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One good characterization of science is that it

is the systematic study of some phenomena. Under this

liberal view, discovery in science is not fundamentally different from discovery in, say,

business. As argued by [1], science’s reputation for finding reliable knowledge owes more

to the perseverance of its practitioners and to its organizational checks and balances than

to the use of any special method. Thus, insights gained from developing discovery tools 
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Speed and smarts propel new tools for scientific applications.
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in science, which has such
refined criteria of success, can
guide knowledge discovery as
a whole. This article aims to
present some basic concepts
about knowledge discovery,
convey the state of the art by
reporting on success stories,
and suggest lessons that are
relevant to application areas
besides science. 

To understand what com-
puters can do in science, it
helps to review some basic
concepts from AI/cognitive
science and the sociology and
philosophy of science. 

Heuristic search in com-
binatorial spaces. Since dis-
covery-oriented workers
(discoverers, for short)
undergo a long apprentice-
ship to become experts in
their field, one might con-
clude that a discoverer’s rea-
soning process resembles
expert reasoning based on
recognition, for example, the
chess grandmaster who
chooses a strong move after a
glance at the board, or the
physician who quickly selects
a likely diagnosis based on
the first few symptoms. If
discovery is like such expert
reasoning, then pattern-recognition approaches
such as neural nets or discrimination trees (that
match a current problem against previous experi-
ences) would be the methods of choice for comput-
erizing most discovery tasks. However, discovery by
definition happens at the frontiers of knowledge
where nobody is an expert, so the better analogy is
to chess beginners or to physicians-in-training,
whose reasoning is based partly on trial-and-error,
or heuristic search, as it is known in AI. 

The basic idea of heuristic search is that solving
many reasoning tasks can well be viewed as a search
within a large combinatorial space. We say the
space is combinatorial because at each choice point
there are many choices, and these effects can accrue
to create notoriously large spaces. In many practical
tasks, people cannot search the entire space in their
heads, so we must focus on some subspaces in pref-
erence to others. The knowledge that permits such

focusing is called “heuristics.” Heuristics can be
absolutely reliable or they can be rules-of-thumb;
the key point is they direct one’s scarce resources
toward more promising avenues. In chess, a begin-
ner’s heuristic is “consider moves that check the
opposing king first.’’ 

Data-driven and knowledge-driven
approaches. A program or approach is knowledge-
driven if it uses relatively general knowledge
(including knowledge of how to search combinato-
rial spaces) as a main source of power. A data-driven
program instead relies on specific measurements,
statistics, or examples. Most approaches are some
combination of both. 

A same task might be approached in either way:
consider a chess program that bases its next move
either on matching against a large database of
examples of previous positions and good moves, or
on general heuristics about strategy and tactics
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Figure 1.  H. Bauer's knowledge filter.

 



combined with a search over possible successive
moves. The input to a data-driven program can be
megabytes of data, whereas the input to a knowl-
edge-driven program could be a mere few lines.
Depending on the specifics of the problem, either
might take longer to run. 

Enhancing human discovery. Science is quite
successful in technical achievements like putting  a
man on the moon, curing disease, creating reliable
miniature circuits, and so on. This raises the ques-
tion of what knowledge discovery can hope to
achieve. Is the goal to make expertise more widely
available, as was promised by the expert systems
movement of the 1980s? In reality, the goal is to
augment the capabilities of even the best experts.
The accompanying figure (reproduced from
www.chem.vt.edu/ethics/hbauer/hbauer-fig2.GIF)
shows why: reliable textbook science accounts for
the technical achievements, but cutting-edge, fron-
tier science—the stuff of primary journal articles—
is notoriously unreliable for the listed reasons [1]
and because of the well-known bounded rationality
of human beings, which limits our ability to reliably
infer correct models, notice subtle patterns, foresee
the implications of assumptions, and so on. Scien-
tists with computers can do better frontier science. 

The goals of scientific discovery. The goal of
discovery is to find knowledge that is novel, inter-
esting, plausible, and understandable [6]. Thus, a
discovery program that too often leads to familiar,
dull, wrong, or obscure knowledge won’t be used.
These four dimensions are separable: for example,
the number of blades of grass viewable from my
office window may be a novel, plausible, and under-
standable fact, but it fails to be interesting. It helps
to analyze how a specific program addresses each of
the dimensions, since this exercise can help pin-
point the reasons for user dissatisfaction and iden-
tify scope for improvement. 

Discovery Programs 
Three examples of successful systems—taken from
medicine, mathematics, and chemistry—are
described here. 

Arrowsmith. Literature-based discovery refers
to using documents—a special case of data—as a
source of power. The Arrowsmith program devel-
oped at the University of Chicago
(kiwi.uchicago.edu) makes conjectures about possi-
ble treatments or causes of medical diseases using
the Medline collection of titles and abstracts from
the medical literature. Given a target disease or
other physiological state C, the program searches
for two associations BC and AB where A is typically

a dietary factor, drug, or other possible interven-
tion, which suggests that A may cause or alleviate C
through the intermediary B. For example, the user
may pose a C which is migraine, and the program
may come up with A=magnesium (a light metal
which is essential to the human diet) and B=spread-
ing depression. 

After subsequent human examination of the lit-
erature, which reports that “magnesium can inhibit
spreading depression in the cortex, and spreading
depression may be implicated in migraine attacks,’’
there is the plausible suggestion that magnesium
could be a treatment for migraine. 

Altogether Swanson has reported eight examples
of successful matching of complementary but dis-
joint literatures, four of these in collaboration with
Neil R. Smalheiser, a neurobiologist. The best con-
firmed example to date is the connection between
magnesium deficiency and migraine headaches [5].
Subsequent to that publication, more than 12 labo-
ratories have independently reported direct clinical
or laboratory tests that provided supportive evi-
dence. More recently, Arrowsmith was used to illu-
minate an already noticed and reported association
between estrogen supplementation and Alzheimer’s
disease by pointing out a possible indirect mecha-
nism of such an association. 

The method’s conjectures tend to be novel
because a citation analysis verifies that no or few
Medline articles cite both subliteratures responsible
for the associations AB and BC. There are heuris-
tics, similar to stoplists in language processing, that
filter out overly broad (hence, uninformative) words
like “hormone” or “pressure.” The conjectures are
plausible because they exploit the frequent transitiv-
ity of relations like causality. Finally, the conjectures
are understandable because they are short state-
ments like A may be a treatment for C, which sug-
gests, for example, obvious clinical tests. 

Graffiti. The Graffiti program developed at the
University of Houston makes mathematical conjec-
tures in such domains as graph theory and geome-
try (see math.uh.edu/~siemion). 

Graffiti has motivated many graph theoreticians,
including its designer, to try to refute or prove the
generated conjectures which are broadcast on an
email list. Many of the program’s conjectures have
been proven (by mathematicians) and published as
regular mathematical contributions. Recent applica-
tions of Graffiti to chemistry have exploited the fact
that molecules can be represented as graphs. 

The program keeps a database of previous con-
jectures so that when the program is run it does not
repeat itself and instead will tend to produce novel
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conjectures. The program’s echo heuristic tends to
preserve only interesting conjectures by postpon-
ing consideration of a new conjecture if it seems to
be implied by a previous conjecture that has not
been refuted, which is therefore more interesting
because it is more general. Every conjecture is
tested against a file of qualitatively different
graphs and thus becomes plausible if no coun-
terexamples are found. Finally, the conjectures are
understandable because they are conventional
statements of the form: a short sum of graph prop-
erties is ≤ another short sum of graph properties,
which tend to be easier to prove than more com-
plicated formulations. 

Mechem. The Mechem program developed at
Carnegie-Mellon University (in recent collabora-
tion with A.V. Zeigarnik in Russia) finds explana-
tory hypotheses in chemistry
(www.cs.cmu.edu/~sci-disc describes this and other
discovery projects). That is, given the chemicals
that start a reaction and which are formed by it, as
well as prior background knowledge expressed to
the program as constraints, the task is to find all the
simplest plausible hypotheses (reaction mecha-
nisms) that can explain how the products are
formed. 

The program’s mechanisms tend to contain nov-
elty because the pieces (elementary reactions and
chemical substances) that make up a hypothesis are
not drawn from any stored catalogue of common
reactions; rather, they are generated from basic
principles using algorithms minimally slanted
toward particular solutions. The mechanisms are
often interesting because they are the simplest, that
is, the program reports mechanisms that contain
fewest intermediate substances and steps. The
mechanisms are understandable because the space
being searched is taken directly from chemistry.
Finally, the output is plausible because the user
articulates any objections, via a graphical interface
that allows for well over 100 kinds of constraints,
and runs the program again with augmented input.
This interaction repeats until no further problems
remain, at which point all remaining hypotheses are
deemed plausible. 

Other programs have enhanced discovery
processes in science, such as [4, 6]. Some use com-
binatorial search as their basic approach, whereas
others use more specialized methods that can
exploit mathematical properties of the subject mat-
ter, such as strings in genomics. 

The aim here is not to provide a survey, but to
state key concepts and illustrate them with a few
programs that have led to published findings. 

Lessons 
A general procedure for (partially) automating
many discovery tasks can be based on the following
questions. What is a specific example of a discovery
when the task is done humanly (if it is done
humanly)? This question asks for specific models,
patterns, conjectures, and so forth, which then feed
the next question. From what larger conceivable set
is this specific example drawn? In other words, what
is the space within which solutions are, or should
be, sought? Are some discoveries more presentable
or preferable than others? One might consider that
some discoveries are too complex to merit priority.
A preference for simplicity or conciseness (shorter
reaction mechanisms), or more concise mathemati-
cal conjectures, often makes sense. 

What is the starting point (for example, data) for
the task? Data-driven tasks are easier to automate.
Sometimes the task is not initiated by data but by a
problem. Mechem and Graffiti both have this fla-
vor. Is background knowledge necessary for compe-
tent performance? If so, then it must be
accommodated somehow, for example, by involving
the user in an interactive collaboration with the
program. In Mechem, building on existing back-
ground knowledge is absolutely critical for a com-
petent program. 

How can one design an algorithm that starts
with the available data, generates solutions start-
ing from the more presentable, and respects the
available background knowledge? This is a key step
that requires some knowledge of algorithm design,
of the task from the user’s viewpoint, and of knowl-
edge engineering. Of course, it must all be turned
into software. 

Patterns of use/computer collaboration. Pro-
grams must be adopted by users, and this presents
its own set of issues. In my experience, some general
ways to improve the user’s chances of finding novel,
interesting, plausible, and understandable knowl-
edge [6] are: 

• Search a combinatorial space comprehensively.
Since people cannot do this without computers,
novelty will often turn up, often as alternatives
to solutions that people mistakenly believe to be
unique or best. 

• Report the simplest (for example, most concise)
solutions first. Simplicity correlates highly with
interestingness. 

• Select, or design from scratch, a tool that
searches a space whose elements are highly
understandable to the users. 

• If the task is knowledge-driven, enable users to
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input their relevant knowledge interactively and
require the program to respect that input, by not
reporting solutions that conflict with it. If the
task is data-driven, then use abundant data; if the
data are scarce, then use permutation tests to
improve your confidence in the plausibility of
the results. 

Conclusion 
Increases in computer speed are continual, and the
positive relation between speed and discovery
smarts is easy to see in terms of heuristic combina-
torial search. By thoughtfully cultivating interdisci-
plinary collaborations, computer scientists can
begin building, and research scientists begin build-
ing on, computer programs that are able collabora-
tors in scientific discovery as well as other fields in
which the pursuit of new, reliable knowledge is
taken seriously.
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