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Abstract—Large vocabulary continuous speech recognition
(LVCSR) systems traditionally represent words in terms of smaller
subword units. Both during training and during recognition, they
require a mapping table, called the dictionary, which maps
words into sequences of these subword units. The performance
of the LVCSR system depends critically on the definition of the
subword units and the accuracy of the dictionary. In current
LVCSR systems, both these components are manually designed.
While manually designed subword units generalize well, they may
not be the optimal units of classification for the specific task or
environment for which an LVCSR system is trained. Moreover,
when human expertise is not available, it may not be possible to
design good subword units manually. There is clearly a need for
data-driven design of these LVCSR components. In this paper,
we present a complete probabilistic formulation for the automatic
design of subword units and dictionary, given only the acoustic
data and their transcriptions. The proposed framework permits
easy incorporation of external sources of information, such as the
spellings of words in terms of a nonideographic script.

Index Terms—Learning, lexical representation, maximum-like-
lihood, speech recognition, subword units.

I. INTRODUCTION

L ARGE vocabulary continuous speech recognition
(LVCSR) systems do not usually use whole words as the

basic units for classification. There are two reasons for this.
First, the vocabulary of these systems typically consists of
tens of thousands of words. Even fairly large training corpora
typically fail to provide training examples for every word in
the vocabulary. Secondly, even large training corpora do not
necessarily have enough acoustic examples of all the words
in the vocabulary. As such, words which are not seen during
training cannot be learned and so can never be recognized. To
avoid these problems, LVCSR systems use sound units which
are smaller than words as the basic units for classification.
Words are translated into sequences of thesesubwordunits for
recognition. Subword units occur much more frequently than
words and can therefore be better learned. They also offer the
facility of extending the recognition vocabulary to words not
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seen during training, since new words can always be composed
as sequences of these units.

In an LVCSR system, the mapping table which translates
words into sequences of subword units is called adictionary.
The performance of the LVCSR system depends critically on
the choice of the subword units and the accuracy of the dictio-
nary. For example, in a speech transcription task in English, if
the sounds represented by “T” and “D” were chosen to be repre-
sented by the same subword unit, words differing only in these
sounds (like “BAD” and “BAT”) could never be acoustically
distinguished. In current large vocabulary systems the dictio-
nary and the subword units are manually designed by experts.
This method suffers from the obvious drawback that it cannot be
used in the absence of a human expert. Another important con-
sideration is that different modeling paradigms allow different
characteristics of sounds to be modeled optimally: static models
such as Gaussian mixtures are good for modeling units which
are composed of steady-state sounds, whereas sounds with time-
varying characteristics such as diphthongs are better modeled
by time-varying representations such as hidden Markov models
(HMMs). It is clear that a single set of manually defined units
may not be coincident with the set that can be best captured
by a given model. To some extent the composition of this set
may also be influenced by the nature of the acoustic data being
recognized. For example, in telephone speech, where much of
the high-frequency information is lost, it may not be optimal
to use the same variety of fricatives as used for full-bandwidth
speech. It may therefore be instructive, if not useful, to devise
data-driven automatic methods of deriving the subword units for
an LVCSR system.

In this paper, we address the problem of automatically de-
signing the subword units and the dictionary given only a set
of acoustic signals and their transcripts. The problem of auto-
matic identification of subword units has been addressed by sev-
eral researchers in the past [1]–[6]. The earliest efforts treated
the problem as one of optimal segmentation and clustering of
acoustic examples of words [1], [6]. Other researchers addressed
the problem of automatically defining the optimal pronunciation
for words in terms of manually defined subword units [7]–[9].
Holter et al. [4] and Bacchianiet al. [5] have further investi-
gated the problem of automatically determining the basic sub-
word units and the pronunciations of words in terms of these
units jointly, using a maximum-likelihood (ML) criterion. All
of these methods treat the problem of identifying subword units
as one of segmentation and clustering,albeitwith likelihood as
an objective function. Additionally, all of these methods depend
on the availability of labeled data, i.e., data where the bound-
aries of words are marked. Since such databases are usually
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not available, they rely on word boundary labels obtained from
speech recognition systems trained with conventional manually
designed dictionaries and subword units. Also, while both [5]
and [10] do permit the incorporation of simple linguistic knowl-
edge in the estimation of subword units and pronunciations, the
use of additional sources of information is not permitted by their
framework.

In this paper, we present a complete probabilistic framework
for the estimation of subword units and pronunciations, which
makes no assumptions about the availability of anya priori
knowledge or information besides the acoustic training data and
their transcripts. While the proposed framework permits the in-
corporation of diverse external sources of information into the
solution in a very simple manner, the existence of these sources
of information is not critical to the solution. Thus, while word
boundary knowledge can be incorporated if available, it is not
explicitly required. We demonstrate how external knowledge
can be incorporated into the framework through the usage of
statistical correlations between spellings of words and their pro-
nunciations. We use these to improve the consistency of the es-
timated pronunciations.

In the following section we describe our formulation of the
problem. In subsequent sections we present a mathematical for-
mulation for the problem and its solution within a probabilistic
framework, followed by some experimental results and our con-
clusions.

II. DESCRIPTION OF THEPROBLEM

In this section, we provide the groundwork required for the
formulation of the problem of automatically identifying the op-
timal set of subword units for a given set of acoustic data. For
the sake of brevity, in the rest of this paper we will refer to the
set of subword units as the phoneset. For the same reason, we
will also refer to the subword units themselves as “phones.” This
must not be construed to mean that the subword units arepho-
neticallymotivated in the traditional sense.

The problem itself can be approached from any of three major
perspectives:

1) from a modeling perspective, we can try to identify
sound classes (which are also the phones) that best fit
the training data;

2) from a pattern classification perspective, we can try to
identify sound classes that are maximally separable;

3) from a task completion perspective, we can try to find
the sound classes that maximize the system’s ability to
extract information which is relevant to the completion
of a particular task.

In this paper, we choose to approach the problem from the
first perspective. The closeness of fit to training data can be
quantified by likelihood which, for a data point, is defined to
be the value of the probability density function at that point.
The higher the likelihood, the better the fit. The assumption
that we implicitly make here is that classes which best fit the
training data will result in the best classification performance
by the LVCSR system on the given acoustic data, as measured
by likelihood.

A. Design Based on the ML Criterion

In a dictionary, a phone is merely a symbol. What makes it rel-
evant to the LVCSR system is its consistent usage to represent a
particular sound which has a particular distribution or acoustic
model associated with it. Therefore, if we find the dictionary in
terms of any set of symbols and the acoustic models for those
symbols, such that the dictionary and the acoustic models to-
gether best fit the data, the ML solution for the problem would
have been found.

The problem, therefore, needs to be mathematically formu-
lated as a joint optimization of the dictionary and the acoustic
models for the phones, with likelihood maximization as the ob-
jective function. This is a very complex problem. While the
general aim is to identify the sound classes with the minimum
within-class variance, the number of classes to be identified is
not knowna priori. A simple clustering of individual vectors is
not sufficient to generate the classes since a sound unit is rep-
resented by a sequence of feature vectors, all of which must be
considered as one unit. It is not known where, in a given utter-
ance, each of these sequences begin and end. This is compli-
cated by the fact that all sequences of vectors belonging to the
same phone need not be of the same length. The typical length
of such sequences for a given unit is not known, nor even the dis-
tribution of their lengths. Also, the notion of distance between
the sound classes is now more complex. In this case a vector
sequence belongs to a class, or is closest to a class, only if the
statistical model representing that class is more likely to gen-
erate that sequence of vectors than the models representing other
classes. The list of unknowns is lengthened further by consider-
ations at the word level. In addition to not knowing where each
word begins or ends, we also do not know how many phones or
classes there are in each word.

The problem therefore must be formulated in such a way as to
enable us to identify the vector sequences corresponding to the
classes which have to be identified as such, jointly with the gen-
eration of a dictionary. As explained in Section I, since the opti-
mality of the phones relates specifically to the statistical models
used by the recognizer, this has to be done using the same sta-
tistical models and feature set used by the LVCSR system.

III. FORMULATION AND SOLUTION OF THE PROBLEM

In this section, we present our formulation of the problem and
its solution.

Let be a dictionary in terms of a phoneset, where
is the size of the phoneset. The dictionary is a mapping be-
tween a set of words and their pronunciations in terms of the
phoneset . It can be represented by the set of pronunciations

, where denotes the pronunciation of the word. Let
represent the acoustic training data andrepresent their tran-

scriptions. Let represent the set ofacoustic models for the
phoneset . Let represent any external constraint or source
of information about the dictionary and the phoneset that we
may consider during solution of the problem. If the transcripts
are in terms of any nonideographic script, then we may assume
that there exist correlations between the spelling and pronunci-
ation(s) of a word. We denote this external knowledge as .
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We also assume that in a natural language, certain sequences of
sounds are more likely than others while yet others are impos-
sible. We denote this external knowledge as .

As explained in the previous section, the ML formulation of
the problem needs to be a joint optimization of the dictionary

and the acoustic models . Assuming that is known, we
formulate the problem of learning the set of subword units and
dictionary as the following likelihood maximization:

(1)

where is any arbitrary set of acoustic models and is
an arbitrary set of pronunciations representing the dictionary.

Note that this formulation is different from atrueML formu-
lation which would be

(2)
However, for a given set of pronunciations the likelihood
of the acoustic data is completely determined by the acoustic
models . Equation (2) could therefore be reduced to

(3)

This true ML formulation does not utilize external knowledge
sources that may constrain the dictionary, if such sources are
present. In order to utilize these constraints, it becomes neces-
sary to reformulate the optimization criterion as amaximum a
posteriori (MAP) estimation of the dictionary.

Equation (1) gives us the optimal dictionary and phoneset for
agivenphoneset size. However, the optimal value of the vari-
able itself has to be estimated in this framework. This cannot
be estimated on the basis of the likelihood of the training data,
since relates to the total number of parameters in the acoustic
models and the likelihood would increase monotonically with
increasing . We can therefore use a set of held-out data,
which is not a part of , to estimate , the optimal value of

(4)

where and are the optimal dictionary and acoustic
models for the given , as obtained from (1). Alternatively,
can be chosen to optimize the recognition accuracy obtained
with and on the heldout data.

IV. SOLUTION OF THE ML FORMULATION FOR THE JOINT

ESTIMATION OF DICTIONARY AND PHONE SET

The function in (1) is not easy to solve directly for a
global optimum. It must be decomposed into simpler compo-
nents to facilitate solution.

A. Divide-and-Conquer Strategy

It can be shown (see Appendix A) that (1) can be decomposed
into two equations which, when solved iteratively, are guaran-

teed to converge to a locally optimal solution. These equations
are

(5)

(6)

where the superscriptrepresents the iteration number. To solve
these equations we first fix the phoneset sizeand initialize the
dictionary in some simple manner (dictionary initialization is
discussed in a Section IV-E). Then, assuming that the dictionary
is given, we find the best acoustic models. In the next step we
use these acoustic models and find the best dictionary, and so
on.

Equations (5) and (6) can be further simplified by noting that
the knowledge of , the size of the phoneset, is implicit in the
knowledge of the dictionary . Similarly, once is known,

is implicitly known. The variable therefore need not ap-
pear explicitly in the equations. A second simplifying consider-
ation is that in the absence of acoustic data relating the acoustic
models to the dictionary, the two are independent. Hence the
term does not affect the solu-
tion of (5). Further simplification of (5) can be done by noting
that the probability of the acoustic datadepends only on the
dictionary and the statistical models for the data and can be
assumed to be independent of any phonemic or spelling con-
straints. In the light of these considerations (5) and (6) reduce
to

(7)

(8)

We refer to (7) and (8) as themodel updateand thedictionary
updateequations, respectively. In the following paragraphs we
explain how these can be solved by reapplying the divide-and-
conquer strategy.

B. Solution of the Model Update Equation

The model update equation (7) is the ML solution for the
statistical models of the phones for a corpus of training data,
given a dictionary. The method used to solve this equation would
be dependent on the actual statistical model used. Typically the
solution would involve the use of an expectation maximization
(EM) algorithm [11]. When the statistical models are HMMs,
the Baum–Welch algorithm [12] may be used to solve for.

The dictionary update equation (8), on the other hand,
represents a maximuma posterioriestimate for the dictionary,

given the statistical models for the phones,, the
training corpus and the external constraints. This equation is
again too complex to solve directly and must be simplified for
the purpose.

C. Simplification of the Dictionary Update Equation

In order to simplify (8), we introduce aword-segmentation
variable , which represents any possible segment of the



92 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 10, NO. 2, FEBRUARY 2002

speech signal that may correspond to the given word. Before
we show how this variable can be used to simplify the equation
for the dictionary update, there are some points that must be
considered in relation to the nature of the variable. Since at
this point the word boundaries in any particular utterance are
not known, the only condition that we can impose on them
is that the number of word segments in an utterance must be
equal to the number of words in it. Since an utterance consists
of a finite and discrete number of frames or samples, there
are clearly a finite but large number of ways of segmenting an
utterance into a specified number of words. The variable
alludes to each of these possible segmentations corresponding
to any word . The set refers to all possible word
segmentations for the word, not all of which may be close
to thetrue segmentation.1

The word-segmentation variable can be introduced into (8) as
a null-factor that leaves it unchanged

(9)

where the right-hand side of the equation is summed overevery
possible segmentation of the training data into the sequence of
words given by . We now make a convenient approximation:
since the actual number of possible word segmentations for any
corpus of training data is very large, we assume that only thebest
word segmentation affects the contents of the optimal dictionary
and estimate it jointly with the dictionary. We thus jointly opti-
mize and and approximate the optimal dictionary
with the corresponding optimal value of

(10)

While this may appear to be more difficult to solve in gen-
eral situations than (8), it actually simplifies the problem. We
can use the constructs proved in Appendix A to reapply the di-
vide-and-conquer strategy. Following this, (10) can be decom-
posed into two equations again, which when iteratively solved
are guaranteed to converge to a locally optimal solution

(11)

(12)

We refer to (11) and (12) as theword-segmentation updateand
the word-segmentation based dictionary updateequations, re-
spectively. The variablesand represent iteration numbers.

The procedure suggested by the above equations is to fix the
dictionary first and find the most likely word segmentations.

1By truesegmentation, we refer to a segmentation that would be obtained by
an ideal recognition system that has been trained on infinite data and represents
the true distribution of the speech.

The word segmentations are subsequently used to find the best
dictionary. In the following subsections we will further show
how to simplify and solve (11) and (12).

1) Simplification of the Word-Segmentation Update Equa-
tion: Equation (11) can be rewritten as

(13)

If we assume that all valid word segmentations of the training
corpus are equally likely when not conditioned on acoustic evi-
dence,2 (13) gets simplified to

(14)

This equation can be solved using the Viterbi algorithm [12].
Note that ifa priori probabilities were available for , they
could be incorporated into (13) and the assumption of equiprob-
able segmentations would not be required.

2) Simplification of the Word-Segmentation Based Dictio-
nary Update Equation:In (12), the set represents the
jointly optimal set of pronunciations of all the words in the
dictionary. Joint optimization of all the pronunciations in the
dictionary is a reasonable requirement in light of the fact that
pronunciations of words in a dictionary are not independent
of each other. They are correlated, and we expect words with
similar spellings to have similar pronunciations. However,
jointly optimizing for the pronunciations of what could be
thousands of words in a dictionary is a very complex problem.
Equation (12) needs to be simplified further.

The simplifying assumption that we make is based on the ob-
servation that within any given iteration of (11) and (12), the ac-
tual boundaries of all the words in the training corpus are known,
once is known. While these are possibly not the best
or the true word boundaries, the fact that they areknownallows
us to now make the approximation that the pronunciations for
all the words in the dictionary need not bejointly optimized. In-
stead, it is sufficient to optimize the pronunciation of each word
in the dictionary separately. Therefore, instead of

(15)

we consider it sufficient to obtain

(16)

where

(17)

2In reality, the probability of any word segmentation would be dependent on
the parameters of the underlying Markov chain. However, we do not expect
the assumption of equiprobable segmentations to affect the solution greatly. It
merely facilitates the usage of the Viterbi algorithm to estimatefseg g . The
estimation would otherwise be tedious.
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where refers to the acoustic data corresponding to all in-
stances of the word . Equation (17) however requires us to
search over every possible pronunciation to identify .
For any word , there is a large number of possible pronuncia-
tions in the absence of any constraint. In the limiting case where
the acoustic model is able to associate only one feature vector
with each phone, for phones and feature vectors present in
a considered segmentation for a word, the number of possible
pronunciations can be as large as. Direct evaluation of (17)
is clearly infeasible. Solutions do exist for the ML version of
(17) [2]. However, even those solutions are computationally ex-
pensive and have to be reduced by considering only a subset of
possible pronunciations as in [4].

To make the problem more tractable, we confine the pronun-
ciations considered in (17) to only the set of pronunciations ev-
idenced in the acoustic training corpus, after expanding that set
a little using a graph as explained below:

For anysingle instance of a word with corresponding
acoustic data , it is easy to obtain

(18)

using the Viterbi algorithm. We obtain for every instance
of the word in the training set, resulting in a set of pronunci-
ations for the word . This set of pronunciations can
be collapsed into a graph [13], [14] as shown in Fig. 1.

As can be seen from this figure, the graph enables us to gen-
erate many more putative pronunciations for the word than the
original set of pronunciations that were used to create
the graph. In Fig. 1, four hypothetical pronunciations for a word
are collapsed into a single graph. These are listed on the left of
the graph. The weight associated with any node is proportional
to the number of times the node has been visited in this set of
four pronunciations. This is indicated on the top of each node
in the graph. On the right of the graph in Fig. 1 are listed 12
pronunciations which can now be generated from the graph. Fol-
lowing the same procedure, we expand the set of pronunciations

for each unique word in the corpus to a set of pronun-
ciations by tracing every possible path through this
graph [15]. We then finally restrict our search for the optimal
pronunciation in (17) to this set of pronunciations.

If we include the corresponding pronunciation from
in , the most likely pronunciation in
is guaranteed to beat leastas likely as the pronunciation in

, thereby guaranteeing a nondecreasing likelihood for
every iteration. Equation (17) now becomes

(19)

This equation can now be simplified as follows:

(20)

Fig. 1. Graph constructed with four hypothetical pronunciations of a word,
listed on the left. Once constructed, the graph permits new paths from begin to
end, and thus can generate twelve pronunciations for the word. These are listed
on the right.

To simplify this, we note that is not a
function of . It can also be safely assumed that the probability
of a phone sequence is not dependent on in the absence
of the acoustic data . Equation (19) therefore reduces to

(21)

Once a specific phone sequence isgiven, the external constraints
become inconsequential, since they apply specifically to phone
sequences. We therefore have

(22)

Using Bayes’ rule, we also have

(23)

We make the reasonable assumption that the phone-sequence
constraints are characteristic of the phonetic nature of the
language, and that they are independent of the script used for the
language or the manner in which one chooses to spell words. As
a result (23) becomes

(24)
which, through Bayes’ rule, can be simplified to

(25)

where is thea priori probability of the phone sequence
. If at any point we assume that in the absence of any other

information all phone sequences in are equally
likely, this term becomes a constant. , , and

are all independent of and are therefore
inconsequential in (25). Hence, using (22) and (25) in (21), we
get

(26)

is the likelihood of the observed acoustic
data for the word for the phone sequence. If the statistical
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Fig. 2. Algorithm suggested by (1), (8), (9), (11), (12), (14), and (27) for the automatic generation of subword units and dictionary.

models for the phones are HMMs, this likelihood can be easily
obtained using either the forward or the backward pass of the
Baum–Welch algorithm [12] on all instances of the word (the
product of the likelihoods of the individual instances of the
word gives us the total likelihood for ). is the
probability of the phone sequence given the constraints

. If takes the form of rules this would simply result
in a 1/0 binary value for indicating whether the given rules
permit or not, as in a word-pair language model. If is
a statistical model, e.g., an-gram model [16], this evaluates
the probability of the phone sequence on the model. The
spelling constraints, , are easily imposed. If these are
statistical (a statistical model relating spellings to sequences
of phones can be computed, e.g., using techniques described
in [17]), gives us the probability of the phone
sequence computed on the spelling to pronunciation model

.
Using (16) and (26), the word-segmentation based dictionary

update equation for can now be written as

(27)

Equations (11) and (12) are to be iterated until
converges. In practice, we test

for the convergence of
. The converged value of gives us in (8).

The model update (7) and dictionary update (8) steps must be
iterated until (1) converges. In practice we iterate the steps until
the recognition accuracy on aheldoutset of data converges.

As a summary, the sequence of steps involved in the solution
of (1) are shown in Fig. 2. This figure presents the algorithm
suggested by (1), (7), (8), (11), (12), (14), and (27) in the form

of a flow chart. In Fig. 2, we begin with an initial phoneset size
and an initial dictionary with any symbols as the phoneset. We
then iterate the dictionary update and model update steps. The
dictionary update is in turn iteratively done by using a fixed dic-
tionary to find the best word segmentation, and using the word
segmentation to find the best dictionary. Since the pronuncia-
tions of all the words in the dictionary cannot be jointly opti-
mized, we accomplish this piecewise by optimizing the pronun-
ciation of each word independently. In the process we use ex-
ternal constraints that we learn in an unsupervised manner [17]
to ensure that the pronunciations stay consistent. Once we have
the best dictionary and acoustic models we test them on a held
out set. If the recognition accuracy is higher than it was with the
previous phoneset size, we increase the phoneset size by split-
ting the phones.

D. Estimating , the Size of the Phoneset

So far, we have assumed that, the size of the phoneset, is
given. In reality it must be determined empirically. As men-
tioned in Section III, the phoneset sizecannot be determined
on the basis of the likelihood of the training data. We therefore
estimate as

(28)

where refers to the recognition accuracy
on a set of heldout data , which has not been included in
the training. and are the optimal dictionary and acoustic
models for phoneset size.

Equation (28) requires the estimation of and for every
value of . We begin with a small value for and increase
it gradually until the value of that maximizes is
found. At every stage the phoneset size is increased in a manner
that maximizes the increase in likelihood due to increasing the
phoneset size. To accomplish this we cluster the data corre-
sponding to each phone (obtained through phone segmentations
derived using the current acoustic models and dictionary) into
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two clusters and identify the phone for which the clustering re-
sulted in the highest increase in likelihood. The likelihood is
measured assuming Gaussian distributions for the data clusters.

Each cluster for the identified phone is now a new (relabeled)
phone. Thus with each such split, the phoneset size is increased
by one. The relabeled phone sequences replace the original (un-
split) phone labels in the dictionary. The algorithm can then pro-
ceed using the new increased phoneset size. Note that if we de-
sire to increase the phoneset size by more than one at any given
stage, the splitting can be done for a list of phones which result
in high likelihood increases after clustering.

It is important that the clustering technique and the criterion
used be consistent with the model used by the recognizer. For
example, if the recognizer is HMM-based, the clustering would
have to be such that the likelihoods of the clusters on HMMs
trained from the segments in the cluster, are maximized. As an
example, we may use the hybrid clustering technique described
in [18].

E. Initialization of the Dictionary

The algorithm requires the initialization of the dictionary at
the outset. Any reasonable heuristically derived initialization is
sufficient. For example, if we assume that the script used to tran-
scribe the acoustic training data is nonideographic, one possible
way to initialize the dictionary would be to use the alphabet as
the initialization: if words are transcribed using the English al-
phabet (irrespective of language), we could use the alphabet as
a phoneset to initialize the pronunciations of all words in the
dictionary. Alternatively, we could initialize any word with a
sequence of repetitions of a single symbol, the sequence length
being approximately proportional to the length of the word. This
is the most noncommittal initialization possible, since it is min-
imally dependent on the consistency of the script of the lan-
guage. The only assumption made here would be that the length
of the spelling of a word is roughly proportional to the number
of phones in the word. As the algorithm progresses, the size of
the phone set can be increased using cluster-based splitting as
described in Section IV-D.

V. EXPERIMENTAL RESULTS

A pilot test for the algorithm for automatic generation of
phoneset and dictionary was performed using the resource
management (RM) database [19]. The training corpus consisted
of 2880 utterances, comprising 2.74 h of acoustic signals. The
training set covered a vocabulary of 987 words.

Acoustic models built using the automatically generated
phoneset and dictionary were tested on a heldout RM test
set, which consisted of 1600 utterances comprising 1.58 h of
acoustic signals. The vocabulary of this set was 991 words, four
of which were not seen during training. The CMU SPHINX-III
speech recognition system was used for acoustic modeling. All
acoustic models were semi-continuous five-state HMMs [20]
sharing 256 Gaussian densities.

The words in the heldout test set which were not part of the
training set were not included in the recognition lexicon in this
experiment, since no pronunciations were available for them.

Fig. 3. Likelihood versus iteration for the automatic phone generation
experiment with RM. The model update steps are indicated by Roman
numerals (I, II, …), and the dictionary update steps are indicated by Arabic
numerals (1, 2, …). The phoneset expansions are indicated asa ! b, wherea
refers to the size of the phoneset prior to splitting andb refers to the size of the
phoneset after splitting.

However, the generation of pronunciations for new words is not
a major problem since several widely used algorithms exist that
can learn the relationships between spellings and pronunciations
from an existing dictionary and derive pronunciations for new
words, e.g., [21]. Most such tools make no explicit assumptions
about the nature of the phonetic units and merely treat them as
symbols. It is therefore reasonable to expect that they would
work as well with automatically learned sound units as with
phonetically motivated ones.

A baseline was first established using the CMU dictionary
(CMUdict) [22], which is a standard, manually crafted dictio-
nary that uses a set of 50 manually designed phonetic units. Al-
though CMUdict has multiple pronunciations for every word,
only the most frequently used pronunciations in the RM task
were used for the baseline. Also, while the RM task has a very
constrained linguistic structure, the experiments took minimal
advantage of it. A simple bigram language model was used for
the experiment and the weight given to the language model was
set to be very small in order to emphasize the contribution of the
acoustic models to the recognition. Note that as a result of this,
the word error rates reported on the RM task in this paper are
higher than the best obtainable by the SPHINX-III system.

For this experiment the dictionary was initialized with the
script of the language, where the pronunciation of each word
was simply assumed to be the sequence of alphabetical char-
acters which constituted the spelling of the word. The initial
dictionary thus had a 26-symbol phoneset corresponding to the
English alphabet.

Figs. 3–5 show the results obtained during various stages of
the experiment. In these figures the model update steps are indi-
cated by Roman numerals (I, II, …), and the dictionary update
steps are indicated by Arabic numerals (1, 2, …). At each model
update step, multiple iterations of Baum–Welch were carried
out until the likelihood on the training data converged to a local
maximum. The phoneset expansions are indicated as ,
where refers to the size of the phoneset prior to splitting and

refers to the size of the phoneset after splitting. There were
two dictionary update steps for each model update step, and the
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phoneset was split twice, increasing in size from 26 to 34 and
subsequently to 42 phones.

We observe in Fig. 3 that the likelihood of the training data
increases monotonically with the model and dictionary updates.
The likelihood becomes equal to the baseline obtained using
the manually designed dictionary and phoneset with only 34
phones, and becomes higher than the baseline with 42 phones.
We note in Fig. 3 that the likelihood obtained with the CMU-
dict, which has 50 phones, islower than that obtained with the
34-phone automatically generated dictionary. This indicates that
as far as our criterion of maximum likelihood is concerned, the
proposed algorithm is successful in giving us a phoneset which
results in distributions that better fit the acoustic training data
compared to the phoneset in the CMUdict.

Fig. 4, on the other hand, shows that the best word error rate
obtained on the test set is for 34 phones, and that the higher
training likelihoods seen in Fig. 3 do not translate to greater
recognition accuracy on the test set. However, on the training
set the word error rate continues to decrease with increasing
phoneset size and training likelihood. This indicates that in-
creasing the phoneset size beyond 34 phones leads to overfitting
of the models to the training data, and thus poorer generaliz-
ability to the test data, further leading to poorer word error rates
on the test set. This also indicates that training set likelihoods
are not reliable indicators of the test word error rates.

Fig. 4 raises the valid question that if the word error rate in-
crease with 42 phones is a result of overparametrization, then for
the CMUdict which has 50 phones, and therefore even more pa-
rameters, the word error rates should be even higher. However,
in the case of the CMUdict the larger number of parameters does
not result inoverfittingasseen fromthe likelihoods inFig.3.This
can probably be attributed to the vast amount of human knowl-
edge which has gone into designing the CMUdict. Looking at the
trends inFig. 4wemight, nevertheless, speculate thateven for the
manually designed phones, 50 may not be the optimal size of the
phonesetforthecurrent RM task.Theoptimalsizeofthephoneset
may depend on the amount of training data.

Fig. 5 shows how the word segmentations for a sample
utterance in the training data set evolve as the phoneset and
dictionary evolve. The top row of text in the figure shows the
actual, manually demarcated, word boundaries. The second
row shows the segmentations obtained with the baseline system
using manually designed phones and dictionary. The subse-
quent rows show word segmentations at various stages in our
experiment. The stages are labeled on the ordinate according to
our specified convention mentioned earlier in this section. We
observe from these rows that after just a few iterations the word
segmentations converge to specific values which are congruent
with the word segmentations obtained using the CMUdict.

The best 34-symbol phoneset and the corresponding dic-
tionary were also evaluated by building context dependent
(triphone) semi-continuous HMMs with 2000 tied states. For
comparison, context-dependent models with 2000 tied states
were also built for the baseline system. The SPHINX-III speech
recognition system uses decision trees built using pre-defined
phonetic classes called “linguistic questions” for building
tied-state context dependent models. While manually designed
linguistic questions were available for the baseline system,

Fig. 4. Word error rate versus iteration for the automatic phone generation
experiment with RM. The model update steps are indicated by Roman numerals
(I, II, …), and the dictionary update steps are indicated by Arabic numerals (1,
2, …). The phoneset expansions are indicated asa ! b, wherea refers to the
size of the phoneset prior to splitting andb refers to the size of the phoneset after
splitting.

these were obviously not available for the automatically de-
signed phoneset. For a fair comparison, therefore, the linguistic
questions were automatically generated in both cases using
the procedure described in [18]. It has been demonstrated in
[18] that automatically designed linguistic questions result in
word error rates that are comparable to those obtained using
manually designed questions. Table I lists the word error
rates obtained in this experiment. We note here that although
context-dependent HMMs with 2000 tied states have many
more parameters than context-independent models with only
42 phones, they result in much lower word error rates. This is
because the context specificity in context-dependent models
introduces an implicit phone-level grammar which, when
appropriately modeled, more than compensates for the loss
in generalizability due to overfitting. This structuring is not
available for context-independent units.

We would like to emphasize here that the results described
in this section are from a pilot experiment designed to demon-
strate the applicability of the algorithm, rather than to generate
the optimal phoneset for the RM database. Our implementation
of the pilot experiment suffers from several shortcomings due
to logistic constraints. Only one pronunciation was generated
for each word. Multiple pronunciations can be generated fol-
lowing the procedure outlined in Appendix B, if desired. This
would however involve a large amount of computation to esti-
mate the pronunciations for any word. We note also that only
the single most likely phone sequence for each instance of a
word was used to generate the graph that was used to produce

. -best pronunciations could have been generated
instead, and used for the graph. This would increase the size of

, resulting in a more optimal search for the pronun-
ciation of each word. Context-independent phone models were
used throughout the phoneset generation process. Context-de-
pendent models generally result in better recognition accuracies,
and the use of context-dependent models may therefore be ex-
pected to result in a better dictionary.

We would like to add a few words of caution here: in our ex-
periment the acoustic models are initialized using a flat initial-
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Fig. 5. Evolution of the word segmentations for a sample utterance in the training corpus, as the phoneset and dictionary evolve. The model and dictionary update
steps are indicated on the left of the figure and progress vertically from top to bottom.

TABLE I
WORD ERROR RATES OBTAINED WITH MANUAL AND AUTOMATIC

SUB-WORD UNITS FOR THERESOURCEMANAGEMENT DATABASE WITH

CONTEXT-DEPENDENTSEMI-CONTINUOUS FIVE-STATE HIDDEN

MARKOV MODELS

ization scheme, whereby all state distributions are initially set to
be identical to the global distribution of the data. This is likely to
be far more effective when training utterances are short. Utter-
ance boundaries implicitly incorporate human knowledge about
the boundaries within which a certain set of words occur. As
training utterances become longer this knowledge is reduced as
fewer boundaries are available for any given amount of training
data, adversely affecting the outcome of the algorithm. Sec-
ondly, if the script used to represent the language is ideographic,
spelling to phone mappings cannot be obtained. As a result
words that are poorly represented in the training set may be
badly translated into phones. Also the addition of new words
into the dictionary may not be possible.

VI. DISCUSSION ANDCONCLUSION

In this paper, we have presented an ML formulation for the
problem of automatic generation of subword units and dictio-

nary, and explained how a divide-and-conquer strategy can be
used to arrive at the solution. Through pilot experiments using
the RM database, we have demonstrated the applicability of the
solution proposed. The framework we have presented permits
us to work in a situation where the only resources available
are the acoustic data and their transcriptions. Where additional
sources of information are available, it also allows us to incor-
porate these into the solution easily.

The pilot experiment demonstrated the success of the algo-
rithm in terms of the objective criterion which was maximized.
However, the automatically generated subword units and
dictionary resulted in models which performed worse than
the manually designed subword units and dictionary. Any
phoneset and dictionary generated by a human expert virtually
uses the knowledge derived from experience with hundreds,
even thousands, of hours of speech. It also uses other forms
of consciously or subconsciously acquired knowledge. The
manually designed phoneset is therefore expected to be highly
generalizable. In comparison, the automatically derived phone
set and dictionary used only 2.7 h of speech in our experiments.
No other source of information was used. The word error rates
obtained in our pilot experiments were influenced by this fact.

Although it is obvious that if other sources of information are
available theyshouldbe used to condition the phone generation
process, human knowledge of the kind used in the design of
phonesetanddictionaryforalanguageisnotcurrentlycompletely
quantifiable. It can be argued that until we find ways of doing
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so, carefully designed manual phonesets and dictionaries will
always outperform automatic ones, especially as the complexity
(i.e., vocabulary, perplexity, variety of environmental conditions
and speaking styles, etc.) of the underlying task increases. The
size of the training corpus will also continue to limit the quality
of the automatically learned phones. Nevertheless, the acoustic
idiosyncrasies of a specific training domain and knowledge
about its environmental conditions are two features which are
implicitly considered by the algorithm presented in this paper,
since the type of acoustic models used intrinsically influence the
solution. “Human knowledge” as we broadly allude to here does
not generally include these two sources. The algorithm in this
paper thus presents a method to take these into account while
designing a phoneset and dictionary for a particular task.

APPENDIX A
ITERATIVE PROCEDURE FORJOINT OPTIMIZATION

OF TWO VARIABLES

In the first part of this Appendix we derive an iterative pro-
cedure for the joint MAP estimation of two random variables.
The second part derives a similar procedure for the joint estima-
tion of two random variables wherea priori constraints exist for
only one of the two variables.

Problem A: Find and such that

(29)

Let the th estimate of and be and , respectively. Let

(30)

It is easy to show using Bayes’ rule that

(31)

Therefore

(32)

Similarly, if

(33)

we get

(34)

Therefore, iterations of (30) and (33) result in increasing values
of , leading to a locally optimal estimate ofand .

Problem B: Find and such that

(35)

Using logic very similar to that used for ,
it can be shown that a locally optimal estimate ofand can be
obtained by iterations of

(36)

(37)

APPENDIX B
MAXIMUM A POSTERIORIESTIMATION OF MULTIPLE

PRONUNCIATIONS FOR AWORD

In this Appendix, we briefly outline a procedure with which
the approach discussed in the body on of this paper can be ex-
tended to accommodate multiple pronunciations for any given
word.

For simplicity, let us assume that the word has only two pro-
nunciations. Let represent the set of acoustic data from all
instances of the word . Thea posterioriprobability of any set
of two phone sequences , conditioned on is given
by

(38)

Here, and in the rest of this Appendix, we have assumed that
the phone sequences are independent of the acoustic model
when the two are not related by acoustic data. We note that the
denominator in (38) is not a function of the phone sequences

and . As in the rest of the paper, we also assume that the
likelihood of the acoustic data is independent of spelling and
phone-sequence constraints, and , once the specific
pronunciations for the word are given.

Let represent the acoustic data from theth example of
in . We assume that the various instances of the word are

independent of each other. Thus,

(39)

The likelihood of any is given by

(40)

(41)

where and are thea priori probabilities for the two pro-
nunciations and for the word (assuming that there are
only two pronunciations and for the word). Representing
the two pronunciations of the word as and , respec-
tively, and combining (38), (39), and (41), we get themaximum
a posterioriestimate of and as

(42)

Thus, themaximum a posterioriestimate for the two pronun-
ciations of is obtained by computing the argument in (42)
for every pair of phone sequences and identifying the pair for
which it is maximum. Within any pair of pronunciations,
and would have to be computed as the expected fraction
of examples of the word that get classified as belonging to
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and respectively. Alternately, and could be directly
computed from and by invalidating the assumption
that the likelihood of the acoustic data is independent of spelling
and phone constraints when the pronunciations for the word
are given. If the number of possible pronunciations can be con-
strained in any manner to a small set, exhaustive evaluation of
(42) may be possible. Otherwise, locally optimal iterative solu-
tions may be required.

It is easy to generalize the above formulation for any specific
number of pronunciations. However, the determination of the
exact number of pronunciations for a word would require eval-
uation of (42) for all possible numbers of pronunciations and
validation on a held out set.
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