Recitation notes on Kneser-Ney

Maria Ryskina
September 10, 2017

1 Notation

- V – corpus vocabulary
- $c(x)$ – count of n-gram x in the corpus
- $N_{1+}(\bullet w) \triangleq |\{u : c(u, w) > 0\}|$ – number of unique bigrams in the corpus ending in w
- $N_{1+}(w\bullet) \triangleq |\{u : c(w, u) > 0\}|$ – number of unique bigrams in the corpus starting with w
- $N_{1+}(\bullet w\bullet) \triangleq |\{(u, v) : c(u, w, v) > 0\}|$ – number of unique trigrams in the corpus with w in the middle
- $1[\cdot]$ – indicator function

2 Conditional n-gram probabilities

$$ P(w|\text{prev}_{k-1}) = \frac{\max(c'(\text{prev}_{k-1}, w) - d, 0)}{\sum_{v \in V} c'(\text{prev}_{k-1}, v)} + \alpha(\text{prev}_{k-1})P(w|\text{prev}_{k-2}) \quad (1) $$

Highest order (trigram):

$$ P(w_3|w_1w_2) = \frac{\max(c'(w_1w_2w_3) - d, 0)}{\sum_{v \in V} c'(w_1w_2v)} + \alpha(w_1w_2)P(w_3|w_2) \quad (2) $$

Lower order (bigram and unigram):

$$ P(w_3|w_2) = \frac{\max(c'(w_2w_3) - d, 0)}{\sum_{v \in V} c'(w_2v)} + \alpha(w_2)P(w_3) \quad (3) $$

$$ P(w_3) = \frac{c'(w_3)}{\sum_{v \in V} c'(v)} \quad (4) $$

Remembering the definition of $c'(x)$:
• if \(x \) is a trigram, \(c'(x) = c(x) \) (count of the trigram in the corpus)

• if \(x \) is a bigram or a unigram: \(c'(x) = N_{1+}(\mathbf{x}) \) (number of unique words preceding \(x \) in the corpus)

We substitute it in Equations 2-4:

\[
P(w_3|w_1w_2) = \frac{\max(c(w_1w_2w_3) - d, 0)}{\sum_{v \in V} c(w_1w_2v)} + \alpha(w_1w_2)P(w_3|w_2) = \frac{\max(c(w_1w_2w_3) - d, 0)}{c(w_1w_2)} + \alpha(w_1w_2)P(w_3|w_2) \tag{5}
\]

\[
P(w_3|w_2) = \frac{\max(N_{1+}(w_2w_3) - d, 0)}{\sum_{v \in V} N_{1+}(w_2v)} + \alpha(w_2)P(w_3) = \frac{\max(N_{1+}(w_2w_3) - d, 0)}{N_{1+}(w_2\mathbf{v})} + \alpha(w_2)P(w_3) \tag{6}
\]

\[
P(w_3) = \frac{N_{1+}(w_3)}{\sum_{v \in V} N_{1+}(w_2v)} = \frac{N_{1+}(w_3)}{N_{1+}(\mathbf{v})} \tag{7}
\]

Here \(N_{1+}(\mathbf{v}) \) is the number of all unique bigrams.

3 Computing \(\alpha \)

To compute \(\alpha \), we sum over both sides of Equations 5-6 and use the fact that \(\sum_{w \in V} P(w_3 = w|\ldots) = 1 \). For the trigram case:

\[
\sum_{w \in V} P(w_3 = w|w_1w_2) = \sum_{w \in V} \max(c(w_1w_2w) - d, 0) \frac{1}{c(w_1w_2)} + \alpha(w_1w_2) \sum_{w \in V} P(w_3 = w|w_2)
\]

\[
1 = \sum_{w \in V} \max(c(w_1w_2w) - d, 0) \frac{1}{c(w_1w_2)} + \alpha(w_1w_2) \tag{8}
\]

Since \(0 < d < 1 \), we can rewrite this equation as:

\[
1 = \frac{\sum_{w \in V} c(w_1w_2w) - d \cdot \sum_{w \in V} 1[c(w_1w_2w) > 0]}{c(w_1w_2)} + \alpha(w_1w_2) = \frac{\sum_{w \in V} c(w_1w_2w) - d \cdot N_{1+}(w_1w_2\mathbf{v})}{c(w_1w_2)} + \alpha(w_1w_2) = \frac{d \cdot N_{1+}(w_1w_2\mathbf{v})}{c(w_1w_2)} + \alpha(w_1w_2) \tag{9}
\]
Finally,

\[
\alpha(w_1w_2) = d \cdot \frac{N_{+1}(w_1w_2 \bullet)}{c(w_1w_2)}
\]

(10)

Now, doing the same for the bigram case:

\[
1 = \sum_{w \in V} \max(N_{+1}(\bullet w_2 w) - d, 0) + \alpha(w_2) = \sum_{w \in V} N_{+1}(\bullet w_2 w) - d \cdot \sum_{w \in V} 1[N_{+1}(\bullet w_2 w) > 0] + \alpha(w_2)
\]

(11)

Indicator \(1[N_{+1}(\bullet w_2 w) > 0]\) is equal to 1 for every \(w\) for which \(w_2w\) occurs in at least one context. That is equivalent to saying bigram \(w_2w\) occurs at least once\(^1\), so we can replace \(1[N_{+1}(\bullet w_2 w) > 0]\) with \(1[c(w_2 w) > 0]\):

\[
1 = 1 - d \cdot \sum_{w \in V} 1[c(w_2 w) > 0] + \alpha(w_2) = 1 - d \cdot \frac{N_{+1}(w_2 \bullet)}{N_{+1}(\bullet w_2 \bullet)} + \alpha(w_2)
\]

(12)

Finally,

\[
\alpha(w_2) = d \cdot \frac{N_{+1}(w_2 \bullet)}{N_{+1}(\bullet w_2 \bullet)}
\]

(13)

4 Edge cases

- Our derivation until now assumed that \(c(w_1w_2) > 0\), otherwise the denominators turn into 0. If the context \(w_1w_2\) has never occurred before, fully back off to lower order until you get to a context with non-zero count.

- If \(w_3\) is a word that has not been seen before, you can return a zero probability or back off to a uniform model and return \(\frac{1}{|V|}\). Usually the first option is chosen.

5 Implementation tips

- In your hashmap structures, you might want to store tables for values used for computing \(\alpha\) and \(P\) in addition to count tables:
 - for every occurring unigram \(w\) you would store \(N_{+1}(\bullet w), N_{+1}(w \bullet), N_{+1}(\bullet w \bullet)\).
 - for every occurring bigram \(vw\) you would store \(N_{+1}(vw \bullet)\) and \(N_{+1}(\bullet vw)\)

- To account for unknown words in translation, you can return a very small constant instead of a zero probability in case of a unigram not seen before.

\(^1\)Except for \(w_2\) being the START symbol, but you will not observe any trigrams with START in the middle, so you will not need to compute this probability anyway.