Calibration of Microphone Arraysfor | mproved Speech Recognition

Michael L. Seltzer! and Bhiksha Raj?
1. Department of Electrical and Computer Engineering, Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 USA
2. Compagq Computer Corporation
Cambridge, MA 02142 USA

Abstract

We present a new microphone array calibration algorithm spe-
cifically designed for speech recognition. Currently, micro-
phone-array-based speech recognition is performed in two
independent stages: array processing, and then recognition.
Array processing algorithms designed for speech enhancement
are used to process the waveforms before recognition. These
systems make the assumption that the best array processing
methods will result in the best recognition performance. How-
ever, recognition systems interpret a set of features extracted
from the speech waveform, not the waveform itself. In our cal-
ibration method, the filter parameters of a filter-and-sum array
processing scheme are optimized to maximize the likelihood of
the recognition features extracted from the resulting output sig-
nal. By incorporating the speech recognition system into the
design of the array processing algorithm, we are able to
achieve improvements in word error rate of up to 37% over
conventional array processing methods on both ssmulated and
actual microphone array data.

1. Introduction

State-of-the-art speech recognition systems are known to per-
form reasonably well when the speech signals are captured in
noi se-free environments using close-talking microphones worn
near the speaker’s mouth. However, such ideal acoustic condi-
tions are usualy unrealistic. The read-world environment is
often noisy, and the speaker is normally not wearing a close-
talking microphone. In such environments, as the distance
between the spesker and the microphone increases, the
recorded signal becomes increasingly susceptible to back-
ground noise and reverberation effects that significantly
degrade speech recognition performance. This is an especially
vexing problem in situations where the location of the micro-
phone and/or the user are dictated by physical constraints of
the operating environment, as in meeting rooms or automo-
biles.

It has long been known that this problem can be greatly alevi-
ated by the use of multiple microphones to capture the speech
signal. Microphone arrays record the speech signal simulta-
neously over a number of spatially separated channels. Many
techniques have been developed to combine the signals in the
array to achieve a substantial improvement in the signal-to-
noise ratio (SNR) of the final output signal.

The most common array processing method is delay-and-sum
beamforming [1]. Signals from the various microphones are
first time-aligned to adjust for the delays caused by path length
differences between the speech source and each of the micro-
phones, and then the aligned signals are averaged. Any inter-
fering noise signals from sources that are not exactly

coincident with the speech source remain misaligned and thus
are attenuated by the averaging. It can be shown that if the
noise signals corrupting each microphone channel are uncorre-
lated to each other and the target speech signal, delay-and-sum
processing results in a 3 dB increase in the SNR of the output
signal for every doubling of the number of microphonesin the

array [1].

Most other array-processing procedures are variations of this
basic delay-and-sum scheme or its natural extension, filter-
and-sum processing, where each microphone channel has an
associated filter, and the captured signals are first filtered
before they are combined. Nordholm et al. design adaptive fil-
ters for each of the microphones in the array based on stored
calibration examples of speech and noise [2]. In [3], Marro et
al. apply a post filter that filters the combined signal from the
microphones in order to increase the SNR of the resulting sig-
nal. Severa other similar microphone array processing meth-
ods have been proposed in the literature.

While these methods can effectively improve the SNR of the
captured speech signal, they suffer from the drawback that they
are al inherently speech enhancement schemes, aimed at
improving the quality of the speech waveform as judged per-
ceptually by human listeners or quantitatively by SNR. While
thisis certainly appropriate if the speech signal is to be inter-
preted by a human listener, it may not necessarily be the right
criteriaif the signal isto be interpreted by a speech recognition
system. Speech recognition systems interpret not the wave-
form itself, but a set of features derived from the speech wave-
form through a series of transformations. By ignoring the
manner in which the recognition system processes incoming
signals, these speech enhancement agorithms are treating
speech recognition systems as equivalent to human listeners,
which is not the case.

As aresult, while more complex array-processing algorithms
can significantly outperform simple delay-and-sum processing
from a speech enhancement point of view, many of these
improvements do not translate into substantial gains in speech
recognition performance.

In this paper we propose a new filter-and-sum microphone
array processing scheme that integrates the speech recognition
system directly into the filter design process. In our scheme, as
in previous methods, the array calibration process involves the
design of a set of finite impulse response (FIR) filters, one for
each microphone in the array. However, unlike all previous
methods, our algorithm calibrates these filters specifically for
optimal speech recognition performance, without regard to
SNR or perceived “listenability”. More precisely, filter param-
eters arelearned which maximize the likelihood of the recogni-
tion features derived from the fina output signal, as measured



by the recognition system itself. Incorporating the speech rec-
ognition system into the filter design strategy ensures that the
filters enhance those components of the speech signa that are
important for recognition, without undue emphasis on the
unimportant components. Experiments indicate that recogni-
tion accuracies obtained with signals derived using the pro-
posed method are significantly higher than those obtained
using conventional array processing techniques.

The remainder of this paper describes the proposed method and
experimental results showing its efficacy. In Section 2 we
review the filter-and-sum array processing scheme used in this
work. In Section 3 the proposed filter optimization method is
described in detail. In Section 4 we present experimental
results using the proposed method, and finaly in Section 5 we
present our conclusions and proposals for future work.

2. Filter-and-sum array-processing

We employ traditional filter-and-sum processing to combine
the signals captured by the array. In the first step the speech
source is localized and the relative channel delays caused by
path length differences to the source are resolved so that all
waveforms captured by the individual microphones are aligned
with respect to each other. Several algorithms have been pro-
posed in the literature to do this, e.g. [4], and any of them can
be applied here. In our work we have employed simple cross-
correlation to determine the delays among the multiple chan-
nels.

Once the signals are time aligned, each of the sighals is passed
through an FIR filter whose parameters are determined by the
calibration scheme described in the following section. The fil-
tered signals are then added to obtain the final signal. This pro-
cedure can be mathematically represented as follows:

ylnl = iglkiohi[klxi[n—k—ﬁ] ()

where x;[n] represents the ni" sample of the signal recorded by
the it microphone, t; represents the delay introduced into the ith
channel to time align it with the other channels, h;[K] represents
the kth coefficient of the FIR filter applied to the signal captured
by the it microphone, and y[n] represents the nth sample of the

final output signal. K isthe order of the FIR filtersand N is the
total number of microphonesin the array.

Once y[n] is obtained, it can be parameterized to derive a
sequence of feature vectors to be used for recognition.

3. Filter Calibration

As stated in Section 1, we wish to choose the filter parameters
hi[K] that will optimize speech recognition performance. One
way to do thisisto maximize the likelihood of the correct tran-
scription for the utterance, thereby increasing the difference
between its likelihood and that of other competing hypotheses.
However, because the correct transcription of any utterance is
unknown, we optimize the filters based on a single calibration
utterance with a known transcription. Before using the speech
recognition system, a user records a calibration utterance, and
the filter parameters are optimized based on this utterance. All
subsequent utterances are processed using the derived filtersin
the filter-and-sum scheme described in the previous section.

The sequence of recognition features derived from any utter-

ance y[n] isafunction of the filter parameters h;[n] of all of
the microphones, as in (1). In this paper recognition features
are assumed to be mel-frequency cepstra; however, the filter
optimization algorithm presented here should be applicable to
any choice of recognition features with appropriate modifica-
tion to the arithmetic. The sequence of mel-frequency cepstral
coefficientsis computed by segmenting the utterance into over-
lapping frames of speech and deriving a mel-frequency ceps-
tral vector for each frame. If we let h represent the vector of al
filter parameters h;[k] for all microphones, and yj(h) the vec-

tor of observations of the jth frame expressed as a function of
these filter parameters, the mel-frequency cepstral vector for a
frame of speech can be expressed as

z = DCT(log(M|DFT(y;(h))|*)) 2

where z represents the mel-frequency cepstral vector for the

jth frame of speech and M represents the matrix of the weight-
ing coefficients of the mel filters.

The likelihood of the correct transcription must be computed
using the statistical models employed by the recognition sys-
tem. In this paper we assume that the speech recognition sys-
tem is a Hidden Markov Model (HMM) based system. We
further assume, for simplicity, that the likelihood of the utter-
ance is largely represented by the likelihood of the most likely
state sequence through the HMMs. Under this assumption, the
log-likelihood of the utterance can be represented as

T
L(Z) = 5 109(P(z5)) +10g(P(Sy, S: S5, ---»57)) - (3)
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where Z represents the set of al feature vectors {zj} for the
utterance, T is the total number of feature vectors (frames) in
the utterance, S represents the jth state in the most likely state
sequence and Iog(P(zj ‘sj)) isthe log likelihood of the obser-
vation vector Z computed on the state distribution of S - The
a priori log probability of the most likely state sequence,
log(P(sy, S5, 83, -..,S1)), is determined by the transition
probabilities of the HMMs. In order to maximize the likelihood
of the correct transcription, L(Z) must be jointly optimized
with respect to both the filter parameter vector h and the state
sequence Sy, Sy, Sy, ..., Sy. This can be done by aternately
optimizing the state sequence and h.

For a given h, the most likely state sequence can be easily
determined using the Viterbi algorithm. However, for a given
state sequence, in the most general case, L(Z) cannot be
directly maximized with respect to h for two reasons. First, the
state distributions used in most HMMs are complex distribu-
tions, i.e. mixtures of Gaussians. Second, L(Z) and h are
related through many levels of indirection, as can be seen from
(1), (2), and (3). As aresult, iterative non-linear optimization
methods must be used to solve for h. Computationally, this can
be highly expensive. In this paper we make a few additional
approximations that reduce the complexity of the problem. We
assume that the state distributions of the various states of the
HMMs are modelled by single Gaussians. Furthermore, we
assume that to maximize the likelihood of a vector on a Gauss-
ian, it is sufficient to minimize the Euclidean distance between
the observation vector and mean vector of the Gaussian. Thus,
given the optimal state sequence, we can define an objective



function to be minimized with respect to h asfollows:
T

Q@) = 3 5=k’ @

j=1
where p% is the mean vector of the Gaussian distribution of

the state S - Because the dynamic range of mel-frequency cep-

stra diminishes with increasing cepstral order, the low order
cepstral terms have a much more significant impact on the
objective function in (4) than the higher ones. To avoid this
potential problem, we define the objective function in the log
Mel spectral domain, rather than the cepstral domain:

T
_ 2
Q) = 3 IDCT(z -y ©)
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Using (1), (2), and (5), the gradient of the objective function
with respect to h, 0,Q(Z), can be determined. Using the
objective function and its gradient, we can minimize (5) using
the conjugate gradient method [5] to obtain the optimal filter
parameters h.

Thus, the entire algorithm for estimating the filter parameters
for an array of N microphones using the calibration utteranceis
asfollows:

1. Determine the array path length delays 1; and time-align
the signals from each the N microphones.

2. Initialize thefilter parameters: hj[0] = U/N; hj[k]=0, k# 0

3. Process the signals using (1) and derive recognition fea-
tures

4. Determine the optimal state sequence from the obtained
recognition features.

5. Use the obtained state sequence and (5) to estimate opti-
mal filter parameters.

6. If the value of the objective function using the estimated
filter parameters has not converged, go to Step 3.

An aternative to estimating the state sequence and filter
parameters iteratively is to record the calibration utterance
simultaneously through a close-talking microphone. The rec-
ognition features derived from this clean speech signal can
either be a) used to determine the optimal state sequence, or b)
used directly in (5) instead of the Gaussian mean vectors. How-
ever, even in the more realistic situation where no close-talking
microphone is used, a single pass through Steps 1 through 6 is
sufficient to estimate the filter parameters. The estimated filter
parameters are then used to process al subsequent signals in
the filter-and-sum manner described in Section 2.

4, Experimental results

Experiments were performed using two different databases to
evaluate the proposed algorithm, one using simulated micro-
phone array speech data and one with actual microphone array
data.

A simulated microphone array test set, “WSJ SIM”, was
designed using the test set of the Wall Street Journal (WSJ0)
corpus [6]. Room simulation impulse response filters were
designed for aroom 4m x 5m x 3m with areverberation time of
200ms. The microphone array configuration consisted of 8
microphones placed around an imaginary 0.5m x 0.3m flat

panel display on one of the 4m walls. The speech source was
placed 1 meter from the array at the same height as the center
of the array, as if a user were addressing the display. A noise
source was placed above, behind, and to the left of the speech
source. A room impulse response filter was created for each
source/microphone pair. To create a noise-corrupted micro-
phone array test set, clean WSJO test data were passed through
each of the 8 speech source room impulse response filters and
white noise was passed through each of the 8 noise source fil-
ters. Thefiltered speech and noise signals for each microphone
location were then added together. The test set consisted of 8
speakers with 80 utterances per speaker. Test sets were created
with SNRs from 0-25 dB. The original WSJ0 test data served
asaclose-talking control test set.

The real microphone array data set, “CMU_TMS’, was col-
lected at CMU [7]. The array used in this data set was a hori-
zontal linear array of 8 microphones spaced 7cm apart placed
on adesk in a noisy speech lab approximately 5m x 5m x 3m.
The talkers were seated directly in front of the array at a dis-
tance of 1 meter. There are 10 speakers each with 14 unique
utterances comprised of alphanumeric strings and strings of
command words. Each array recording has a close-talking
microphone control recording for reference.

All experiments were performed using a single pass through
Steps 1-6 in the calibration algorithm described in the previous
section. In all experiments, the first utterance of each data set
was used as the cadlibration utterance. After the microphone
array filters were calibrated, all test utterances were processing
using the filter-and-sum method described in Section 2. Speech
recognition was performed using the SPHINX-I11 speech rec-
ognition system with context-dependent continuous HMMs (8
Gaussian/state) trained on clean speech using 7000 utterances
from the WSJO training set.

In the first series of experiments, the calibration procedure was
performed on the WSJ_SIM test set with an SNR of 5 dB and
the CMU_TMS test set. In the first experiment, the close-talk-
ing recording of the utterance was used for calibration. The
stream of target feature vectors was derived from the close-
talking recording and used in Equation (5) to estimate a 50-
point filter for each of the microphone channels.

In the second experiment, the HMM state segmentation
derived from the close-talking calibration recording was used
to estimate the filter parameters. The calibration recording used
in the previous experiment was force-aligned to the known
transcription to generate an HMM state segmentation. The
mean vectors of 1 Gaussian/state HMMs in the state sequence
were used to estimate a 50-point filter for each microphone
channel.

Finally, we assumed that no close-talking recording of the cali-
bration utterance was available. Delay-and-sum processing
was performed on the time-aligned microphone channels and
the resulting output was used with the known transcription to
generate an estimated state segmentation. The Gaussian mean
vectors of the HMMs in this estimated state sequence were
extracted and used to estimate 50-point filters as in the previ-
ous experiment. The word error rates (WER) from all three
experiments are shown in Table 1. The results using conven-
tional delay-and-sum beamforming are shown for comparison.
Large improvements over conventional beamforming schemes
are seen in all cases. Having a close-talking recording of the
calibration utterance is clearly beneficial, yet significant



Array Processing Method WSJ_SIM CMU_TMS
Close-talking mic (CLSTK) 16.52 19.36
Single mic array channel 93.84 62.32
Delay and Sum (DS) 64.48 39.36
Calibrate Optimal Filters w/ 33.37 35.0
CLSTK Cepstra

Calibrate Optimal Filtersw/ 36.5 37.07
CLSTK State Segmentations

Calibrate Optimal Filtersw/ 40.2 34.95
DS State Segmentations

Table 1: Word error rate for the two microphone array test corpora,
WSJ_SIM at 5dB SNR, and CMU_TMS, using conventional delay
and sum processing and the optimal filter calibration methods

improvements in word error rate can be seen even when no
close-talking recording is used.

Figure 1 shows WER as a function of SNR for the WSJ_SIM
data set, using the described calibration scheme and for com-
parison, conventional delay-and-sum processing. For al SNRs,
no close-talking recordings were used. All target feature vector
sequences were estimated from state segmentations generated
from the delay-and-sum output of the array.
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Figure 1. Word error rate vs. SNR for the WSJ_SIM test set using
filters calibrated from delay-and-sum state segmentations.

Clearly, at low to moderate SNRs, there are significant gains
over conventional delay-and-sum beamforming. However, at
high SNRs, the performance of the calibration technique drops
below that of delay-and-sum processing. We believe that this
the result of using the mean vectors from the 1 Gaussian/state
HMMs as the target feature vectors. In doing so, we are effec-
tively quantizing our feature space, and forcing the data to fit
single Gaussian HMMs rather than the Gaussian mixtures
which are known to result in better recognition accuracy.

To demonstrate the advantage of estimating the filter parame-
ters of each microphone channdl jointly, rather than indepen-
dently, a final experiment was conducted. The recognition
performance using jointly optimized filters was compared to
two other strategies: 1) performing delay-and-sum and then
optimizing a single filter for the resulting output signal, and 2)
optimizing the filters for each channel independently. These
optimization variations were performed on the WSJ_SIM test
set with an SNR of 10 dB. Again, 50-point filters were

designed in all cases. The results are shown in Table 2.

It is clear that joint optimization of the filters is superior to
either of the other two optimization methods.

Filter Optimization Method WSJ_SIM
Delay and Sum 36.43
Optimize Single Filter for D & S output 36.29
Optimize Mic Array Filters Independently 48.19
Optimize Mic Array Filters Jointly 27.79

Table 2: Word error rate for the WSJ_SIM test set with an SNR of
10dB for delay-and-sum processing and three different filter
optimization methods.

5. Summary

In this paper, we have presented a new calibration scheme for
microphone arrays specifically targeted at speech recognition
performance. By incorporating the speech recognition system
itself into the calibration algorithm, we have been able to
design an array processing strategy that ensures that signal
components important for recognition are emphasized, without
undue emphasis on less important signal components, SNR or
other speech enhancement metrics. In doing so, we achieved
relative improvements of up to 37% in WER over conventional
delay-and-sum processing. Because of the relatively short filter
lengths used in these experiments, it is apparent that the esti-
mated calibration filters were performing noise reduction only,
and not dereverberation. We plan to try to calibrate signifi-
cantly longer filters in order to attenuate the effects of both
noise and reverberation on the speech recognition feature vec-
tors.
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