

Algorithms for Compacting Error Traces

Yirng-An Chen Fang-Sung Chen
yachen@novas.com fschen@sis.com.tw
Novas Software Inc. Silicon Integrated Systems Corp.

San Jose, CA 95110, U. S. A Hsin Chu, Taiwan, R.O.C.

Abstract— In this paper, we present a concept of compact-
ing the error traces generated by pseudo-random/random simu-
lations. The new shorter error trace not only decreases the time of
user’s debugging process but also reduces the simulation time re-
quired to verify the bug fixes. Two algorithms CET1 and CET2 are
presented to perform the task of compacting the error trace. Both
algorithms first use an efficient approach to eliminate the redun-
dant states to generate the unique states of the error trace. Then,
CET1 build the connected graph of these unique states by com-
puting the reachable states by one cycle for each unique state, and
then apply Dijkstra’s shortest path algorithm to find out the short-
est error trace in the connected graph. Compared with CET1,
CET2 computes the reachable states by one cycle for those unique
states, when they are needed in Dijkstra’s shortest path algorithm
to find the shortest error trace. After finding the shorter trace,
the corresponding input/output test vectors are generated. The
experimental results show that both algorithms can reduce the
length of error traces dramatically for most cases using reason-
able memory. For cases required longer CPU time to find the
shortest trace, CET2 is up to 37 times faster than CET1.

I. INTRODUCTION

The increasing complexity and circuit size of designs have
made function verification task as one of bottlenecks in VLSI
design cycle. In recent conferences, many panelists claimed
that functional verification takes about 60%-70% of design cy-
cle. The tasks of functional verification includes detecting er-
rors in designs and finding the causes of the errors (debug-
ging process). To detect errors in designs, verification engi-
neers and designers may generate test vectors manually, write
test benches using tools, and write properties. Currently, for-
mal verification tools checks whether the design satisfies their
properties. If not, a set of counter-examples (“error traces”)
can be generated to debug the design. Usually, formal veri-
fication tools can use techniques [4, 9] to generate good er-
ror traces to make the debugging process easier. Test vectors
and test benches are mainly used in simulators and emulators
to detect errors in designs. If errors are found, error traces
are written out for debugging process. In general, these error
traces produced by random/pseudo-random test benches con-
tain very long cycles and many redundant states. It is very

�

This work was supported by the National Science Council, R. O.C., un-
der contract no. NSC89-2215-E009-120, while both authors were at National
Chiao-Tung University in Taiwan.

difficult for users to debug using these traces and to take long
simulation time to verify the bug fixes. Thus, we are inspired
to develop the technique to compact error trace generated by
random/pseudo-random test benches.

The main reason for compacting error traces generated by
pseudo random simulations is that they may contains very long
cycles and many redundant states. In the debugging process,
users need to find the causes of bugs from the information in
the error trace. Thus, The longer cycles of simulation trace
are, the more time users spend to debug. Moreover, after find-
ing the causes of bugs and fixing them, users perform the same
simulation run to verify the bug fixes. Then, users put the sim-
ulation run into the daily regression suites to prevent the same
bugs happen again. Therefore, shorter error traces not only re-
duce the simulation time required to verify bug fixes, but also
reduce the simulation time for daily regression.

A digital circuit can be formulated as a finite state machine
(FSM) and the circuit behavior can be viewed as the sequences
of state traversal. The error trace contains all information of a
sequence of state traversal from an initial state to an error state.
The problem of compacting the error trace can be defined as
follows: Given a digital circuit design and its simulation error
trace information containing the initial state and the error state,
the problem is to find other error trace as shorter as possible.

Our approach to solve compacting the error trace is based
on the following three techniques: First, an efficient technique
is used to eliminate the redundant states and to generate the
unique states of the error trace. Then, the connected graph
of these unique states is generated by computing the reach-
able states by one cycle for each unique state. The Dijkstra’s
shortest path algorithm is applied on the connected graph to
find out the shortest error trace. Finally, the corresponding in-
put/output test patterns are automatically generated for the new
error trace. This algorithm is named as CET1. In experiments,
we found out that not all of the unique states are needed to
compute their reachable next states. Thus, algorithm CET2,
modified from CET1, only computes the reachable states by
one cycle for those unique states, when they are needed in Di-
jkstra’s shortest path algorithm to find the shortest error trace.

To the best of our knowledge, techniques to generate coun-
terexamples in symbolic model checking done by Clarke et
al. [4] and Jin et al. [9] are the closest related work to ours.
Their approaches can only be used in symbolic model check-
ing, while our approach can be used for any error trace gen-
erated by simulation or formal verification tools. In general,

1

test vector generation has been the subject of many efforts
in testing and function verification areas. For instance, for-
mal verification-based techniques to derive a set of function
test vectors for simulation have been reported by Benjamin et
al. [2], Geist et al. [6], Gupta et al. [7] and Ho et al. [8]. How-
ever, these approaches are generating test vectors for detecting
bugs in designs. Our work is to generate shorter test vectors
from the initial error trace for debugging process.

The rest of this paper is organized as follows: In section II,
the definition of the problem is described. Section III describes
our approach to solve the problem. The experimental results
are shown in section IV. Section V describes our conclusions
and future work.

II. PROBLEM DEFINITION

A digital circuit can be formulated as a finite state machine
(FSM) and the circuit behavior can be viewed as the sequences
of state traversal. The error trace contains all information of
a sequence of state traversal from an initial state to an error
state. First, we observe some characteristics of the error trace.
Figure 1 shows the state transition diagram of a simple finite
state machine and an initial error trace. The error trace takes
9 cycle time to reach the target error state. However, notice
that three of the passed states, ����������� , 	 , and
 , are traversed
twice. In fact, it just passes through 6 unique states totally, and
hence the shortest trace takes 6 cycle time at most to reach the
error state in the worst case. If state 5 rather state 4 was cho-
sen as the next state when the state 3 was traversed first time,
the duplicate state traversal can be avoid. However, we can’t
know which next state should be chosen to avoid the duplicate
state traversal until the whole error trace is traversed. It is a
quite popular circumstance to have many redundant states in
the error traces generated by random/pseudo-random simula-
tion. Thus, we want to find a shorter trace to reach the same
target error state from the same initial state.

1 3

4

5

56

2
Initial State

Error State

Initial Error Trace : 1->2->3->4->1->2->3->5->6

Fig. 1. The state transition diagram of a simple FSM and an initial
error trace, where state 1, 2 and 3 are traversed twice.

The problem can be defined as follows: Given a circuit de-
sign and its error trace containing the initial state and the error
state, the problem is to find the shortest error trace from the ini-
tial state to the error state and then to generate the correspond-
ing input/output test vectors of the new trace. In addition, we
have to make the following assumptions on the input designs:

1. Completely synchronous digital circuits.

2. Global reset signal always available.

3. no 3-state latches or registers.

III. OUR APPROACH

This section presents our approach for compacting the error
trace. The basic idea of our approach is based on the concept
of eliminating the redundant states in the error trace and find-
ing the shortest path among the remaining unique states in the
trace. Figure 2 shows CET1 algorithm for compacting the er-
ror trace. First, redundant states on the initial error trace are
eliminated by the function Unique() to generate unique states��

, initial state � � and error state � �
. Then , the transition

functions ��� = � (�����) and output functions ��� = � (�����) of
the circuit � are build by function BuildFunc() and are repre-
sented by a set of Binary Decision Diagrams (BDD) [3], where� is the set of current state BDD variables and � is the set of
input BDD variables. The graph � is initialized with all states
in

��
as the vertexes and no edges among them. For each

state � in the unique states
��

, The reachable states by one
cycle are computed by function ComupteNS() and the edges
with weight 1 between � and the reached next states are added
into graph � . Dijkstra’s shortest path algorithm is applied to
find the shortest path

��� � � of graph � from the initial state � �
to the error state � �

.

Algorithm: CET1(! , "$#&%) '
Output: (*) —Test patterns for new error trace.
1 +,"$-�(."/-10�" = Unique("2#3%);
2 4657-1)85 = BuildFunc(!);
3 9 contains all states in +," without any edges;
4 For each state : in +,"
5 ;<" = ComputeNS(465 , : , +,");
6 Add edges with weight 1 between = and states in ;<" ;
7 "2"2#3% = DijkstraSP >?9@-A(."/-10�"2BDC
8 (*) = GenIO >E465F-�)85F-�"2"$#3% BDC
9 G
Fig. 2. CET1 algorithm for compacting error trace.

Finally, according to the shortest path, input/output test pat-
terns are generated by function GenIO(). The following tasks
are performed for every state transition HI� ��JLK in the new
trace: generating the input vectors and generating the corre-
sponding output vectors. The input vector for state transition
from state � to state J can be computed by solving � (�)= M � M� � (�) N J (�) N (�7O � (�����)), where � is the set of next state BDD
variables, � (�) is the BDDs representing state � and J (�) is the
BDDs representing state J . Since � (�) represents all possible
input patterns, we random choose one from � (�). Given the
state � and the input vector P J , the corresponding output vec-
tor can be computed by solving ��� = � (���D�) by substituting �
with � and � with P J .

A. Finding Unique States in Initial Error Trace
In order to quickly find out the duplicate state in the initial

error trace, we build one data structure,called non-duplicate
tree, as shown in Figure 3, based on the assumption that each
latch or register just could contains one of the two values, 0
or 1, at any time. The left branch represents encoding 0, the
right one represents encoding 1, and the height of the tree rep-
resents the number of state bits. While each path from the
root node to each leaf node represents one state appears on

the error trace. During the non-duplicate tree construction, if
the traversed path according to state encoding has already ex-
isted, we can affirm the state has been reached previously, and
then ignore it to deal with the next state continuously. Other-
wise, it means the state has not been reached previously, and
we should add some required nodes and branches to construct
the non-duplicate tree.

ex:

 state

cycle 1: 000

cycle 2: 011

cycle 3: 111

cycle 4: 011

0

0

0

(a) cycle 1

state 011 is duplicate

0

0

0

1

1

(b) cycle 2

(c) cycle 3

0

0

0

1

1

1

1

1

(d) cycle 4

0

0

0

1

1

1

1

1

terminal node
not empty

Fig. 3. Steps to build non-duplicate tree.

This non-duplicate tree is represented by Algebraic Deci-
sion Diagrams (ADD) [1] where the leaf nodes contain the
unique state identification numbers. BDDs are generated to
represent these unique states. Moreover, the length of the
shortest error trace will not longer than the number of unique
states, since each state on the shortest error trace should be
traversed at most once. What is the time complexity of this
method? With N states on the error trace and b state bits, the
time complexity is ���������
	 .

B. Computing 1-cycle reachable states

Figure 4 shows the algorithm for computing 1-cycle next
states for a given state � and the unique states

��
. The image

computation operation ��� �� �
��� , popularly used in symbolic
model checking [10], is used to compute the one-cycle reach-
able states � of state � under the set of transition functions
��� . With image computation, the whole reached next states
from state � can be found. Since we are only interested in
the states in the unique states

��
, we then perform a BDD

“And” operation on states � and unique states
��

to obtain
the reached unique states � .

Algorithm: ComputeNS (��� , � ,
��

) �
Output: � � ����� ��� —the reached next states.
1 ��� ��� �� ��� ��� � � ���
2 ��� ��! � �
3 "
Fig. 4. The algorithm for computing 1-cycle reachable states.

C. Finding the Shortest Path

After building the connected graph � with weighted edges,
the task is to find the shortest error trace from initial state � � to
the target error state � �

. Dijkstra’s shortest path algorithm [5],
shown in Figure 5, is a very suitable approach for our require-
ment. First, the graph � is initialized to have infinite distance
for each state, except that the distance of the initial state � �
is set to 0. Then, state � � is put into the priority queue #
keyed by their distance values. The algorithm repeats the fol-
lowing processes until � �

is selected from # . First, state �
is extracted from # with the smallest distance value by func-
tion ExtractMin(). Then, for each state J is connected to � , the
function Relax() consists of testing whether we can improve
the shortest path to J found by going through � and if so, up-
dating the new distance of J and its predecessor to � . Finally,
the shortest path is formed by tracing its predecessor of the
states starting from � �

to � � .

Algorithm: DijkstraSP(� , � � , � �
) �

Output: $ ����� —the shortest path from � � to � �
.

1 Initialize(� , � �);
2 # = � �
3 while ((� = ExtractMin(#)) is not equal to � �

)
4 for each state J is connected to �
5 Relax(� , J , �);
6 $ ����� = findPath(� , � � , � �

);
7 "
Fig. 5. Modified Dijkstra Shortest Path algorithm.

D. CET2 Algorithm

Algorithm: CET2(! , "$#&%) '
Output: (*) —Test patterns for new error trace.
1 +,"$-�(."/-10�" = Unique("2#3%);
2 4657-1)85 = BuildFunc(!);
3 9 contains all states in +," without any edges;
4 Initialize(9 , (.");
5 % = (."
6 while ((: = ExtractMin(%)) is not equal to 0�")
7 ;<" = ComputeNS(465 , : , +,");
8 for each state & in ;<"
9 Add edge ' : -(&*) with weight 1;
10 Relax(: , & , 9);
11 "2"2#3% = findPath(9 , (." , 0@");
12 (*) = GenIO >E465F-�)85F-�"2"$#3% BDC
13 G
Fig. 6. CET2 algorithm for compacting error trace.

We found that most of the time for algorithm CET1 is spent
on computing the 1-cycle reachable states for each unique state
and these reachable states information is needed to perform
function Relax() in Figure 5. If we can avoid performing func-
tion ComputeNS() as many as possible, our algorithm can have

better performance. Thus, we reschedule the time to perform
function ComputeNS() into Dijkstra’s shortest path algorithm,
as shown in Figure 6. Algorithm CET2 rearranges the tasks in
line 4-7 of algorithm CET1 into the new order shown in line 4-
10 of Figure 6. With this modification, function ComputeNS()
will not be performed for those states which shortest distance
from � � is greater than the shortest distance from � � to � �

,
since they will not be extracted from # . In worst case, CET2
will have the same performance as CET1.

IV. EXPERIMENTAL RESULTS

We have implemented our CET1 and CET2 algorithms in
C++ language with the CUDD (Colorado University Decision
Diagram) package [11]. We applied our algorithms on twelve
designs in ITC’99 benchmarks. The circuit information about
those designs is given in Table 1. The first and second columns
list the number of circuits and the original functionality respec-
tively. The third column is the total number of gates in the
designs. The numbers of the primary inputs and outputs are
given in the fourth and fifth columns respectively. The last col-
umn is the total number of registers in the designs. For each
of these designs, we generated several error traces with differ-
ent lengths and our algorithms on them. The experiments were
performed on a 1.4 GHz AMD Athlon machine with 2GB main
memory.

Circuit Original Functionality Gates PI PO FF
���

FSM that compares serial 47 3 2 5
flows

���
FSM that recognizes BCD 29 2 1 4
numbers

���
Resource arbiter 150 5 4 30

���
Compute min and max 606 12 8 66

��	
Elaborate the contents 977 2 36 34
of memory

��

Interrupt handler 61 3 6 9

���
Count points on a 422 2 8 49
straight line

���
Find inclusions in 168 10 4 21
sequences of numbers

��
Serial to serial converter 160 2 1 28

�����
Voting system 190 12 6 17

�����
scramble string with 484 8 6 31
variable cipher

�����
Interface to meter sensors 343 11 10 53

TABLE 1 Design information

Table 2 shows the experimental results using CET1 algo-
rithm. The circuit name and trace number is shown in column
1. The number of states of the initial error trace is shown in
column 2. Column 3 shows the number of unique states in the
initial error trace. In CET1, the number of unique states in the
trace is the number of states needed to compute their reachable
next states, and is the upper bound of the final result. From
the results, case “b1-1” has the lowest percentage (7.3%) and
several cases have no redundant states in the traces. Column
4 shows the number of states in the shortest error trace found

by CET1 algorithm. For most of the cases, the length of the
error trace is reduced dramatically. For instance, the length of
error trace is reduced from 40061 to 17 in case “b8-1”. For
cases in circuit “b4”, CET1 can found the shortest error traces
within 6% of the length of their initial traces, which have al-
most no redundant state. However, for case “b5-2” and “b12-
1”, the length of their error traces can not be reduced at all. For
case “b5-1”, the length of the error trace is reduced by only 1
state. CPU time and memory usage of CET1 algorithm, re-
ported in columns 5 and 6, respectively, is proportional to the
number of unique states shown in column 3, because for each
unique state, CET1 compute its reachable next states to build
the graph and then apply Dijkstra’s shortest path algorithm to
find the shortest error trace. For most cases, except cases in
circuit “b4”, CET1 can generate the shortest error trace within
300 seconds and 100 MB memory usage. For cases in circuit
“b4”, we found most of the CPU time and memory of CET1
spent on computing the reachable next states.

Circuit States CPU time Memory
-Trace# Init Unique Final (sec) (MB)

b1-1 233 18 4 0.15 0.08
b1-2 73 18 4 0.14 0.07
b2-1 14 7 5 0.13 0.06
b2-2 56 8 4 0.10 0.06
b3-1 20493 1822 27 3.76 2.96
b3-2 32352 1936 20 3.98 3.62
b4-1 3037 3037 168 2847.40 12.28
b4-2 5123 5123 232 4882.02 17.47
b4-3 7641 7641 227 6864.21 24.11
b4-4 9380 9379 167 8180.27 27.88
b4-5 9719 9718 200 8937.08 29.12
b5-1 111 111 110 0.55 1.02
b5-2 106 106 106 0.59 1.04
b6-1 85 13 5 0.16 0.09
b6-2 59 13 4 0.12 0.09
b7-1 129 128 88 1.68 3.02
b7-2 167 87 83 1.45 3.10
b8-1 40062 15660 19 23.57 13.97
b8-2 20246 11314 28 22.70 10.50
b9-1 16207 12384 50 31.81 14.54
b9-2 40355 26448 46 102.83 27.78

b10-1 13924 2053 19 2.45 1.89
b10-2 15203 2071 20 2.55 1.95
b11-1 28738 23936 275 169.88 45.09
b11-2 56650 43370 80 272.43 92.18
b12-1 812 812 812 5.08 1.87
b12-1 189 81 51 0.82 0.84

TABLE 2 The experimental results of CET1 algorithm.

Table 3 shows the CPU time and memory usage of CET1
and CET2 algorithms for cases in circuit “b4” and case “b11-
2”, which requires longer CPU times to find the shortest error
trace. For other cases, CET2 has the similar CPU time and
memory usage as CET1 shown in Table 2. CET2 found the
same length of shortest error trace as CET1 did. In general,
CET2 used less memory usage to achieve the same quality as
CET1 did, while CET2 improve the CPU time dramatically for

cases in “b4”. The CPU time improvement is contributed by
that the number of states to compute the next states in CET2
is reduced from the number of unique states to the number
states with length not greater than the length of the shortest
error trace. For instance, in case “b4-4”, CET1 compute the
reachable next states for 9380 states, CET2 only compute the
reachable next states for states with length less than 167 from
initial state. Thus, CET2 has 37 times speedup than CET1 for
this case.

Circuit CPU Time (sec) Memory (MB)
-Trace# CET1 CET2 speedup CET1 CET2

b4-1 2847.40 183.58 15.5 12.28 11.79
b4-2 4882.02 933.54 5.2 17.47 16.65
b4-3 6864.21 1005.14 6.8 24.11 22.92
b4-4 8180.27 221.32 37.0 27.88 26.37
b4-5 8937.08 558.03 16.0 29.12 27.56

b11-2 272.43 153.58 1.8 92.18 51.38

TABLE 3 The experimental results of CET1 and CET2 algorithms.

V. CONCLUSIONS AND FUTURE WORK

We have shown the concept of compacting the error traces
generated by pseudo-random/random simulations and two al-
gorithms CET1 and CET2 to perform the task of compacting
the error trace. Two algorithms CET1 and CET2 are presented
to solve this problem efficiently. Experimental results show
that both algorithms can reduce the length of error traces dra-
matically for most cases using reasonable memory. For some
cases, our approach can not reduce the length of error traces,
since they are the shortest one already. For cases required
longer CPU time to find the shortest trace, CET2 is up to 37
times faster than CET1.

1 3

4

5

56

2
Initial State

Error State

Initial Error Trace : 1->2->3->4->1->2->3->5->6

7

Fig. 7. If the error trace is able to pass through =������1# 7, there exists
one shorter error trace, 1 � 7 � 5 � 6, which takes 3 cycles.

However, there are still many ways to improve our algo-
rithms. First, we would like to explore other heuristics to speed
up our algorithms by reducing the number states to compute
the reachable next states. Second, we would like to reduce
the length of the shortest error trace as shorter as possible.
Currently, we only compute one-step successors in our algo-
rithms. In some case, we can not reduce the length of the error
trace. Thus, one-step successors may not be enough to achieve
shorter trace. For examples, in Figure 7, State 7 is one of the
next states of state 1, but is not one of unique states. Thus,
our algorithms doesn’t include state 7 in the reachable states.
However, there exists one path passing through state 7 to reach
the target error state in 3 cycles, and our algorithm can only

find the path with length 4 cycles. In order to find shorter er-
ror trace, we plan to add the length parameter � into function
ComputeNS() to find � -cycle successors. Thus, edges among
unique states may contains different edge weights from 1 to
� . With this modification, we will be able to find shorter er-
ror trace. However, the more cycles we compute the reachable
states, the shorter error trace we can find and the slower per-
formance we have to suffer. Thus, � can not be too large.

REFERENCES

[1] I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A.
Pardo and F. Somenzi, “Algebraic Decision Diagrams
and their Applications” In Journal of Formal Methods
in System Design, Volume 10, Number 2/3, April/May
1997.

[2] Mike Benjamin, Daniel Geist, Alan Hartman, Yaron
Wolfsthal, Gerard Mas, and Ralph Smeets, “A Study
in Coverage-Driven Test Generation”,
��
	�� Design Au-
tomation Conference, June 1999, pp. 970-975.

[3] R. E. Bryant. “Graph-based algorithms for Boolean
function manipulation”, IEEE Transaction Computers,
C-35(8):677-691, August 1986.

[4] E. M. Clarke, O. Grumberg, K.L. McMillan and X.
Zhao, “Efficient Generation of Counterexamples and
Witnesses in Symbolic Model Checking”, in
�	

� De-
sign Automation Conference, June 1995, pp. 427-432.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “ Intro-
duction to Algorithms”, McGraw-Hill Book Company,
pp. 527-531.

[6] D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S.
Ur, and Y. Wolfsthal, “Coverage Directed Test Gener-
ation Using Symbolic Techniques”, In Formal Methods
in Computer-Aided Design, Nov. 1996, pp. 143-158.

[7] Aarti Gupta, Sharad Malik, and Pranav Ashar, “Toward
Formalizing a Validation Methodology Using Simula-
tion Coverage”,
��
	�� Design Automation Conference,
June 1997, pp. 740-745.

[8] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano,
V. Bertacco, J. Taylor and J. Long, “Smart Simulation
Using Collaborative Formal and Simulation Engines”,
In International Conference on Computer Aided Design,
Nov. 2000, pp. .

[9] H. Jin, K. Ravi and F. Somenzi, “Fate and Free Will
in Error Traces”, in 2002 Conference of Tools and Al-
gorithms for the Construction and Analysis of Systems,
2002, pp. 445-459.

[10] K. L. McMillan, “ Symbolic Model Checking”, Kluwer
Academic Publishers, Boston, MA, 1994.

[11] F. Somenzi, “CUDD: CU decision diagram package -
Release 1.0.4”, Tech, Rep., Dept. Elect. Comput. Eng.,
Univ. Colorado, Boulder, Nov. 1995.

