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ABSTRACT

We present a compensation technique that.corrects for the
effects of noise and variability of speaker and environment on
speech recognition accuracy by modifying the positions of the
poles representing the speech signal in the z-plane. This modifi-
cation yields pole locations with statistics that more closely
match the statistics of the distribution of clean training speech.
The parameters of the mapping are obtained from statistics of
the distribution of the poles of the training and testing speech.
Compensation is performed by direct modification of both the
angle and the radius of pole locations, and also by evaluating
the cepstrum along a circle of radius less than 1 in the z-plane to
enhance the salience of spectral peaks. These procedures are
evaluated using the DARPA Resource Management database
using added white noise. They are shown to compensate for the
effects of environmental degradation, particularly at low SNRs.

1. INTRODUCTION

The performance of automatic speech recognition systems
depends greatly on the extent to which their training and testing
data are acoustically matched. A mismatch between training
and testing data can be a consequence of differences in the
acoustical environment and differences between speakers’ artic-
ulatory characteristics. Acoustical compensation algorithms
aim to reduce these mismatches.

In this paper we consider the effects of different sources of
acoustic variation on the locations of poles of speech in the z-
plane. We present some observations about the behavior of
these pole locations as the acoustical environment is modified.
Based on these observations, we propose several methods that
normalize the location of the poles of noisy speech so that dif-
ference between their long-term statistical descriptions and
those of poles representing clean reference speech are mini-
mized.

Several previous researchers have described the effects of addi-
tive noise on the AR parameters of a speech signal and have
attempted to compensate for the effects of additive noise (e.g.
[4, S, 6]). For the specific case of additive white Gaussian noise
on speech, this effect has been modeled in [6] as a displacement
of the poles representing speech towards the origin of the z-
plane. Such pole displacement is in accordance with the notion
that additive noise causes the norm of the cepstral vector to
shrink and the spectrum to flatten [6].

Another source of mismatch between training and testing data
is that of variability in vocal tract anatomy across speakers. This
variation is reflected mostly in the locations of the spectral reso-
nances of speech (i.e. the formant locations). Some speaker nor-
malization techniques that have been proposed (e.g. [8, 10])
warp the frequency axis so that the locations of spectral peaks
match more closely the locations of spectral peaks from speak-
ers in the training data. Vocal tract variation is reflected prima-
rily by a displacement of the means of the distributions of the

angles of the poles. In {9] an algorithm was proposed in which
the mapping is performed directly on the poles of the speech.

When considered together, the effects of additive noise and
speaker variation result in a distortion of both the angles and
radii of the locations in the z-plane of the poles representing
speech. While the distortions of radius and angle have previ-
ously largely been considered separately (e.g. {4, 8]) they are
actually components of a general mismatch based on differ-
ences in environment and speaker. These effects are hard to
describe analytically due to the complex nonlinear relation that
exists between the pole locations and the speech signal. Esti-
mating the parameters of the environment based on the loca-
tions of the poles and restoring the original signal based on an
analytical model of these effects is at best, a challenging task.

In this paper, we reduce the mismatch introduced by the envi-
ronment by directly modifying the locations of the poles that
represent the noisy signal. Our approach differs from the previ-
ous methods in that we consider both the radius and angle of
the pole locations and we utilize the statistical distributions of
the poles of the degraded and clean speech to reduce the differ-
ences between these distributions. Since no analytical model of
environment or speaker is employed, these methods are
expected to be effective under different environmental phe-
nomena.

2. EFFECTS OF NOISE ON
POLE LOCATIONS

To illustrate the effects of additive noise on pole locations and
distributions, we contaminated a short segment of voiced
speech with additive white noise at different signal-to-noise
ratios. Figure 1 shows how the poles of the original clean
speech are displaced to different loci as signal-to-noise ratio
(SNR) is decreased. For this particular realization of the noise
and speech, the locations of each of the complex poles seem to
follow a continuous trajectory from their initial to their final
position for the SNRs considered. (This is not necessarily the
case for any two additive signals.) The effects of the noise on
the pole locations are nonlinear.

In Figure 2 we illustrate how noise affects the statistics of pole
locations in the z-plane. The first row shows the distribution of
the radius and angle for the poles corresponding to the second
formant under clean conditions for 15 seconds of speech. The
second and third rows show the histograms of the angle and
radius of the first pole of the same segment of speech with
noise added at 5 dB and 10 dB. As is evident from the graphs,
the distributions of the poles on the z-plane are influenced by
the intensity and spectral shape of the noise.

The distributions of the angle and the radius show clearly dif-
ferent shapes. The distributions of the angles are more sym-
metric, and might be reasonably approximated by a Gaussian
curve. The effects of noise on this distribution can be repre-
sented as changes in the mean and variance of the distributions.



Pole displacement
" . c
o8-
06 l h\ N
04 -~
t 02t
2
§ or W ©
g-oz-
0.4+ -
~-0.6} f ?l/ * "x,()“.
-08}
-1 L i o 1 N 1
-1 -0.5 0 0.5 1
Real part

Figure 1 Pole locations of speech for various values of SNR.

The distributions of the radii, however, are non-symmetric, with
modes that are close to the unit circle, and they cannot be rea-
sonably characterized as Gaussian. Additive noise affects these
distributions by displacing the modes towards the origin as well
as by increasing the width of the mode (i.e., it “smears” this dis-
tribution).
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Figure 2 Histograms of the angle and radius of the poles corre-
sponding to the second formant at three SNRs.

The angles and radii of the poles of speech derived from linear
prediction associated with a given formant, occur in a non-inde-
pendent fashion. Ideally, one would like to compensate theses
poles considering the joint distribution of angle and radius. This
is hard to do in a parametric way, because of the poor fit of a
multivariate Gaussian model to the statistics of the poles. For
simplicity, we treat the effects of angular and radial displace-
ment independently in the work described in this paper.

3. SPEECH COMPENSATION BY
POLE NORMALIZATION

We describe three techniques that map the poles representing
speech in the testing data to a new set of locations that better
match the corresponding locations from the clean training data.
The statistics of normalized clean speakers are computed by
averaging over a long sample of clean speech recorded from
various training speakers. The distributions of the incoming
speech to be normalized are generally estimated over a smaller
amount of speaker-specific speech.

3.1. Angular Compensation

Angular compensation corrects the angular positions of the
poles using statistics of the clean and noisy speech. This statisti-
cal information is collected in terms of formants, which are
assumed to be represented by the four sets of complex poles
with the angles of smallest magnitude, regardless of the corre-
sponding radii. The mean and variance of each formant distri-
bution are calculated.

Remapping of the angles of pole locations is performed by
determining the relative angular position of each complex pole
pair with respect to the immediate upper and immediate lower
mean values of the formants of the test speaker. Using linear
interpolation, this relative angular position is mapped to a new
value between the immediate upper and immediate lower mean
values of the formants of a normalized clean speakers. For
example, if the angle of a specific pole falls between the first
and second formant of the active speaker, the normalized angle
value would be the angle that is in a corresponding location
between the first and second formant of the normalized speaker.
Specifically, the angle 8, is mapped to the angle ', according

to the following expression
- - (g - gk)

e',‘ = gk+ (e, -fk) _-k+l —
Fe+1 =S

where g and g, , , represent the mean values of the formants k

and k+1 of the clean speech f,,and ]‘,H, represent the mean
values of the formants k and k +1 of the noisy speech. The
angle ©'; falls in the frequency interval delimited by fk and

f,,+ i- This mapping can be interpreted as a piecewise linear
warping function of the locations of the poles where the break-

points of the function are the means of the formants for the
clean and noisy data.

3.2. Radial Compensation

Remapping of the radii is accomplished by associating each
pole with a formant and then applying the following linear map-
ping:

L
r;=ar+b;

Each g; and b; are calculated for every formant by performing a
linear regression between the endpoints of 20 equally-spaced
percentile values of the histograms of the radii of the poles of
the noisy and clean speech. In this way, the histograms of the
resulting mapped poles will be similar to the poles of the clean
speech. The poles resulting from this mapping, however, might
not fall inside the unit circle. Precautions need to be taken such
that this doesn’t occur.

3.3. Enhancing the Spectrum: Off-axis evaluation of
the Cepstral Vector

A very simple approach that enhances the spectral peaks of the



speech is accomplished by evaluating the z-transform closer to
the locations of the poles. As noted in [6], by adding noise to
the speech signal, the poles of the signal are displaced towards
the origin. The term off-axis spectrum [7], refers to an enhanced
spectrum obtained by evaluating the z-transform along a circle
in the z-plane of radius less than one. Calculating the cepstral
vector using poles enhanced with this method is straight for-
ward. Letting A (z) be the LPC polynomial of the signal and

r < 1 be the new radius along which the spectrum will be evalu-
ated,

M . M I3
A(rz) = Z a;(rz)”" = Z (ar )z
i=0 i=0
If we derive the cepstral coefficients by replacing a; by a,.r“ in
the cepstral recursion, these cepstral coefficients will corre-
spond to those of a spectrally enhanced signal. The value of r is
determined by ratio of the average of the radii of all the poles
representing the degraded speech in the testing domain divided
by the corresponding average of the radii of the poles from the
clean speech used to train the system. Particular care should be
taken when implementing this enhancement routine: if 7 is
smaller than the magnitude of the largest pole, then the system
represented by the polynomial will be unstable. This method
can be extended by evaluating the cepstral vector along a non-
uniform, non-circular contours as in the chirp z-transform [3].

4. POLE NORMALIZED SPEECH FEATURES

We refer to the acoustic features used in these experiments as
Mel Scale based Linear Prediction Cepstral Coefficients
(MLPCC). The procedure to obtain the MLPCC vectors is illus-
trated in Figure 3. Speech is sampled at 16 kHz, windowed
using a 20-ms Hamming window, and the 512-point DFT of the
windowed speech is calculated for each frame. 11 Mel-scale
based autocorrelation coefficients are obtained by computing
the inverse DCT of the squared magnitude of the DFT coeffi-
cients after the conventional Mel-scale triangular weighting
functions. (The Mel-scale based autocorrelation provides
robustness in noisy conditions and was inspired by [2]). An

11%-order LPC polynomial is obtained from the autocorrelation
coefficients using Levinson-Durbin recursion, from which the
pole locations are obtained.

The poles are then compensated using one of the algorithms
described in Section 3. After the set of normalized poles is
obtained it is necessary to verify that the new poles actually
exhibit the set of desired properties described in Section 4.1
below. The LPC vector is recalculated using the normalized
pole locations, and the spectral enhancement based on evalua-
tion inside the unit circle is applied as described in Section 3.3.
Finally, a 13"-order cepstral vector is recursively obtained from
the new LPC vector, and the corresponding delta and delta-delta
coefficients are calculated.

4.1. Practical Considerations

Altering the positions of the poles according to the procedures
described in Section 3 can result in normalized pole locations
that are invalid. Specifically, special care must be taken regard-
ing the following phenomena:

* Angle crossing nt: Angular correction might produce nor-
malized poles whose angle exceed the value of x in the z-
plane. This corresponds to a form of aliasing and must be
avoided.

* Radius value exceeding 1: Radial correction might pro-
duce poles falling outside the unit circle, which normally
would result in a unstable system.

* Formant swaps: Angular compensation algorithms might
change the angular ordering of the poles, which is equiva-
lent to inverting the order of the formants.

* Instabilities from evaluating the spectrum inside the
unit circle: Shrinking the locus of evaluation of the LPC
polynomial can also leave poles outside the new circle.

A strategy for detecting and correcting the above possibilities
must be devised. The simple alternative used in the present
experiments was to discard each frame containing a problem-
atic pole location, duplicating the pole locations of the previous
frame. Some mapping algorithms, such as the angular compen-
sation routine, will always map the poles to valid locations.
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Figure 3 Block diagram of the MLPCC front end with pole nor-
malization.

5. EXPERIMENTAL RESULTS

Experiments were conducted using the Speaker Independent set
of the speaker-independent portion of the ARPA Resource
Management RM1 Task. Figure 4 shows the results of these
experiments. In every situation, acoustic models were trained
using clean speech that was compensated using the statistics of
the complete training set. Tests were performed using four dif-
ferent SNRs: 5 dB, 10 dB, 20 dB, and no added noise (clean
speech). Results are shown when only the angle, only the
radius, and both the radius and angle are compensated. Uncom-
pensated MLPCC and MFCC results are shown for comparison.

Results using off-axis cepstral evaluation were also obtained
under similar noise conditions. In this case acoustic models
were trained from clean speech without any sort of compensa-
tion. The optimal value of r was determined for every utterance
as described in Section 3.3. The results obtained with this
method are shown in Table 1 along with the MLPCC baseline.
Comparing the results obtained using radius-only normalization
(Fig. 4) with those using off-axis cepstral evaluation (Table 1)
the superiority of the radius normalization approach over off-
axis evaluation of the cepstra is evident. This difference in per-
formance is probably due to the fact that with radius-only com-
pensation every pole location is displaced depending on its
relative position with respect to the other poles and to the per-
centiles of the distributions of the radii. In the off-axis evalua-
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Figure 4 Recognition accuracy on the RM1 task using pole
compensation.
tion technique every pole is mapped using the same mapping
parameter, r. While radius compensation offers greater robust-
ness to noise, it requires the explicit calculation of the poles in
every frame. Off-axis evaluation of cepstra, on the other hand,
is trivial to implement as it operates exclusively on the LPC
vector coefficients.

5dB 10dB 20dB

MLPCC | 13.0% 39.8% 78.7%

Off-axis 14.9% 42.5% 78.7%

Table 1. Recognition accuracy using off-axis cepstral evalua-
tion for the RM1 task.

6. DISCUSSION AND SUMMARY

We presented a set of algorithms that reduce the statistical mis-
match introduced by the environment between testing and train-
ing data. These techniques operate directly on the poles of the
speech and do so based solely on their statistical descriptions.

It was found that compensation of the radii and angles of the
poles, either individually or i4n consort, provided substantial
improvements in recognition accuracy at lower SNRs. Neither
approach improved the recognition accuracy of clean speech,
despite the successful application of frequency-warping

approaches to speaker normalization in previous work (e.g. [1,
8, 10]). Evaluation of the frequency response along a circle in
the z-plane of radius less than 1 provided modest improvement
at lower SNRs, but not nearly as much as full normalization of
the radii and angles of the pole locations.
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