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ABSTRACT
Missing feature methods of noise compensation for speech rec-
ognition operate by removing components of a spectrographic
representation of speech that are considered to be corrupt, as
indicated by a low signal-to-noise ratio. Recognition is either
performed directly on the incomplete spectrograms or the miss-
ing components are reconstructed prior to recognition. These
methods require a spectrographic mask which accurately labels
the reliable and corrupt regions of the spectrogram. Current
methods of mask estimation rely on assumptions about the cor-
rupting noise such as stationarity. This is a significant drawback
since the missing feature methods themselves have no such
restrictions. We present a new mask estimation technique that
uses a Bayesian classifier to determine the reliability of spectro-
graphic elements. Features were designed that make no assump-
tions about the corrupting noise signal, but rather exploit
characteristics of the speech signal itself. Missing feature com-
pensation experiments were performed on speech corrupted by a
variety of noises. In all cases, classifier-based mask estimation
resulted in significantly better recognition accuracy than conven-
tional mask estimation methods.

1. INTRODUCTION
When speech is corrupted by noise, speech recognition accuracy
degrades, especially when the recognition system has been
trained on clean speech (e.g. [4]). There have been many algo-
rithms proposed that compensate for the negative effects of noise
in speech and greatly improve recognition accuracy. However,
these methods assume that the corrupting noise is stationary. If
the noise is non-stationary, these methods fail. 

The missing feature methods are a promising new group of
robustness techniques for compensating for non-stationary noise.
The missing feature paradigm is based on the notion that noise
affects different time-frequency regions of speech differently. In
a spectrographic display of speech, there will be regions of low
SNR and high SNR depending on the relative energies of the
speech and the noise at each time-frequency location. In missing
feature methods, regions with low SNR are considered “corrupt”
or “missing” and are removed from the spectrogram. Noise com-
pensation is performed either by reconstructing the missing ele-
ments from the remaining reliable regions prior to recognition,
or by performing recognition directly on the incomplete spectro-
grams. Unlike other compensation methods, these techniques
require no assumptions about the corrupting noise signal such as
stationarity. They do, however, require a spectrographic mask
which accurately labels every time-frequency location as reliable
or corrupt. Missing feature methods have been shown to be very
successful at compensating for stationary and non-stationary
noise when this spectrographic mask is completely known a pri-
ori. However, when the masks are unknown, these techniques

are unusable. 

Clearly then, estimating spectrographic masks is of critic
importance to the success of missing feature methods. Cur
methods of spectrographic mask estimation rely on a runn
estimate of the noise spectrum obtained via spectral subtrac
to estimate the local SNR at each time-frequency location [
The SNR estimates are compared to a specified threshold 
those below the threshold are considered corrupt while th
above it are considered reliable. 

Such mask estimation methods perform well when the corru
ing noise is stationary, as this assumption is required for spec
subtraction. However, when the noise is non-stationary, ma
estimated in this manner are very inaccurate. This is illustrated
Figure 1. Missing feature compensation has been applied
noisy speech using masks estimated using spectral subtrac
and “oracle” masks generated from full a priori knowledge of
the noise signal. Figure 1a shows recognition accuracy vs. S
for speech that has been corrupted with white noise. There is 
nificant improvement over baseline accuracy using spectral s
traction to estimate the masks. Figure 1b shows the same plo
speech corrupted by music, which is highly non-stationary. He
spectral subtraction completely fails in mask estimation. In fa
recognition accuracy after compensation using these mask
slightly worse than the baseline uncompensated recogniti
However, the accuracy obtained using oracle masks in both p

show the potential of missing feature methods for noise comp
sation if the masks can be estimated reliably.

In this paper we present a new mask-estimation technique 
uses a Bayesian classification strategy to determine the relia
ity of each spectrographic element. Casting mask estimation 
classification problem has three distinct advantages. First, 
problem of mask estimation is reduced from the difficult task 
SNR estimation to a simpler binary decision process. Seco
the classification scheme allows any information that is pertine
to be incorporated into the mask estimation decision. Fina
with an appropriate choice of features, mask estimation can
free of assumptions about the corrupting noise. 
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 Figure 1.  Recognition accuracy vs. SNR when missing feate
compensation is applied to noise corrupted speech. (a) Sph
corrupted by white noise. (b) Speech corrupted by music.

(a) (b)



In Section 2 we describe the feature set used by the classifier to
estimate the spectrographic masks. In Section 3 we describe the
classification strategy we use. We describe experiments that
were performed to test the mask estimation strategy in Section 4,
and in Section 5 we summarize our findings. 

2. FEATURE EXTRACTION
Because voiced speech and unvoiced speech are generated by
different production mechanisms, they have very different char-
acteristics. As a result, we make a distinction between features
used to classify the reliability of spectrographic locations of
voiced speech and those used for regions of unvoiced speech.
Additionally, because mask estimation should be free of assump-
tions about the corrupting noise, we designed a feature set that
exploits the inherent characteristics of the speech signal itself. 

2.1. Features for voiced speech
Two key characteristics of voiced speech that we exploit are the
presence of a strong fundamental frequency and its harmonics,
and a distinctive spectral contour across frequency. 

2.1.1. Comb Ratio

Because of the harmonic nature of voiced speech, the majority of
the energy of a clean voiced speech signal resides in its harmon-
ics [5]. Additive noise does not typically have this characteristic.
When additive noise is mixed with voiced speech, the overall
signal energy increases both at the harmonics of the pitch and at
the frequencies in between. Therefore, a measure that compares
the energy at the harmonics of voiced speech to the energy out-
side the harmonics is a good indicator of noise present in the sig-
nal. 

Of course, such a measure requires a pitch estimator that is
robust to noise. Our pitch estimation algorithm is based on a
multi-band analysis of speech [8]. Each frame of speech is
passed through a bank of bandpass filters. At each filter output, a
pitch estimate is computed from the autocorrelation of the frame.
For voiced speech, a single pitch dominates the distribution of
the candidate pitch values. However, for unvoiced speech, the
distribution is roughly uniform. The overall pitch estimate, F0 ,
for the frame is determined by majority rule: if a single pitch
dominates 25% or more of the frequency bands, the frame is
assumed to be voiced; otherwise, it is considered unvoiced. This
method is similar to that in [3], except that the pitch estimate in
[3] is obtained by pooling the autocorrelations obtained in the
various bands together, rather than on the basis of a majority rule
of the individual pitch estimates. 

The pitch estimate is used to construct a comb filter that captures
the energy present in the harmonics of voiced speech. We use an
IIR comb filter implementation given by the transfer function in
Equation (1), where  is the pitch period and g is a tun-

able parameter which sets the sharpness of the teeth of the comb. 

(1)

It was determined empirically that setting g = 0.7 captures most
of the harmonic information of voiced speech.

To capture the energy of the components of the signal that fall in
between the harmonics, the comb filter is simply shifted by F0/2.
The transfer function for this shifted comb filter is given by
Equation (2).

(2)

If we assume that the voiced speech resides at the harmonics of
the fundamental frequency while noise may reside in all fre-
quency bands, the energy at the output of the comb filter is a
measure of speech and noise energy while that of the shifted
comb filter is a measure of noise energy only. Thus, the log ratio
of the energies of the speech signal passed through the comb and
shifted comb filters is a measure of speech plus noise to noise.
The cleaner the speech signal is, the larger this ratio will be. We
call this feature the comb ratio. The comb ratio, , is

given by Equation (3), where and  are the out-

puts obtained after the speech signal in frame and subband 

has been passed through the comb and shifted comb filters,
respectively.

(3)

2.1.2. Autocorrelation Peak Ratio

Voiced speech is a quasi-periodic signal. The secondary peaks in
the autocorrelation function of a frame of voiced speech will be
less than or equal to the height of the main peak. The less peri-
odic the signal is, the smaller the secondary peaks will be. Add-
ing uncorrelated noise to a signal effectively reduces its
periodicity, increasing the difference in the heights of the main
peak and the secondary peaks. We use the ratio of the height of
largest secondary peak to the height of the main peak as a mea-
sure of periodicity. This autocorrelation peak ratio feature will be
close to one for clean speech and decrease as the signal is
increasingly corrupted by noise. 

2.1.3. Subband Energy to Fullband Energy Ratio

In addition to its characteristic harmonicity, voiced speech has a
distinct spectral shape. The energy of voiced frames is concen-
trated at the lower frequencies and tails off at higher frequencies.
As noise is added to the speech, its spectral shape will change as
a function of the spectral characteristics of the noise. The log
ratio of the energy in a subband to the overall frame energy cap-
tures the effect of additive noise on a particular subband and on
the overall contour. 

2.1.4. Subband Energy to Subband Noise Floor Ratio

Having knowledge of the noise floor of a noise-corrupted speech
signal is obviously very useful for estimating the SNR. However,
an accurate measure of the noise floor is difficult to obtain. If we
assume that the corrupting noise is stationary, we can coarsely
estimate the level of the noise floor in a particular subband by
looking at the distribution of the energy in that subband across
all frames in an utterance. These distributions typically have two
modes, one at a low energy value representing the silence and
low energy speech regions and one at a higher energy represent-
ing high energy speech regions. The idea of statistically model-
ing the energy distributions of speech has been used for speech
endpoint detection using HMMs [1]. We have used a much sim-
pler technique to get a rough estimate of the noise floor. The
energies of all frames of an utterance are put into a histogram
and the lower energy peak is found. The energy bin in the histo-
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gram corresponding to this peak value is considered the noise
floor of the noisy speech signal. We use the ratio of the energy in
a subband of a frame of speech to the estimate of the noise floor
in that subband of the utterance as a feature to help determine the
likelihood that a specific spectrographic location has been cor-
rupted by noise. We note that this technique is similar to spectral
subtraction in that we are using the energy of the silence frames
to estimate the noise floor of the entire utterance. If the noise is
highly non-stationary, the noise floor estimate will not necessar-
ily be accurate.

2.1.5. Flatness

As was noted earlier, voiced speech exhibits a very definitive tra-
jectory across frequency, and when noise is added to speech, this
spectral shape will change. The valleys in the spectrum tend to
flatten as noise is added to a speech signal. This “flatness” can be
characterized by the variance of the subband energy in a neigh-
borhood of spectrographic locations around a given pixel. For a
given subband, a signal corrupted with noise tends to have shal-
lower, flatter valleys than its uncorrupted counterpart. Therefore,
we expect noise-corrupted spectrographic locations to have a
lower variance than cleaner ones. 

2.2. Features for Unvoiced Speech
Unvoiced speech is much more difficult to characterize than
voiced speech. There is no harmonicity or other regularity as in
voiced speech. As a result, the pitch-related features developed
for voiced speech will be ineffective for unvoiced speech.
Unvoiced speech also has lower energy than voiced speech and
is therefore more affected by noise than voiced frames. However,
it does have a general spectral shape that is unlike voiced speech
and most naturally occurring noises. Unvoiced speech energy is
concentrated at the higher frequencies and tails off at lower fre-
quencies. The three voiced speech features that do not rely on
pitch characterize a frame of speech in terms of the relative
energy levels in each of the subbands, and the overall and local
spectral shape. They are useful features because we know that
adding noise to a speech signal alters both the relative subband
energy levels and the spectral shape. This is true for both voiced
and unvoiced speech. While the energy distribution of unvoiced
speech across frequency is very different from that of voiced
speech, it too will be altered by additive noise. As a result, we
can use the remaining three non-pitch dependent features (sub-
band-to-fullband energy ratio, subband energy to subband noise
floor ratio, and flatness) to characterize unvoiced speech.

3. CLASSIFICATION STRATEGY
A multivariate Gaussian classifier with a full covariance matrix
was used for mask estimation. Each pixel was represented by a
feature vector of length five or three, depending on whether the
frame was voiced or unvoiced. Because of the differing feature
sets, separate classifiers were constructed for voiced frames and
unvoiced frames. In addition, the feature values themselves may
differ significantly from subband to subband within each class.
Therefore, we also implemented a separate classifier for each
subband. 

Missing feature algorithms treat spectrographic elements below
a certain SNR as missing or corrupt and effectively remove them
from the spectrogram. This SNR threshold, which varies depend-
ing on the missing feature method applied, is used to label the
data used to train the mask estimation classifier. 

The prior probabilities of a reliable and corrupt element we
determined using a cross-validation data set. We expect the p
probabilities of corrupt and reliable spectrographic elements
vary with the global SNR, as more elements are corrupt at hig
noise levels than at lower noise levels. However, because we
not know the global SNR, we chose the constant prior probab
ties that yield the best recognition accuracy over all SNRs. 

4. EXPERIMENTAL RESULTS
Experiments in classifier-based mask estimation were perform
using the DARPA Resource Management (RM1) corpus [6], c
rupted by three different noise environments: stationary wh
noise, factory noise, consisting of quasi-stationary backgrou
noise mixed with non-stationary impulsive noises, and mu
from the “Marketplace” radio program, which is highly non-sta
tionary. 

To form a complete missing feature compensation system, c
sifier-based mask estimation was combined with the clust
based missing feature reconstruction algorithm [7]. In clust
based reconstruction, log Mel spectral vectors from clean spe
are clustered. Missing features from noise-corrupted spee
identified by the spectrographic mask, are recovered by f
identifying the closest cluster based on the values of the featu
that are present, and then estimating the missing values u
MAP procedures. The reconstructed log Mel spectral vectors 
then transformed to standard Mel frequency cepstra for recog
tion. This algorithm performs optimally with a corrupt/reliabl
SNR threshold of –5 dB. 

For each noise environment (white noise, factory, music), 
following experimental procedure was followed:

The classifier was trained on 2880 utterances from RM1, c
rupted with noise to various SNRs. For training, the pitch es
mates required for the pitch-dependent classifier features w
estimated from clean speech using the method described in 
tion 2. The local SNR was computed for every spectrograp
element, and the training data were labelled accordingly. T
means and covariance matrices of the classifier were estima
for each subband and for each type of speech. A cross-valida
data set of 200 utterances from RM1 was used to determine
prior probabilities. There was no overlap between the cross v
dation, training, and test sets. Based on the cross validation d
the prior probability of the reliable elements was set to 0.8 
the white noise and factory noise environments and 0.6 for 
music environment. 

The test set consisted of 1600 utterances from RM1. The p
estimates for the test set were derived directly from the no
speech for the white noise and factory noise experimen
Because music is highly harmonic, the pitch detection algorith
performed poorly on speech corrupted by music, so pitch e
mates from clean speech were used for this case. The spe
graphic masks of the noise-corrupted speech were estimate
the classifier. No information other than overall environme
(i.e. white noise, factory noise, or music) such as local or glob
SNR, was known to the classifier. 

The accuracy of the classifier was measured by comparing 
estimated masks to oracle masks known to be correct. These
cle masks, generated from full a priori knowledge of the noise
signal, represent the best possible spectrographic masks. Ta
1 and 2 show confusion matrices for the classifier for speech
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the three noise environments for voiced speech and unvoiced
speech, respectively. Reliable elements are labelled as Class 1
and corrupt elements are labelled as Class 0. 

To perform missing feature compensation, cluster-based recon-
struction was performed on the spectrographic elements identi-
fied as corrupt by the estimated masks. Recognition was
performed using the SPHINX-III speech recognition system.
Context-dependent continuous HMMs (1 Gaussian/state) were
trained on clean speech using 2880 sentences from RM1. No
delta or double delta cepstra were used.

The recognition results are shown in Figure 2. As the plots
clearly indicate, classifier-based spectrographic masks resulted
in significantly better recognition accuracy than spectral subtrac-
tion-based masks in all three noise environments.

5. SUMMARY
In this paper we have presented a new method of spectrographic
mask estimation for missing feature compensation. We recast
mask estimation from an SNR estimation problem to a Bayesian
classification problem. In doing so we have been able to remove
the stationarity limitations that the previous mask estimation
methods placed on the corrupting noise signal by creating a
unique feature set that exploits the inherent characteristics of the
speech signal itself. We demonstrate that masks generated by the
classifier result in significantly better recognition accuracy than
masks produced using conventional noise estimation methods.
While the classifier makes no assumptions about the corrupting
noise signal, it does currently require knowledge of the overall
operating environment. However, we do not feel that this is a
serious limitation, as this information is readily available in most
situations. 

Missing-feature methods for noise compensation in speech rec-
ognition are gaining popularity both because they are capable of
significant improvements in recognition accuracy and because
they make logical sense based on our knowledge of the human
auditory system. Similarly, building a classifier that uses features
that are based on the intrinsic characteristics of the speech signal
itself is also intuitively satisfying. Because no assumptions about

the noise are made, it is logical that the classifier will be able to
estimate spectrographic masks for many, if not all, noise types.
This is a significant improvement over previous mask estimation
methods. 
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AWGN Factory Music

“1” “0” “1” “0” “1” “0”

1 87% 13% 79% 21% 72% 28%

0 16% 84% 21% 79% 33% 67%

Table 1: Classifier accuracy for voiced frames for speech in 
three noise environments. Reliable elements are Class 1 and 
corrupt elements are Class 0.

AWGN Factory Music

“1” “0” “1” “0” “1” “0”

1 76% 24% 71% 29% 64% 36%

0 13% 87% 22% 78% 28% 72%

Table 2: Classifier accuracy for unvoiced frames for speech in 
three noise environments. Reliable elements are Class 1 and 
corrupt elements are Class 0.
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 Figure 2.  Recognition accuracy vs. SNR for speech in three dif-
ferent noise environments. Missing feature compensation was
performed used masks estimated by the classifier, spectral sub-
traction, or full a priori knowledge of the noise (oracle). 
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