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Automatic Generation of Subword Units for
Speech Recognition Systems

Rita Singh, Bhiksha Raj, and Richard M. Stektember, IEEE

Abstract—Large vocabulary continuous speech recognition seen during training, since new words can always be composed
(LVCSR) systems traditionally represent words in terms of smaller - as sequences of these units.

subword units. Both during training and during recognition, they . .
require a mapping table, called the dictionary, which maps In an LVCSR system, the mapping table which translates

words into sequences of these subword units. The performance WOrds into sequences of subword units is calledicionary.
of the LVCSR system depends critically on the definition of the The performance of the LVCSR system depends critically on
subword units and the accuracy of the dictionary. In current the choice of the subword units and the accuracy of the dictio-
WﬁSR SYStelr‘Sa both tges?o corr&pon_ents are ?nanualllly ges'gned-nary. For example, in a speech transcription task in English, if
lle manually designed subword units generalize well, they may o' nds represented by “T” and “D” were chosen to be repre-
not be the optimal units of classification for the specific task or . e .
environment for which an LVCSR system is trained. Moreover, Seénted by the same subword unit, words differing only in these
when human expertise is not available, it may not be possible to sounds (like “BAD” and “BAT”) could never be acoustically
design good subword units manually. There is clearly a need for distinguished. In current large vocabulary systems the dictio-
data-driven design of these LVCSR components. In this paper, nary and the subword units are manually designed by experts.
we present a complete probabilistic formulation for the automatic This method suffers from the obvious drawback that it cannot be
design of subword units and dictionary, given only the acoustic . .
data and their transcriptions. The proposed framework permits Used in the absence of a human expert. Another important con-

easy incorporation of external sources of information, such as the Sideration is that different modeling paradigms allow different

spellings of words in terms of a nonideographic script. characteristics of sounds to be modeled optimally: static models
Index Terms—Ltearning, lexical representation, maximum-like- such as Gaussian mixtures are good for modeling units which
lihood, speech recognition, subword units. are composed of steady-state sounds, whereas sounds with time-

varying characteristics such as diphthongs are better modeled
by time-varying representations such as hidden Markov models
(HMMs). It is clear that a single set of manually defined units
ARGE vocabulary continuous speech recognitiophay not be coincident with the set that can be best captured
(LVCSR) systems do not usually use whole words as thg a given model. To some extent the composition of this set
basic units for classification. There are two reasons for th.ﬁ}ay also be influenced by the nature of the acoustic data being
First, the vocabulary of these systems typically consists gfcognized. For example, in telephone speech, where much of
tens of thousands of words. Even fairly large training corpogge high-frequency information is lost, it may not be optimal
typically fail to provide training examples for every word intg use the same variety of fricatives as used for full-bandwidth
the vocabulary. Secondly, even large training corpora do ngeech. It may therefore be instructive, if not useful, to devise
necessarily have enough acoustic examples of all the wogglga-driven automatic methods of deriving the subword units for
in the vocabulary. As such, words which are not seen durigg LVCSR system.
training cannot be learned and so can never be recognized. Ti, this paper, we address the problem of automatically de-
avoid these problems, LVCSR systems use sound units whighning the subword units and the dictionary given only a set
are smaller than words as the basic units for classificatiogy. acoustic signals and their transcripts. The problem of auto-
Words are translated into sequences of tresmvordunits for - matic identification of subword units has been addressed by sev-
recognition. Subword units occur much more frequently thagta| researchers in the past [1]-[6]. The earliest efforts treated
words and can therefore be better learned. They also offer thg problem as one of optimal segmentation and clustering of
facility of extending the recognition vocabulary to words nojcoustic examples of words [1], [6]. Other researchers addressed
the problem of automatically defining the optimal pronunciation
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not available, they rely on word boundary labels obtained from Design Based on the ML Criterion
speech recognition systems trained with conventional manually, - . .
. 9 : . . Inadictionary, a phone is merely a symbol. What makes it rel-
designed dictionaries and subword units. Also, while both [5 . )
. . . . . - ant to the LVCSR system is its consistent usage to represent a
and [10] do permit the incorporation of simple linguistic knowl-

. oo . L articular sound which has a particular distribution or acoustic
edge in the estimation of subword units and pronunciations, the . o : . I .
. : S . model associated with it. Therefore, if we find the dictionary in
use of additional sources of information is not permitted by their )
framework erms of any set of symbols and the acoustic models for those

(%mbols, such that the dictionary and the acoustic models to-

In this paper, we present a complete probab|I|§t|q framewp ther best fit the data, the ML solution for the problem would
for the estimation of subword units and pronunciations, whi ve been found

makes no assumptions about the availability of anriori The problem, therefore, needs to be mathematically formu-
knowledge or information besides the acoustic training data aﬁ? ' '

. : . 7 “lated as a joint optimization of the dictionary and the acoustic
their transcripts. While the proposed framework permits the in- o AT

. . . S models for the phones, with likelihood maximization as the ob-

corporation of diverse external sources of information into the

S : . ective function. This is a very complex problem. While the
solution in a very simple manner, the existence of these sources o ) : : -
. s g . : dgeneral aim is to identify the sound classes with the minimum
of information is not critical to the solution. Thus, while wor

! : : ... within-class variance, the number of classes to be identified is
boundary knowledge can be incorporated if available, it is not L . . T .
. . not knowna priori. A simple clustering of individual vectors is
explicitly required. We demonstrate how external knowledge - . L
4 . t sufficient to generate the classes since a sound unit is rep-

can be incorporated into the framework through the usage @ :
resented by a sequence of feature vectors, all of which must be

statistical correlations between spellings of words and their PIO5sidered as one unit. It is not known where, in a given utter-

nunciations. We use these to improve the consistency of the €s- . - .
timated pronunciations ance, each of these sequences begin and end. This is compli-
P . . . . cated by the fact that all sequences of vectors belonging to the

In the following section we describe our formulation of the '
ame phone need not be of the same length. The typical length

problem. In subsequent sections we present a mathematical ? r- . o -
ot such sequences for a given unit is not known, nor even the dis-

mulation for the problem and its solution within a prOb"’Ibi"Sti(fribution of their lengths. Also, the notion of distance between

framework, followed by some experimental results and our cop- ] .
clusions he sound classes is now more complex. In this case a vector

sequence belongs to a class, or is closest to a class, only if the
statistical model representing that class is more likely to gen-
erate that sequence of vectors than the models representing other
classes. The list of unknowns is lengthened further by consider-
In this section, we provide the groundwork required for thations at the word level. In addition to not knowing where each
formulation of the problem of automatically identifying the opword begins or ends, we also do not know how many phones or
timal set of subword units for a given set of acoustic data. Felasses there are in each word.
the sake of brevity, in the rest of this paper we will refer to the The problem therefore must be formulated in such away as to
set of subword units as the phoneset. For the same reasongi@ble us to identify the vector sequences corresponding to the
will also refer to the subword units themselves as “phones.” THi#asses which have to be identified as such, jointly with the gen-
must not be construed to mean that the subword unitptewe €ration of a dictionary. As explained in Section I, since the opti-

Il. DESCRIPTION OF THEPROBLEM

netically motivated in the traditional sense. mality of the phones relates specifically to the statistical models
The problem itself can be approached from any of three majésed by the recognizer, this has to be done using the same sta-
perspectives: tistical models and feature set used by the LVCSR system.

1) from a modeling perspective, we can try to identify
sound classes (which are also the phones) that best fit
the training data;

2) from a pattern classification perspective, we can try to |n this section, we present our formulation of the problem and
identify sound classes that are maximally separable; jts solution.

3) from a task completion perspective, we can try to find | gt D,, be a dictionary in terms of a phonesgt, wheren
the sound classes that maximize the system’s ability {9 the size of the phoneset. The dictionary is a mapping be-
extract information which is relevant to the completiofyeen a set of words and their pronunciations in terms of the
of a particular task. phoneset,,. It can be represented by the set of pronunciations

In this paper, we choose to approach the problem from the., }, wheregp,, denotes the pronunciation of the word Let

first perspective. The closeness of fit to training data can Berepresentthe acoustic training data dhepresent their tran-
quantified by likelihood which, for a data point, is defined tecriptions. Let\,, represent the set af acoustic models for the

be the value of the probability density function at that poinphoneset,,. Let E represent any external constraint or source
The higher the likelihood, the better the fit. The assumptiarf information about the dictionary and the phoneset that we
that we implicitly make here is that classes which best fit thmay consider during solution of the problem. If the transcfipts
training data will result in the best classification performancare in terms of any nonideographic script, then we may assume
by the LVCSR system on the given acoustic data, as measutieat there exist correlations between the spelling and pronunci-
by likelihood. ation(s) of a word. We denote this external knowledg&'gs;.

[ll. FORMULATION AND SOLUTION OF THE PROBLEM
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We also assume that in a natural language, certain sequencede@d to converge to a locally optimal solution. These equations
sounds are more likely than others while yet others are impase
sible. We denote this external knowledgeias,. ) )

As explained in the previous section, the ML formulation of Ay, = argmax{P(A[T, D;,, n, An, Espet; Eseq)
the problem needs to be a joint optimization of the dictionary A
D,, and the acoustic models,. Assuming that is known, we - P(DLIT, n, Ans Espety Eseq) ) ®)
formulate the problem of learning the set of subword units and pi+1 — argmax P({p,}|A, T, n, A\, Espet; Eseq) (6)
dictionary as the following likelihood maximization: {ow}

where the superscriptrepresents the iteration number. To solve
these equations we first fix the phoneset siznd initialize the
dictionary in some simple manner (dictionary initialization is
whereA,, is any arbitrary set of, acoustic models an{i@w} is discussedin a Section |V'E) Then, aSSUming that the diCtionary
an arbitrary set of pronunciations representing the dictionaryis given, we find the best acoustic models. In the next step we
Note that this formulation is different fromteue ML formu- Use these acoustic models and find the best dictionary, and so
lation which would be on.
Equations (5) and (6) can be further simplified by noting that
o the knowledge of, the size of the phoneset, is implicit in the
Any Dy = Xrgrzﬁ P(A{pw} T, n, A,y Espet, Eseq). knowledge of the dictionar}p? . Similarly, onceX’, is known,
(2) =n is implicitly known. The variabler therefore need not ap-
However, for a given set of pronunciatiofis,, } the likelihood pear explicitly in the equations. A second simplifying consider-
of the acoustic data is completely determined by the acousdition is that in the absence of acoustic data relating the acoustic

An, Dy = argmax P(A, {pw}HT, n, An, Esper, Eoeq) (1)
An, {Ww}

modelsA,,. Equation (2) could therefore be reduced to models to the dictionary, the two are independent. Hence the
term P(D%|T, n, A, Espel, Ese,) does not affect the solu-
Any Dy, = argmax P(A|{pw}, T, n, Ay,). (3) tion of (5). Further simplification of (5) can be done by noting
Any {pw} that the probability of the acoustic datadepends only on the

) ) - dictionary and the statistical models for the data and can be
This true ML formulation does not utilize external knowledg@ssumed to be independent of any phonemic or spelling con-

sources that may constrain the dictionary, if such sources &fgaints. In the light of these considerations (5) and (6) reduce
present. In order to utilize these constraints, it becomes necggs-

sary to reformulate the optimization criterion asnaximum a

posteriori(MAP) estimation of the dictionary. ,\jl = arg max P(A|T, Dim An) )
Equation (1) gives us the optimal dictionary and phoneset for ‘ An ‘

agivenphoneset size. However, the optimal value of the vari- Dt = argmax P({p, A, T, X, Eoper, Eoey). (8)

ablen itself has to be estimated in this framework. This cannot (g}

be estimated on the basis of the likelihood of the training dat@e refer to (7) and (8) as theodel updatend thedictionary
sincen relates to the total number of parameters in the acousﬂﬁdateequations, respectively. In the following paragraphs we

models and the likelihood would increase monotonically Wit@xplain how these can be solved by reapplying the divide-and-
increasingn. We can therefore use a set of held-out dAfa,  conquer strategy.

which is not a part oA, to estimate. .., the optimal value of.
B. Solution of the Model Update Equation

Nopt = argrllnax L(Agln) = argrllnax P(Ay|D,, An) (4) The model update equation (7) is the ML solution for the
statistical models of the phones for a corpus of training data,
where D,, and A,, are the optimal dictionary and acoustigiven a dictionary. The method used to solve this equation would
models for the givem, as obtained from (1). Alternatively, be dependent on the actual statistical model used. Typically the
can be chosen to optimize the recognition accuracy obtainsalution would involve the use of an expectation maximization

with D,, and,, on the heldout data. (EM) algorithm [11]. When the statistical models are HMMs,
the Baum—-Welch algorithm [12] may be used to solveXor
IV. SOLUTION OF THE ML FORMULATION FOR THE JOINT The dictionary update equation (8), on the other hand,
ESTIMATION OF DICTIONARY AND PHONE SET represents a maximumposterioriestimate for the dictionary,

_ _ _ _ DiF! given the statistical models for the phones,, the
The functionP() in (1) is not easy to solve directly for atraining corpus and the external constraints. This equation is

global optimum. It must be decomposed into simpler compggain too complex to solve directly and must be simplified for
nents to facilitate solution. the purpose.

A. Divide-and-Conquer Strategy C. Simplification of the Dictionary Update Equation

It can be shown (see Appendix A) that (1) can be decomposedn order to simplify (8), we introduce @ord-segmentation
into two equations which, when solved iteratively, are guaramariable seg,,, which represents any possible segment of the
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speech signal that may correspond to the given warBefore The word segmentations are subsequently used to find the best

we show how this variable can be used to simplify the equatialictionary. In the following subsections we will further show

for the dictionary update, there are some points that must hew to simplify and solve (11) and (12).

considered in relation to the nature of the variable. Since atl) Simplification of the Word-Segmentation Update Equa-

this point the word boundaries in any particular utterance atien: Equation (11) can be rewritten as

not known, the only condition that we can impose on them ,

is that the number of word segments in an utterance must becgw

equal to the number of words in it. Since an utterance consists i+l v

of a finite and discrete number of frames or samples, there = #t&1ax P(Al{segu}, T, DI, X Eoper, Eiseq)

are clearly a finite but large number of ways of segmenting an seawt

utterance into a specified number of words. The variablg, - P({scgu}|T, DI, X Espet, Eseq) (13)

alludes to each of these possible segmentations corresponding P(A|T, Dijrl:j’ iy Egpety Eseq) )

to any wordw. The set{seg, } refers to all possible word

segmentations for the word, not all of which may be close If we assume that all valid word segmentations of the training

to thetrue segmentation. corpus are equally likely when not conditioned on acoustic evi-
The word-segmentation variable can be introduced into (8) @&Nc€ (13) gets simplified to

a null-factor that leaves it unchanged

Dt = arg max Z P({pw}, {5¢gu}
{pw} {segw}

{scgw}j = arg max P(Al|{seg,}, T, D:‘L-i—l,j’

s€gw

)‘Zu Espela Eseq)- (14)

A, T, \,, Esper, Eseq) (9) This equation can be solved using the Viterbi algorithm [12].
Note that ifa priori probabilities were available foteg,,,, they

where the right-hand side of the equation is summedevery could be incorporated into (13) and the assumption of equiprob-
possible segmentation of the training data into the sequencegfe segmentations would not be required.
words given byI'. We now make a convenient approximation: 2) Simplification of the Word-Segmentation Based Dictio-
since the actual number of possible word segmentations forqrm/ry Update Equation:In (12), the set{p,,} represents the
corpus of training datais very large, we assume that onlpéiseé jointly optimal set of pronunciations of all the words in the
word segmentation affects the contents of the optimal dictionafittionary. Joint optimization of all the pronunciations in the
and estimate it jointly with the dictionary. We thus jointly optiictionary is a reasonable requirement in light of the fact that
mize{p. } and{seg., } and approximate the optimal dictionarypronunciations of words in a dictionary are not independent

with the corresponding optimal value ¢, } of each other. They are correlated, and we expect words with
i1 similar spellings to have similar pronunciations. However,
D™ = ( ar]?f{nax }P({@w}v {scguw}| jointly optimizing for the pronunciations of what could be
©w s 15€Gw

thousands of words in a dictionary is a very complex problem.
Equation (12) needs to be simplified further.

The simplifying assumption that we make is based on the ob-
ervation that within any given iteration of (11) and (12), the ac-

A7 T7 )‘;m Espeh Eseq)~ (10)

While this may appear to be more difficult to solve in gen:

eral sﬂuz#:ons thz;m (?)’ It actggll;;smplg_leit?e probllerr:r.] W al boundaries of all the words in the training corpus are known,
can use the constructs proved In Appendix A 1o reapply e Iﬁce{segw}j is known. While these are possibly not the best

vide-and-conquer strategy. Following this, (10) can be decoftl-y, o y,e word boundaries, the fact that theylarewnallows
posed into two equations again, which whgn |terat|vt_aly SON%% to now make the approximation that the pronunciations for
are guaranteed to converge to a locally optimal solution all the words in the dictionary need not jointly optimized. In-
stead, it is sufficient to optimize the pronunciation of each word

w J = arg < P w Di+17j A T . .. )
{segu) ao ({Sc‘q HDW s AT in the dictionary separately. Therefore, instead of

seguw
| | )\n,a Espela Es'eq) (11) Di;l—l,j-l-l —_ {g&)w}max (15)
Dith i+ = argmax P({pw }|{segu}, A, T,

Pw

we consider it sufficient to obtain
Xor Bopets Baea) - (12) Dbt = e (16)

We refer to (11) and (12) as threord-segmentation updatad  \here

the word-segmentation based dictionary updatpiations, re- ‘

spectively. The variablesand;j represent iteration numbers. P = argmax P(pw|Adw, Ay, Espet, Fseq) a7
The procedure suggested by the above equations is to fix the B

dictionary first and find the most likely word segmentations. 2in reality, the probability of any word segmentation would be dependent on
the parameters of the underlying Markov chain. However, we do not expect
1By true segmentation, we refer to a segmentation that would be obtainedtng assumption of equiprobable segmentations to affect the solution greatly. It
an ideal recognition system that has been trained on infinite data and represeraeely facilitates the usage of the Viterbi algorithm to estir{atay... }7. The
the true distribution of the speech. estimation would otherwise be tedious.
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where A,, refers to the acoustic data corresponding to all ir

stances of the word,. Equation (17) however requires us tc
. .. . : max ABCD

search over every possible pronunciatian to identify ph®*.  cacp e
For any wordw, there is a large number of possible pronunciesagn,
tions in the absence of any constraint. In the limiting case whe

the acoustic model is able to associate only one feature vec

with each phone, for, phones andh feature vectors present in

a considered segmentation for a word, the number of possibig 1. Graph constructed with four hypothetical pronunciations of a word,
pronunciations can be as largerd®. Direct evaluation of (17) listed on the left. Once constructed, the graph permits new paths from begin to

is clearly infeasible. Solutions do exist for the ML version Ofnd, and thus can generate twelve pronunciations for the word. These are listed
’ - . on the right.
(17) [2]. However, even those solutions are computationally ex- g

pensive and have to be reduced by considering only aSUbsePc())fsimplify this, we note thaP(Au|\., E E..,) isnota
) w|\py Lispely Liseq

possible pronunciations as in [4]. i function ofp,,. It can also be safely assumed that the probability
To make the problem more tractable, we confine the pronun; : I
. : . L of a phone sequenge,, is not dependent oR’, in the absence
ciations considered in (17) to only the set of pronunciations ev; ; .
) X : . : of the acoustic datd .. Equation (19) therefore reduces to
idenced in the acoustic training corpus, after expanding that se

1

a little using a graph as explained below: e = argmax  {P(Aw|9w, \o, Eapets Eseq)
For anysingleinstancew; of a word«w with corresponding PuwCl9wtugrapn
acoustic datal,,, , it is easy to obtain - P(9u|Eapet, Eacg)}. (21)
P = argmax P( Ay, [pw, Ab) (18) Once a specific phone sequencgiigen the external constraints

822

become inconsequential, since they apply specifically to phone
using the Viterbi algorithm. We obtaipiia* for every instance sequences. We therefore have
of the worduwy, in the training set, resulting in a set of pronunci- i B i
ations{p™**},, for the wordw. This set of pronunciations can P(Awlpw; Ans Espet; Eseq) = PlAwlpw; An)- (22)
be collapsed into a graph_[l:’_a], [14] as shown in Fig. 1. Using Bayes’ rule, we also have

As can be seen from this figure, the graph enables us to gen-
erate many more putative pronunciations for the word than tf¥.,| Expei, Eseq)
original set of pronunciationsgf“a’f}w that were u;ed to create _ P(Escq|Espet; 90)P(Espet|pw)P(9w)
the graph. In F.Ig. 1, fqur hypothetical pronunC|_at|ons for aword - P(Espet, Ereq)
are collapsed into a single graph. These are listed on the left of ]
the graph. The weight associated with any node is proportio¥f make the reasonable assumption that the phone-sequence
to the number of times the node has been visited in this set@@nstraints., are characteristic of the phonetic nature of the
four pronunciations. This is indicated on the top of each nod@guage, and that they are independent of the script used for the
in the graph. On the right of the graph in Fig. 1 are listed 1language or the manner in which one chooses to spell words. As

pronunciations which can now be generated from the graph. Faltesult (23) becomes

(23)

lowing the same proc_edure, We_expand the set of pronunciationsP s - | P(Beql9w)P(Eopetlr0) P(r)
{p™ax},, for each unique word in the corpus to a set of pronun- £(9uw|Espet; Eseq) = P(Ewpet, Bocy)
ciations{ o fuw,..,,, DY tracing every possible path through this pety Hseq (24)

graph [15]. We then finally restrict our search for the optima{hich, through Bayes’ rule, can be simplified to
pronunciation in (17) to this set of pronunciations.

If we include the corresponding pronunciation fr@i*':7  P(@w|Espet; Eseq)

in {©w ey, the most likely pronunciation ifo., }u,,.,. _ Ppw|Fseq) P(Eseq) P(90|Espet) P (Espet) 25)
is guaranteed to bat leastas likely as the pronunciation in - P(90)P(Espet; Eseq)
D¢td) thereby guaranteeing a nondecreasing likelihood for . o .
every iteration. Equation (17) now becomes whereP(p,,) IS _thea priori probablllt_y of the phone sequence
pw- If at any point we assume that in the absence of any other
P = argmax  P(pw|Aw, Aoy Eapet, Eseq). (19) information all phone sequences {® }uw,,.,, are equally
Pue{pwtig o likely, this term becomes a constait( E,,c;), P(Eseq), and

P(E;,, E,.,) are all independent op,, and are therefore

This equation can now be simplified as follows: inconsequential in (25). Hence, using (22) and (25) in (21), we

argmax  Ppw|dw, Aoy Espets Baeq) get
gawi{pw}w?i‘wh ngax = arg max {P(Aw|@w7 )‘ZL)P(@'IU|E5€(1)
_g éx{lgg?ax PwC{ewtw,rapn
dw Pw S Worgph
] . P 2w Es e . 26
PlAulv, Moy Bupets Bucg) PloalN, Bupet, Bucy) el 20

P(Aw|Ny, Espets Eseq) " P(Aylpw, X)) is the likelihood of the observed acoustic
(20) data for the word for the phone sequengg. If the statistical
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e external constraints
P model Egpel Eseq
y - update -
find optimal PPLs word
dictionary PR il segmentation
and acoustic dat B
models update L extract
dictionar; -7 | oxlre
l ~o update Y - individual
Tl N segmentation words
increment evaluate ~ ~ Aba.sed ;
7 recognition Sal dictionary
accuracy Tl update o
N - optimize
Tl pronunciations

Fig. 2. Algorithm suggested by (1), (8), (9), (11), (12), (14), and (27) for the automatic generation of subword units and dictionary.

models for the phones are HMMs, this likelihood can be easidf a flow chart. In Fig. 2, we begin with an initial phoneset size
obtained using either the forward or the backward pass of taed an initial dictionary with any symbols as the phoneset. We
Baum—-Welch algorithm [12] on all instances of the word (ththen iterate the dictionary update and model update steps. The
product of the likelihoods of the individual instances of théictionary update is in turn iteratively done by using a fixed dic-
word gives us the total likelihood fad,,). P(p,|Es.q) is the tionary to find the best word segmentation, and using the word
probability of the phone sequengg, given the constraints segmentation to find the best dictionary. Since the pronuncia-
Eqeq. If E,.4 takes the form of rules this would simply resultions of all the words in the dictionary cannot be jointly opti-

in a 1/0 binary value fog,, indicating whether the given rulesmized, we accomplish this piecewise by optimizing the pronun-
permite,, or not, as in a word-pair language modelHf., is ciation of each word independently. In the process we use ex-
a statistical model, e.g., aN-gram model [16], this evaluatesternal constraints that we learn in an unsupervised manner [17]
the probability of the phone sequengg on the model. The to ensure that the pronunciations stay consistent. Once we have
spelling constraintsf.,.;, are easily imposed. If these arethe best dictionary and acoustic models we test them on a held
statistical (a statistical model relating spellings to sequencast set. If the recognition accuracy is higher than it was with the
of phones can be computed, e.g., using techniques descripegl/ious phoneset size, we increase the phoneset size by split-
in [17]), P(pw|Espet) gives us the probability of the phoneting the phones.

sequence,, computed on the spelling to pronunciation model

Esper. D. Estimatingn, the Size of the Phoneset
Using (16) and (26), the word-segmentation based dictionarySo far, we have assumed thatthe size of the phoneset, is
update equation fdt!-7*1 can now be written as given. In reality it must be determined empirically. As men-

Di+li+ _ o tioned in S_ection III,_ the_ phoneset siﬂe?qnnot be determined
" P on the basis of the likelihood of the training data. We therefore

_ { argmax  {P(Ay|pw, M) estimaten as
O &Lt g rapn Nopr = argmax{Recog(Ay|D.,, A} (28)

P(@“’|ES€“)P(@“’|E5p€l)}} ' (27) where Recog( A | Dy, Ay,) refers to the recognition accuracy
on a set of heldout datA ;;, which has not been included in
Equations (11) and (12) are to be iterated um{D:++:9+1  the trainingD,, and)\,, are the optimal dictionary and acoustic
{seg, M |A, T, XL, E.,c1, Eseq) converges. In practice, we testmodels for phoneset size
for the convergence aP(DiL 9t [{seg,, 1/, A, T, X%, Eqpers Equation (28) requires the estimationIdf, and,, for every
FE,.,). The converged value @:1-7*! gives usD: in (8). value of n. We begin with a small value for and increase

The model update (7) and dictionary update (8) steps mustibgradually until the value of: that maximizesRecog() is
iterated until (1) converges. In practice we iterate the steps uritiind. At every stage the phoneset size is increased in a manner
the recognition accuracy onteeldoutset of data converges.  that maximizes the increase in likelihood due to increasing the

As a summary, the sequence of steps involved in the solutiphoneset size. To accomplish this we cluster the data corre-
of (1) are shown in Fig. 2. This figure presents the algorithisponding to each phone (obtained through phone segmentations
suggested by (1), (7), (8), (11), (12), (14), and (27) in the foraterived using the current acoustic models and dictionary) into
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two clusters and identify the phone for which the clustering rc 24

sulted in the highest increase in likelihood. The likelihood i 26t
measured assuming Gaussian distributions for the data clustg |

Each cluster for the identified phone is now a new (relabele% '
phone. Thus with each such split, the phoneset size is increa= -3-0
by one. The relabeled phone sequences replace the original (& 3}
split) phone labels in the dictionary. The algorithm can then pr 2
ceed using the new increased phoneset size. Note that if we £ 34
sire to increase the phoneset size by more than one at any gi$ -3.6
stage, the splitting can be done for a list of phones which res
in high likelihood increases after clustering.

It is important that the clustering technique and the criteric 40 2 1 2 . 1 2 . 1 2 . 1 ¢
used be consistent with the model used by the recognizer. | 2Ie 2612 34 v 34Y> 42
example, if the recognizer is HMM-based, the clustering would
have to be such that the likelihoods of the clusters on HMMdg. 3. Likelihood versus iteration for the automatic phone generation
trained from the segments in the cluster, are maximized. As %ﬁggi”&\’l‘f‘th_s'\g'ndT?hee Eggg:lafsdf;gaféegzpzrgrénﬂgfﬁ:gdbgyRAOQSQ

example, we may use the hybrid clustering technique descriligéherals (1, 2, ...). The phoneset expansions are indicated-as, wherea
in [18]_ refers to the size of the phoneset prior to splitting amefers to the size of the
phoneset after splitting.

— — - Manual Phones/Dict
&——@ Automatic Phones/Dict

-3.

E. Initialization of the Dictionary
However, the generation of pronunciations for new words is not

The algorithm requires the initialization of the dictionary a.& major problem since several widely used algorithms exist that

the _()L_Jtset. Any reasona_ble heuristically derived _initialization Eanlearnthe relationships between spellings and pronunciations
sufficient. For example, if we assume that the script used to tr 5m an existing dictionary and derive pronunciations for new

scribe t_h(? gc_oustic trgin_ing data is nonideographic, one possi Srds, e.g., [21]. Most such tools make no explicit assumptions
way to initialize the dictionary would be to use the alphabet Eil%out the nature of the phonetic units and merely treat them as

the initialization: if words are transcribed using the English al; mbols. It is therefore reasonable to expect that they would

phabet (irrespective of language), we could use the alphabe k as well with automatically learned sound units as with
a phoneset to initialize the pronunciations of all words in th&nonetically motivated ones

dictionary. Alternatively, we could initialize any word with a
sequence of repetitions of a single symbol, the sequence Ienéfﬁ

) : . MuUdict) [22], which is a standard, manually crafted dictio-
being approximately proportional to the length of the word. Th ary that uses a set of 50 manually designed phonetic units. Al-
is the most noncommittal initialization possible, since it is mir|t

hough CMUdict has multiple pronunciations for every word,
imally dependent on the consistency of the script of the Iag- lug ! urip'e prontincia very W

. the most frequently used pronunciations in the RM task
guage. The only assumption made here would be that the Ien&%{e used for the baseline. Also, while the RM task has a very
of the spelling of a word is roughly proportional to the numbe(g0 X

£ oh in th d. As the alqorith the si cHnstrained linguistic structure, the experiments took minimal
of phones in the word. AS the algorithm progresses, e SIZ€ { vantage of it. A simple bigram language model was used for

the phone .set can be increased using cluster-based Splltt'nglﬂsexperiment and the weight given to the language model was
described in Section [V-D. set to be very small in order to emphasize the contribution of the
acoustic models to the recognition. Note that as a result of this,
the word error rates reported on the RM task in this paper are
higher than the best obtainable by the SPHINX-III system.

A pilot test for the algorithm for automatic generation of For this experiment the dictionary was initialized with the
phoneset and dictionary was performed using the resousmipt of the language, where the pronunciation of each word
management (RM) database [19]. The training corpus consisteas simply assumed to be the sequence of alphabetical char-
of 2880 utterances, comprising 2.74 h of acoustic signals. Theters which constituted the spelling of the word. The initial
training set covered a vocabulary of 987 words. dictionary thus had a 26-symbol phoneset corresponding to the

Acoustic models built using the automatically generatdanglish alphabet.
phoneset and dictionary were tested on a heldout RM testrigs. 3-5 show the results obtained during various stages of
set, which consisted of 1600 utterances comprising 1.58 hthe experiment. In these figures the model update steps are indi-
acoustic signals. The vocabulary of this set was 991 words, faated by Roman numerals (I, II, ...), and the dictionary update
of which were not seen during training. The CMU SPHINX-llisteps are indicated by Arabic numerals (1, 2, ...). At each model
speech recognition system was used for acoustic modeling. Afidate step, multiple iterations of Baum-Welch were carried
acoustic models were semi-continuous five-state HMMs [2@Lt until the likelihood on the training data converged to a local
sharing 256 Gaussian densities. maximum. The phoneset expansions are indicated as b,

The words in the heldout test set which were not part of thieherea refers to the size of the phoneset prior to splitting and
training set were not included in the recognition lexicon in this refers to the size of the phoneset after splitting. There were
experiment, since no pronunciations were available for thetao dictionary update steps for each model update step, and the

baseline was first established using the CMU dictionary

V. EXPERIMENTAL RESULTS
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it twice i - 45.0
phoneset was split twice, increasing in size from 26 to 34 awﬂ q — - Manual Phones/Dict on test set
subsequently to 42 phones. % 400F B—8 Automatic Phones/Dict on test set

We observe in Fig. 3 that the likelihood of the training dat € e—e Automatic Phones/Dict on training set

increases monotonically with the model and dictionary updateg 35.0
The likelihood becomes equal to the baseline obtained usiE
the manually designed dictionary and phoneset with only &
phones, and becomes higher than the baseline with 42 phon§ 25.0
We note in Fig. 3 that the likelihood obtained with the CMU 5
dict, which has 50 phones, liswer than that obtained with the E 200
34-phone automatically generated dictionary. This indicates tt3 15.0
as far as our criterion of maximum likelihood is concerned, tt L
proposed algorithm is successful in giving us a phoneset whi  10-0 T2 12 12 12 12
results in distributions that better fit the acoustic training da 216 n 261_2 34 v 34Y> 42
compared to the phoneset in the CMUdict.

F|g 4, on the other hand, shows that the best word error r&ie 4. Word error rate versus iteration for the automatic phone generation

eriment with RM. The model update steps are indicated by Roman numerals
obtained on the test set is for 34 phones and that the hlgﬁé[} ..), and the dictionary update steps are indicated by Arabic numerals (1,

training likelihoods seen in Fig. 3 do not translate to greater...). The phoneset expansions are indicated as b, wherea refers to the
recognition accuracy on the test set. However, on the trainipige of the phoneset prior to splitting altefers to the size of the phoneset after
set the word error rate continues to decrease with increasfitg "o
phoneset size and training likelihood. This indicates that in-
creasing the phoneset size beyond 34 phones leads to overfitthigse were obviously not available for the automatically de-
of the models to the training data, and thus poorer generaliigned phoneset. For a fair comparison, therefore, the linguistic
ability to the test data, further leading to poorer word error ratgsiestions were automatically generated in both cases using
on the test set. This also indicates that training set likelihoottee procedure described in [18]. It has been demonstrated in
are not reliable indicators of the test word error rates. [18] that automatically designed linguistic questions result in
Fig. 4 raises the valid question that if the word error rate invord error rates that are comparable to those obtained using
crease with 42 phones is a result of overparametrization, thenfisanually designed questions. Table | lists the word error
the CMUdict which has 50 phones, and therefore even more pates obtained in this experiment. We note here that although
rameters, the word error rates should be even higher. Howewwmtext-dependent HMMs with 2000 tied states have many
in the case of the CMUdict the larger number of parameters daasre parameters than context-independent models with only
notresultin overfitting as seen fromthe likelihoodsin Fig. 3. Thi42 phones, they result in much lower word error rates. This is
can probably be attributed to the vast amount of human knovdecause the context specificity in context-dependent models
edge which has gone into designing the CMUdict. Looking at tletroduces an implicit phone-level grammar which, when
trends in Fig. 4 we might, nevertheless, speculate that even for #pgpropriately modeled, more than compensates for the loss
manually designed phones, 50 may not be the optimal size of thegeneralizability due to overfitting. This structuring is not
phonesetforthe current RM task. The optimalsize ofthe phoneagailable for context-independent units.
may depend on the amount of training data. We would like to emphasize here that the results described
Fig. 5 shows how the word segmentations for a sampilethis section are from a pilot experiment designed to demon-
utterance in the training data set evolve as the phoneset atdite the applicability of the algorithm, rather than to generate
dictionary evolve. The top row of text in the figure shows théhe optimal phoneset for the RM database. Our implementation
actual, manually demarcated, word boundaries. The secarfche pilot experiment suffers from several shortcomings due
row shows the segmentations obtained with the baseline systenfogistic constraints. Only one pronunciation was generated
using manually designed phones and dictionary. The sub&e- each word. Multiple pronunciations can be generated fol-
guent rows show word segmentations at various stages in @wing the procedure outlined in Appendix B, if desired. This
experiment. The stages are labeled on the ordinate accordingitiuld however involve a large amount of computation to esti-
our specified convention mentioned earlier in this section. Weate the pronunciations for any word. We note also that only
observe from these rows that after just a few iterations the watte single most likely phone sequence for each instance of a
segmentations converge to specific values which are congruesird w was used to generate the graph that was used to produce
with the word segmentations obtained using the CMUdict.  {,, }.,,,.,. - /V-best pronunciations could have been generated
The best 34-symbol phoneset and the corresponding digstead, and used for the graph. This would increase the size of
tionary were also evaluated by building context dependefip, }.,..,,,  resulting in a more optimal search for the pronun-
(triphone) semi-continuous HMMs with 2000 tied states. Faiation of each word. Context-independent phone models were
comparison, context-dependent models with 2000 tied statesed throughout the phoneset generation process. Context-de-
were also built for the baseline system. The SPHINX-III speeg®ndent models generally result in better recognition accuracies,
recognition system uses decision trees built using pre-definaad the use of context-dependent models may therefore be ex-
phonetic classes called “linguistic questions” for buildingected to result in a better dictionary.
tied-state context dependent models. While manually designedVe would like to add a few words of caution here: in our ex-
linguistic questions were available for the baseline systeperiment the acoustic models are initialized using a flat initial-
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Fig. 5. Evolution of the word segmentations for a sample utterance in the training corpus, as the phoneset and dictionary evolve. The modedgnepdiateon
steps are indicated on the left of the figure and progress vertically from top to bottom.

TABLE | nary, and explained how a divide-and-conquer strategy can be
WORD ERROR RATES OBTAINED WITH MANUAL AND AUTOMATIC used to arrive at the solution. Through pilot experiments using
SUB-WORD UNITS FOR THERESOURCEMANAGEMENT DATABASE WITH . .
CONTEXT-DEPENDENT SEMI-CONTINUOUS FIVE-STATE HIDDEN the RM database, we have demonstrated the applicability of the
MARKOV MODELS solution proposed. The framework we have presented permits
- us to work in a situation where the only resources available
No.of phones Design of wer% . ) 2 ™
phoneset /lexicon are the acoustic dat.a and the|r.transc.r|pt|ons. Where addmonal
50 manual 9.2 sources of information are available, it also allows us to incor-
34 automatic 12.6 porate these into the solution easily.

The pilot experiment demonstrated the success of the algo-

o C A ithm in terms of the objective criterion which was maximized.
ization scheme, whereby all state distributions are initially set : .
owever, the automatically generated subword units and

be identical to the global distribution of the data. This iS"kelytcc)iictionary resulted in models which performed worse than

be far more effective when training utterances are short. Utttﬁr{e manually designed subword units and dictionary. Any

ance boundaries implicitly incorporate human knowledge abour'%Oneset and dictionary generated by a human expert virtually

the boundaries within which a certain set of words occur. As : . ;
. . . ses the knowledge derived from experience with hundreds,

training utterances become longer this knowledge is reduced as
even thousands, of hours of speech. It also uses other forms

fewer boundaries are available for any given amount of trainir(ljg ; . .
consciously or subconsciously acquired knowledge. The

data, adversely affecting the outcome of the algorithm. Ser(r:fanually designed phoneset is therefore expected to be highly

ondly, ifthe script used to represent the language is IdeOgraphIcheralizable. In comparison, the automatically derived phone

spelling to phone mappings canno'_[ be obta_m_ed. As a reS%z& and dictionary used only 2.7 h of speech in our experiments.
words that are poorly represented in the training set may pe

) o 0 other source of information was used. The word error rates
badly translated into phones. Also the addition of new words, . ; ) : i .
) . . Obtained in our pilot experiments were influenced by this fact.
into the dictionary may not be possible.

Although it is obvious that if other sources of information are
available theyshouldbe used to condition the phone generation
process, human knowledge of the kind used in the design of

In this paper, we have presented an ML formulation for thehonesetand dictionaryforalanguageisnotcurrentlycompletely
problem of automatic generation of subword units and dictiguantifiable. It can be argued that until we find ways of doing

VI. DIScussION ANDCONCLUSION
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so, carefully designed manual phonesets and dictionaries will APPENDIX B

always outperform automatic ones, especially as the complexity MAXIMUM A POSTERIORIESTIMATION OF MULTIPLE
(i.e., vocabulary, perplexity, variety of environmental conditions PRONUNCIATIONS FOR AWORD

and speaking styles, etc.) of the underlying task increases. Th

. L . ; S - %1 this Appendix, we briefly outline a procedure with which
size of the training corpus will also continue to limit the qualit

¥he approach discussed in the body on of this paper can be ex-

u?é\‘fded to accommodate multiple pronunciations for any given
idiosyncrasies of a specific training domain and knowled Pep y9

about its environmental conditions are two features which are
implicitly considered by the algorithm presented in this pap
since the type of acoustic models used intrinsically influence t
solution. “Human knowledge” as we broadly allude to here d0(6§
not generally include these two sources. The algorithm in tkﬁ
paper thus presents a method to take these into account while

designing a phoneset and dictionary for a particular task. P({p1, 92} Aw, Ay Espets Eseq)

= P({KJI’ KJ2}|E5P€1’ ES@’I)P(A'wH@la @2}’ )‘na Espela Ese'])
P(Aw|)‘nv Espel; Eseq)

For simplicity, let us assume that the word has only two pro-
unciations. Let4,, represent the set of acoustic data from all
tances of the word.. Thea posterioriprobability of any set
two phone sequencdsg: , ¢}, conditioned o, is given

APPENDIX A
ITERATIVE PROCEDURE FORJOINT OPTIMIZATION
OF TWO VARIABLES

In the first part of this Appendix we derive an iterative protiere, and in the rest of this Appendix, we have assumed that
cedure for the joint MAP estimation of two random variableghe phone sequences are independent of the acoustic thpdel
The second part derives a similar procedure for the joint estin¥4ben the two are not related by acoustic data. We note that the
tion of two random variables whegepriori constraints exist for denominator in (38) is not a function of the phone sequences

(38)

only one of the two variables.
Problem A: Find & andb such that

(29)

i, b= arg max P(a, blc).
0'7

Let theith estimate of; andb be a; andb;, respectively. Let

a;+1 = argmax P(alb;, ¢). (30)
It is easy to show using Bayes’ rule that

a;+1 = argmax P(a, b;|c). (31)
Therefore

Plajy1, bi|le) > P(a;, b;|e). (32)
Similarly, if

biy1 = argll)nax P(blaiy1, ¢ (33)
we get

Plait1, biyile) =2 Plaiyy, bile). (34)

Therefore, iterations of (30) and (33) result in increasing valu

of P(a, b|c), leading to a locally optimal estimate afandb.
Problem B: Find @ andé such that

(35)

a, ¢ = argmax P(a, b|c).
Using logic very similar to that used fetg max, , P(a, b|c),
it can be shown that a locally optimal estimatéi@fndé can be
obtained by iterations of

¢; = argmax P(bla;, ¢)P(a;|c) (36)
a;4+1 = argmax P(alb, ¢;). (37)

g1 andgpo. As in the rest of the paper, we also assume that the
likelihood of the acoustic data is independent of spelling and
phone-sequence constraini,,.; and £,.,, once the specific
pronunciations for the word are given.

Let A, represent the acoustic data from ftith example of
w in A,. We assume that the various instances of the word are
independent of each other. Thus,

P(A'w|{g‘)17 ng}, )‘nv Espeh Eseq)
= [I PAw {1, 023, Aa)- (39)
k

The likelihood of anyA4,,, is given by

P(A’wk|{g‘)17 gJ?}? )‘n)
= P(A'wm KJ1|{KJ17 @2}7 )‘n) +P(Awk7 KJ2|{KJ17 @2}7 )‘n)
(40)

= PgnP(A'wk |KJ17 )‘n) + PSJZP(A'wk |KJ2, )‘N) (41)

wherel’,, andFP,, are thea priori probabilities for the two pro-
nunciationsp; andgps for the wordw (assuming that there are
only two pronunciationg; andg- for the word). Representing
the two pronunciations of the word asp,,, andg,,,, respec-
tively, and combining (38), (39), and (41), we get theximum

€s T
aposterioriestimate ofy,,, andg,,, as

arg max{P({p1, KJ2}|E81)617 Eseq)

21, 02

T Po P(Au o1, An)
k

{KJ'wl ) §ws }

PWP(A“,A@Q, )‘ﬂ)}} (42)

Thus, themaximum a posteriogstimate for the two pronun-
ciations ofw is obtained by computing the argument in (42)
for every pair of phone sequences and identifying the pair for
which it is maximum. Within any pair of pronunciations,,,
and P, would have to be computed as the expected fraction
of examples of the word that get classified as belongingito
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andg» respectively. Alternatelyl’,, and,,, could be directly
computed fromE,,.; and E,., by invalidating the assumption
that the likelihood of the acoustic data is independent of spelling

[20] X. D. Huang, K. F. Lee, H. W. Hon, and M. Y. Hwang, “Improved

acoustic modeling with the SPHINX speech recognition system,” in
Proc. IEEE Conf. Acoustics, Speech, Signal Processing (ICA3S9),
pp. 345-348.

and phone constraints when the pronunciations for the worg1] W. M. Fisher, “A statistical text-to-phone function using ngrams and

are given. If the number of possible pronunciations can be con-

strained in any manner to a small set, exhaustive evaluation gf,,

(42) may be possible. Otherwise, locally optimal iterative solu-
tions may be required.

Itis easy to generalize the above formulation for any specific
number of pronunciations. However, the determination of tt
exact number of pronunciations for a word would require eve
uation of (42) for all possible numbers of pronunciations ar
validation on a held out set.

REFERENCES

[1] T. Svendsen, K. K. Paliwal, E. Harborg, and P. O. Husoy, “An improve,
subword based speech recognizer,”Hroc. IEEE Conf. Acoustics,
Speech, Signal ProcessintP89, pp. 108-111.

[2] T.Svendsen, F. K. Soong, and H. Purnhagen, “Optimizing baseforms

HMM-based speech recognition,” Proc. Eur. Conf. Speech Commu-

nication Technology (EUROSPEECHP95, pp. 783-786.

L. R. Bahl, P. F. Brown, P. V. de Souza, R. L. Mercer, and M. A. Pichen

“A method for the construction of acoustic Markov models for words

(3]

rules,” in Proc. IEEE Conf. Acoustics, Speech, Signal Processing
(ICASSP) 1999, pp. 649-652.

Carnegie Mellon Univ., Pittsburgh, PA.
http://lwww.speech.cs.cmu.edu/cgi-bin/cmudict.

[Online].  Available:

Rita Singh received the B.Sc.(Hons.) degree in
physics and the M.Sc. degree in exploration geo-
physics, both from the Banaras Hindu University,
India. She received the Ph.D degree in geophysics
in 1996 from the National Geophysical Research
Institute of the Council of Scientific and Industrial
Research, India.

She is a Member of the Research Faculty at the
School of Computer Science, Carnegie Mellon Uni-
versity (CMU), Pittsburgh, PA, and a Visiting Sci-
entist with the Media Labs, Massachusetts Institute

%f Technology, Cambridge. From March 1996 to November 1997, she was a
bstdoctoral Fellow with the Tata Institute of Fundamental Research, India,
where she worked with the Condensed Matter Physics and Computer Systems
and Communications Groups. During this period, she worked on nonlinear dy-
B,ﬁamical systems and signal processing as an extension of her doctoral work
on nonlinear geodynamics and chaos. Since November 1997, she has been af-

IEEE Trans. Speech Audio Processingl. 1, pp. 443452, Oct. 1993. fiateq with the Robust Speech Recognition and SPHINX Groups at CMU,

[4] T. Holter and T. Svendsen, “Combined optimization of baseforms a
model parameters in speech recognition based on acoustic subwg
units,” in Proc. IEEE Workshop Automatic Speech Recogniti®97,
pp. 199-206.

[5] M. Bacchiani and M. Ostendorf, “Joint lexicon, acoustic unit inventory
and model design,Speech Communvol. 29, pp. 99-114, 1999.

[6] J. G. Wilpon, B. H. Juang, and L. R. Rabiner, “An investigation on thr
use of acoustic sub-word units for automatic speech recognition,”
Proc. IEEE Conf. Acoustics, Speech, Signal Processing (ICA39#7,
pp. 821-824.

[7] T. Sloboda and A. Waibel, “Dictionary learning for spontaneous speet

recognition,” inProc. Int. Conf. Speech Language Processing (ICSLP

1996, pp. 2328-2331.

M. Ravishankar and M. Eskenazi, “Automatic generation of contex

dependent pronunciations,” Rroc. Eur. Conf. Speech Communication|

and Technology (EUROSPEECHP97, pp. 2467-2470.

M. B. Wesenick, “Automatic generation of German pronunciation vari=

ants,” inProc. Int. Conf. Speech Language Processing (ICSILPY6,

pp. 125-128.

(8]

9]

has been working on various aspects of speech recognition including core
M-based recognition technology, automatic learning techniques, and envi-
ronmental robustness techniques for speech recognition.

Bhiksha Raj received the M.Tech degree in
electronics and communication engineering from
the Indian Institute of Technology, Madras, and the
Ph.D degree in electrical and computer engineering
from Carnegie Mellon University, Pittsburgh, PA, in
2000. His doctoral work was in the area of missing
feature methods for robust speech recognition.

He is a Research Scientist with Mitsubishi Electric
Research Laboratories, Cambridge, MA. From 1991
to 1994, he was with the Computer Systems and
Communication Group at the Tata Institute of Fun-

damental Research, Bombay, India. From 2000 to 2001, he was with Compag

(20]

Computer Corporation, where he worked on multiple-microphone based

T. Holter and T. Svendsen, “Incorporation of linguistic knowledge anglpproaches for robust speech recognition, and language model compression.
automatic baseform generation in acoustic subword unit based speeg§ current research interests include multiple-microphone-based speech
recognition,” in Proc. Eur. Conf. Speech Communication Technologirocessing, distributed speech recognition, and automatic learning techniques

(EUROSPEECH)1997, pp. 1159-1162.

A. P. Dempster, N. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithmJ! R. Statist. Sogcvol. B39, pp.
1-38, 1977.

[11]

[12] L. R. Rabiner and B. H. Juand;undamentals of Speech Recogni
tion. Englewood Cliffs, NJ: Prentice-Hall, 1993.
[13] J. E. Hopcroft and J. D. Ulimamptroduction to Automata Theory, Lan-

guages, and Computation Reading, MA: Addison-Wesley, 1979.

for integration of multiple information sources for speech recognition.

Richard M. Stern (M'77) received the S.B. degree

from the Massachusetts Institute of Technology
(MIT), Cambridge, in 1970, the M.S. degree from
the University of California, Berkeley, in 1972, and

the Ph.D. degree from MIT in 1977, all in electrical

engineering.

He has been on the faculty of Carnegie Mellon
University (CMU), Pittsburgh, PA, since 1977,
where he is currently a Professor of electrical
engineering and computer science, and Associate
Director of the CMU Information Networking

[14] S. Porat and J. Feldman, “Learning automata from ordered exampl
Mach. Learn, vol. 7, pp. 109-138, 1991.

[15] N.J. NilssonProblem Solving Methods in Atrtificial Intelligence New
York: McGraw-Hill, 1971.

[16] S. Katz, “Estimation of probabilities from sparse data for the langua
model component of a speech recognizEEE Trans. Acoust., Speech,
Signal Processingvol. ASSP-35, pp. 400-401, Mar. 1987.

[17]
matics of statistical machine translatio@dmput. Linguist.vol. 19, pp.
263-311, 1993.

[18]

[19]

P. Brown, S. Della Pietra, V. Della Pietra, and R. Mercer, “The mathénstitute. Much of his current research is in spoken language systems, where
he is particularly concerned with the development of techniques with which
automatic speech recognition can be made more robust with respect to changes
——, “Automatic clustering and generation of contextual questions fan environment and acoustical ambience. He has also developed sentence
tied states in hidden Markov models,” Rroc. IEEE Conf. Acoustics, parsing and speaker adaptation algorithms for earlier CMU speech systems. In
Speech, Signal Processing (ICASSF)99, pp. 117-120. addition to his work in speech recognition, he also maintains an active research
P. Price, W. M. Fisher, J. Bernstein, and D. S. Pallet, “The DARPfrogram in psychoacoustics, where he is best known for theoretical work in
1000-Word Resource Management database for continuous spebutaural perception.

recognition,” inProc. IEEE Conf. Acoustics, Speech, Signal Processing Dr. Stern was a co-recipient of CMU’s Allen Newell Medal for Research
(ICASSP) 1988, pp. 651-654. Excellence in 1992. He is a member of the Acoustical Society of America.



