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ABSTRACT
This paper describes a way of designing modulation filter by data-
driven analysis which improves the performance of automatic speech
recognition systems that operate in real environments. The filter for
each nonlinear channel output is obtained by a constrained optimiza-
tion process which jointly minimizes the environmental distortion as
well as the distortion caused by the filter itself. Recognition accuracy
is measured using the CMU SPHINX-III speech recognition sys-
tem, and the DARPA Resource Management and Wall Street Jour-
nal speech corpus for training and testing. It is shown that feature
extraction followed by modulation filtering provides better perfor-
mance than traditional MFCC processing under different types of
background noise and reverberation.

Index Terms— filter design, automatic speech recognition,
modulation frequency analysis, data analysis

1. INTRODUCTION

Although feature extraction for automatic speech recognition (ASR)
using conventional Mel-frequency cepstral coefficients (MFCC)
[1] and perceptual linear prediction (PLP) [2] performs reason-
ably well when acoustical conditions for training and testing are
matched, recognition accuracy degrades significantly when training
and testing conditions are mismatched as in noisy or reverberant
environments. Motivated by experimental observations that the
neuronal response of mammalian auditory cortex is tuned to lower
temporal modulation rates (e.g. [3]), and that humans are most
sensitive to modulation frequencies in the range of 4 to 16 Hz (e.g.
[4, 5]), a number of feature extraction methods have been proposed
in recent years that exploit temporal information. These systems
typically provide a recognition accuracy that exceeds that obtained
using MFCC or PLP features in the presence of noise and other
adverse conditions [6, 7, 8], especially if they are combined with a
traditional recognition system in some fashion.

In this paper, we first introduce the possibility of applying a
linear-phase filter obtained from modulation frequency analysis for
extracting robust features. We then present a data-driven strategy
that can be used to design such filter set on a sentence-by-sentence
basis. In Sec. 2 we review some of the previous work that has mo-
tivated our filter formulation and system implementation, and we
describe feature processing method that we propose. Finally in Sec.
3, we evaluate the performance of our processing in several different
types of noisy and reverberant environments.

2. MODULATION FREQUENCY ANALYSIS

Modulation frequency components in speech signals have long been
believed to be important in human recognition of speech. For exam-

ple, by assessing the change of modulation index under environmen-
tal distortion, Steeneken and Houtgast proposed a Speech Transmis-
sion Index (STI) which is highly correlated with subjective scores
under different distortions [9]. In addition, by studying the contri-
bution of different modulation frequency bands to automatic speech
recognition accuracy, Kanedera et al. concluded that modulation fre-
quency components in the range of 1 to 16 Hz contribute the most to
ASR accuracy [10]. Inspired by these results, we focus in this paper
on the design of a filter that operates in the modulation domain with
three objectives in mind. First, as different sentences could be sub-
jected to different types of distortion, we want our modulation filter
to be data driven, so that the filter’s frequency response would be ap-
propriate to different environmental conditions. Second, we define
the environmental distortion whose effect on speech signals our fil-
ter attempts to minimize as the change of the modulation frequency
components of the power spectrum. Finally, the filter itself should
cause as little distortion as possible when the input signal is close to
that of clean speech.

2.1. Filter design by modulation frequency analysis

With the three objectives mentioned above in mind, we obtain the
filter that minimizes the statistic

ρ = λ
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where λ is a free parameter that controls the balance between the
degree of minimization of distortion caused by the environment
(PN (ω)) and the distortion of the original modulation spectrum
caused by the filter:

|MS(ω)−MS(ω)H(ω)|2 = |1−H(ω)|2|MS(ω)|2

= |1−H(ω)|2PS(ω) (2)

where MS(ω) is the modulation spectrum, obtained by comput-
ing the Fourier transform of each nonlinear channel output of clean
speech utterance. Note that both phase and magnitude are consid-
ered. The frequency response of the filter is of the form

H(ω) =
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l=−(L−1)/2

h(l)e−jωl (3)

We assume that a Type I linear phase filter with L odd and
h(l) = h(−l) can be utilized to achieve our goal, without providing
any further constraints on its frequency response at the outset. The
expression that minimizes ρ can also be expressed as
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37775, rS(k) = rS(−k) assuming that h is real.

The matrices RN and RS represent the autocorrelation matrices of
the distortion and speech components, respectively, of the inputs to
the filter H(ω). If we further assume that the distortion and speech
modulation frequency components are uncorrelated, i.e. RN+S =
RN +RS , the above equation can also be written as:

ρ=λhT(RN+S−RS)h+hTRSh−2hTrS+
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Taking the derivative with respect to h and setting it equal to zero
we obtain

∂ρ

∂h
= 2λRN+Sh+ 2(1− λ)RSh− 2rS = 0 (6)

producing the filter coefficients

h = (λRN+S + (1− λ)RS)−1rS (7)

In the expression above, the (i, j)th element of the L×L autocorre-
lation matrix incoming noisy speechRN+S is denoted by rN+S(i−
j), and the corresponding element of the L×L Toeplitz autocorre-
lation matrix RS obtained from the clean speech used to train the
system is rS(k). The elements rS(k) and rN+S(k) are obtained by:
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where C is the number of training utterances and Mi is the number
of frames of each training utterance and M is the number of frames
of the incoming utterance. The observations xS(m) and xS+N (m)
are the inputs toH(ω) in each channel (with mean subtraction) when
the system inputs are clean and noisy speech, respectively.

2.2. System implementation

We apply the filter described above to the output of each channel of
the system shown in Fig. 1, which is based on the system proposed
by Chiu and Stern [11]. After windowing the incoming signal into
frames of brief duration, a short-time Fourier Transform is applied
to obtain the magnitude spectrum of each frame. Each frequency
component is weighted by the weighting function shown in Fig. 2 to
account for the equal loudness curve in the human auditory system
[12].

After applying the triangularly-shaped Mel-scale filter with log
compression, a logistic function is introduced to model the nonlinear
function that relates the observed average auditory-nerve response as
a function of the input level in decibels.

xi(m) =
α

1 + exp(w1·yi(m) + w0)
(10)

where the coefficients α = 0.05, w0 = 0.613, w1 = −0.521 were
determined empirically by evaluation using the Resource Manage-
ment development set in additive white noise at 10 dB. These values
are used in all our experiments. yi(m) is the log of the output of
the ith channel. After the rate-level nonlinearity, the autocorrela-
tion matrix elements rS(k) and rN+S(k) are estimated according to
Eqs. (8) and (9) to obtain the coefficients of the filter in each channel
through which the outputs of the nonlinearities are passed.

signal

… …

fil

fil

fil

…

R

R

R

DCT|FFT|

log

log

log

…

Fig. 1. Block diagram of the feature extraction system.
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Fig. 2. The weighting applied to the frequency components that
models the equal loudness curve of the human auditory system.

3. EXPERIMENTAL RESULTS

3.1. Recognition accuracy using the RM database

The feature extraction scheme described above was applied to the
DARPA Resource Management (RM) database which consists of
Naval queries. 1600 utterances were used as our training set and
600 randomly-selected utterances from the original 1600 testing ut-
terances were used as our testing set, with the remaining 1000 ut-
terances used as the development set. (72 speakers were used in the



training set and another 40 in the testing set, representing a variety of
American dialects.) Each utterance is normalized to have zero mean
and unit variance before multiplication by a 25.6-ms Hamming win-
dow with 10 ms from frame to frame. We used CMU’s SPHINX-III
speech recognition system (with 1000 tied states, a language model
weight of 9.5 and 8 GMMs). Cepstral-like coefficients were obtained
for the proposed system by computing the DCT of the outputs of the
filters described in Sec. 2.1 (with L = 17 and λ = 0.49, as cho-
sen empirically by evaluation of the development set). The major
differences between traditional MFCC processing and our present
approach is in the use of the rate-level nonlinearity and modulation
filter described above. Cepstral mean normalization (CMN) was ap-
plied, and delta and delta-delta cepstral coefficients were developed
in both cases.

3.1.1. Recognition accuracy in background noise

To evaluate recognition accuracy in background noise, we selected
segments of white, pink, and babble noise from the NOISEX-92
database and segments of music from the DARPA Hub 4 Broadcast
News database. These noise samples were artificially added to the
test speech with energy adjusted according to obtain SNRS of 0, 5,
10, 15, and 20 dB.

Speech recognition accuracy in background noise (100% minus
the word error rate [WER]) is summarized in Fig. 3. Each panel
compares the recognition accuracy obtained using MFCC coeffi-
cients, MFCC coefficients augmented by the nonlinearity described
in [11], and MFCC coefficients augmented by both that nonlinear-
ity and the modulation filter described in this paper. As can be seen
from that figure, recognition accuracy in the presence of background
noise obtained with our proposed system is significantly greater than
the accuracy obtained using traditional MFCC processing for all four
types of noise. At a WER of approximately 50% the use of the mod-
ulation filtering provides an effective improvement of approximately
1 to 4.5 dB of SNR compared to baseline MFCC processing with
CMN (depending on the type of noise), in addition to the improve-
ment of approximately 3 to 7 dB obtained through the use of the
rate-level nonlinearity described in [11].
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Fig. 3. Comparison of recognition accuracy of the proposed sys-
tem with modulation filtering and peripheral nonlinearity (circles),
MFCC processing with nonlinearity (squares) and baseline MFCC
processing (triangles) for the RM database in the presence of four
different types of background noise. Clean condition WER: MFCC:
9.45%, RL nonlinear: 11.88%, RL nonlinear with mod fil: 11.78%

3.1.2. Recognition accuracy in reverberation

To evaluate the recognition accuracy of our proposed system in re-
verberant environments, simulated reverberated speech was obtained
by convolving clean speech with a room impulse response developed
from the room simulator RIR based on the image method [13]. The
dimensions of the simulated room were 5 × 4 × 3m, with a single
microphone at the center of the room and 1 m from the source, with
8 virtual sources included in the simulation. Examples of the simu-
lated room impulse response are shown in Fig 4. The reverberation
time (RT60, the time required for the acoustic signal power to decay
by 60 dB from the instant a sound source is turned off) was set to
0.3, 0.5, 1.0 and 2.0 s.

Figure 5 describes experimental results as a function of the re-
verberation time of the simulated room. Again, the proposed system
shows substantial improvement for all different reverberation condi-
tions; about 37% relative improvement in WER was observed for the
case of RT60 = 0.3 s.
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Fig. 4. Simulated room impulse response (upper panel: RT = 0.3s,
lower panel: RT = 1.0s).
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Fig. 5. Comparison of recognition accuracy for the same systems as
in Fig. 3 as a function of simulated reverberation time using the RM
corpus. Clean condition WERs are the same as in Fig. 3.

3.1.3. Effect of the mixing parameter λ on performance

We measured the effect of the mixing parameter λ by adding the
same four noise sources described above to speech from our devel-
opment set a a 10-dB SNR. Figure 6 summarizes the results from
these experiments. While the detailed shape of the curves are dif-
ferent for each type of noise, the general trends are similar showing
that values of λ in the range of 0.4 to 0.6 provides a broad minimum
in WER, at least for the RM database.
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Fig. 6. Dependence of WER using the RM development set on the
value of the miximg parameter as function of λ under different types
of background noise (with SNR fixed at 10 dB).

3.2. Recognition accuracy using the WSJ database

We also evaluated the proposed system on the DARPA Wall Street
Journal WSJ0 (WSJ) database. The training set consisted of 7024
speaker-independent utterances from 84 speakers. The test set con-
sisted of 330 speaker-independent utterances using the 5000-word
vocabulary, read from the si et 05 directory using non-verbalized
punctuation. Another similar set of 409 speaker-independent utter-
ances from the si dt 05 directory were used as our development set.
The signals were corrupted by white noise and background music
maskers, obtained as described as above. Additionally, 10-dB pink
noise (also from the NOISEX92 database) was added to the devel-
opment set to obtain the λ parameter value of 0.51 used in filter
design, as depicted in Fig. 7. The SPHINXIII trainer and decoder
were implemented with 4000 tied states, a language model weight
of 11.5 and 16 GMMs with no further attempt made to tune system
parameters. Other conditions are the same as in the RM case.

The results of Fig 8 indicate that the recognition accuracy for
the WSJ database follows similar trends to what had been previously
described for the RM database, with the modulation filter providing
an additional 2-4 dB increase in SNR compared to the SNR obtained
using the rate-level nonlinearity (and an improvement of 5-10 dB
compared to the baseline MFCC results).

4. CONCLUSIONS

We have presented an algorithm for designing the modulation filter
based on data driven approach which has led to substantially im-
proved speech recognition accuracy compared to traditional MFCC
processing under both different types of background noise and dif-
ferent level of reverberation conditions.
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