified CPU example and its ALU
sub-unit to see how this approach works on a simple realistic case
using the statement flow graph presented earlier. Assume that in
Increment Accumulator mode the AluBuf output register should
follow a sequence of 0,1,2,3,4,5 yet it mysteriously follows the
sequence of 0,1,2,3,aa,4,5 as shown in Figure 9.

Figure 9: Bug in AluBuf Register

If we had an assertion running with the simulation or a query
added later for design behavior query and exploration, then a
FAIL at time 826 would be flagged and a trace slice built for the
AluBuf signal as shown in Figure 10. The assertion could take the
form of:

Always @ (posedge(CLOCK4)) {

 If (OpBusMode == INCA) then

 AluBuf = previous (AluBuf) +1;
}

Figure 10: Trace Slicing of AluBuf Asser tion

Trace dicing can be performed using the property’s support or we
can invoke a complete dynamic dice where only the active design
paths for the specific simulation run in this time range are
outlined as shown in Figure 11 below. After dicing, it becomes
clear that the cause in this case is the mysterious ACC 55 value
(propagated to AluBuf), which has been discussed in the earlier
part of the paper to motivate the value tracing debug
infrastructure. As shown in Figure 118, additional assertions can
also eliminate suspect paths if we had more than one candidate.
For example, in the case above, if the available information gave
us two suspect paths as in the drivers of a and b respectively, an
additional assertion that validates one of the two would help us
localize the bug to the other path.

Figure 11: Trace Dicing of AluBuf Asser tion

3. EXPERIMENTAL RESULTS
Since our value tracing approach has the ability to automatically
trace backward in time from the bug symptom to its suspected
cause, its productivity improvement is proportional to the number
of cycles in the bug cause-symptom trace. The cost of a cycle is
that of source level statement by statement tracing for a designer
using structure debug, and a single backward (active) fan-in
trace computation for the value trace debug. Indeed it
should be clear that the human debugger’s analysis cost varies
with experience and design knowledge. The structure debug
process of a long trace is certainly much more error-prone (with
numerous trial and error iterations), than the automatic fan-in
trace unrolling. In order to give concrete data, we present here
value tracing results for this paper’s CPU design example, Sun’s
PicoJava design, and a customer gate-level Case_X design for
unknown tracing. Results are based on a simple metric, number of
cycles (i.e., debug steps) in the error trace, as a means to quantify

the debug speedup our new-layered debug approach provides. We
also present the memory/time tradeoff of the additional analysis.

Table 1: Compilation and Analysis Compar ison Results

BugID Design
Size
(RTL
lines)

Structure
(Memory/Time)

Behavior
(Memory/Time)

CPU 1289 43M/1sec 53M/1.6sec

PicoJava 66496 78M/7.8sec 96M/16.9sec

Case_X 77520 124M/19.6sec 218M/83.6sec

In Table 1, compilation for structure analysis means HDL
compilation and connectivity analysis. For the behavior analysis
we additionally include behavioral inference and behavior
representation building. For Case_X, the RTL line- count does
not include the cell library.

Table 2: Value Tracing Compar ison Results

BugID Structure Debug Behavior Debug

 Steps Memory Steps Memory Time

CPU 13 43M 1 53M 2 s

PicoJava 14 78M 1 96M 20 s

Case_X >1000 124M 1 236M 492 s

In Table 2, CPU is the case of tracing the cause of ACC 55 in our
example. It takes one click to find the error cause, while it takes
12 steps in the structure statement-by-statement trace back along
with manual cross referencing of waveform and source code. The
last one is a case for tracing the cause of first unknown. The
behavior analysis traces back 427 fan-in cones and stops at the
statement that first generates X. If for each fan-in cone a user
needs to trace an average of 3 statements, one will need to trace
back more than 1,000 statements to find the cause of X. This is
very error-prone and tedious. We also present in the table memory
consumption of structure vs. behavior tracing as a means to
capture the trade-off in space for the more time efficient behavior
analysis.
For the behavior exploration, it should be quite evident that
exploring at this level provides for tremendous reduction in
regression time (for both bug-fix assurance and alternative
scenario evaluation) since:
• Immediate local evaluation update is much quicker compared

to changing the testbench to force the user set values,
constrain the simulation scope, and re-simulate. The re-
simulation iteration time certainly dominates the measure.

• Finding all the satisfying assignments for a target value is
incomparable to any current day simulation-based debugging
approach.

For behavior query, it is also clear that productivity improvements
in this targeted assertion query-driven approach for trace slicing

are actually orders of magnitude greater than a “blind” debugging
approach where the user does not formalize what specification the
implementation must comply with.

4. CONCLUSIONS AND FUTURE WORK
We have put forth a new RTL debug methodology and
infrastructure intended to significantly increase designer
efficiency. With the behavior analysis and debug technique, IC
designers and verification engineers can quickly locate and
diagnose errors with behavior query, evaluate potential
corrections with behavior exploration, and quickly trace back to
the root causes with the highly automated infrastructure. The
infrastructure continues to evolve as we investigate new design
styles and various application domains. Behavior exploration uses
formal methods to reduce the “ re-simulate for every suspected fix”
phenomenon. We continue to improve both BDD and ATPG
engines and to develop methodologies that combine the
advantages of both approaches. Behavior query empowers
designers to quickly detect an error in the implementation. The
query approach to debugging permits a high level of debug
interaction — that of the specification itself — not wires and
registers as in typical debug. Behavior query provides fertile
ground for future research and development not only in automated
error diagnosis, but also in the areas of functional coverage and
reactive testbenches.

5. ACKNOWLEDGEMENTS
The authors would like to recognize the following for their
numerous contributions to this work: Scott Sandler, George
Bakewell, Tayung Liu, Kunming Ho, Jack Changfan, Winston
Hwang, Hermes Lin, Gary Lin, Wells Jong, and Ying-Tsai Chang.
The authors also want to thank the reviewers for their comments.

6. REFERENCES
[1] Bertacco, Valeria, Maurizio Damiani, Stefano Quer: “Cycle-

based Symbolic Simulation of Gate-level Synchronous
Circuits” , DAC 1999, p. 392-396.

[2] Bryant, Randal E. “Graphical-Based Algorithms for Boolean

Function Manipulation” , IEEE Tranactions On Computers,
35(8):677-691, 1986.

[3] Ganai, Malay; Aziz, Adnan; Kuehlmann Andreas,

“Enhancing Simulation with BDDs and ATPG”, DAC 1999,
p. 385-390.

[4] OpenVera Assertions, www.open-vera.com, 2002.

[5] Sugar PSL, www.accellera.org, 2002

[6] Temporal E assertion constructs, Verisity Inc., 2002.

[7] Vardi, Moshe “Branching Time vs. Linear Time: Final

Showdown”, ETAPS, 2001.

[8] Vardi, Moshe “The ForSpec Temporal Language: A New

Temporal Property-Specification Language”, TACAS, 2002.

[9] Weiser, Mark “Program Slicing” , IEEE Transcations on

Software Engineering, 10:352-357, July 1984.

