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SUMMARY In this paper we describe a new framework of
feature compensation for robust speech recognition, that is suit-
able especially for small devices. We introduce Delta-cepstrum
Normalization (DCN) that normalizes not only cepstral coeffi-
cients, but also their time-derivatives. Cepstral Mean Normaliza-
tion (CMN) and Mean and Variance Normalization (MVN) are
fast and efficient algorithms of environmental adaptation, and
have been used widely. In those algorithms, normalization was
applied to cepstral coefficients to reduce the irrelevant informa-
tion from them, but such a normalization was not applied to
time-derivative parameters because the reduction of the irrele-
vant information was not enough. However, Histogram Equal-
ization provides better compensation and can be applied even
to the delta and delta-delta cepstra. We investigate various im-
plementation of DCN, and show that we can achieve the best
performance when the normalization of the cepstra and the delta
cepstra can be mutually interdependent. We evaluate the per-
formance of DCN using speech data recorded by a PDA. DCN
provides significant improvements compared to HEQ. We also
examine the possibility of combining Vector Taylor Series (VTS)
and DCN. Even though some combinations do not improve the
performance of VTS, it is shown that the best combination gives
the better performance than VTS alone. Finaly, the advantage
of DCN in terms of the computation speed is also discussed.
key words: robust speech recognition, PDA, time-derivative,
histogram quealization

1. Introduction

Speech recognition exhibits its full value when it is used
in small devices, such as PDAs, cellular phones and in-
vehicle systems. Since there are no keyboards, speech
is the only modality that enables easy input of long
sentences. In most cases, those tools are used not in
the laboratory, but in various scenes of real life. The
acoustical condition is far from ideal in such scenes,
and the need for robust speech recognition algorithms
increases. It is well known that the performance of
the standard speech recognition system degrades with
additive noises, channel distortion, room reverberation,
etc., and the research of robust speech recognition has
a long history from 1980’s.
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In the HMM based speech recognition system, that
is known as the most successful system so far, robust-
ness can be acheived by two different ways. Since the
system basically compares the input feature vector with
the acoustic model, we can compensate either the fea-
ture vector or the acousitc model [1]. Feature vec-
tor compensation has smaller number of free param-
eters, therefore it tends to require less computation.
Model compensation can be more precise, but gener-
ally needs more computation. In this paper, we pursue
feature vector compensation because the computational
resource is limited in small devices. In feature vector
compensation, we start with the corrupted input signal,
that is the mixture of relevant and irrelevant informa-
tion, and try to remove the irrelevant information using
any assumption or prior knowledge about the speech
and noise model.

Spectral Subtraction (SS) [2] is an algorithm to
reduce the effect of additive noises, where an assump-
tion is made for the noise model. It is assumed that the
power spectrum of noise is invariant throughout the ut-
terance and can be estimated from the nonspeech seg-
ment. This assumption brings the conclusion that the
effect of additive noises is reduced by subtracting the
estimated power spectrum from the input signal. Re-
cently SS was extended to deal with the spectral mag-
nitude and phase [3], but the assumption is still for the
noise model only.

Cepstral Mean Normalization (CMN) [4] is another
successful algorithm, that compensates convolutional
noises. In CMN, an assumption for the speech model
is also needed, because we cannot estimate the convo-
lutional noise using the nonspeech segment. Therefore,
it is assumed that every clean utterance has the same
cepstral mean, and the variation of cepstral means rep-
resents the variation of environments. Since the con-
volutional noise is expressed as the additive distortion
in the cepstral domain, one can remove it simply by
subtracting the cepstral mean. There are also some
works trying to extend SS and CMN. In CDCN [5] and
VTS [6], the clean speech is modeled by the Gaussian
mixture, and the environment is modeled by the com-
bination of additive and convolutional noises.

A natural extension of CMN is Mean and Variance
Normalization (MVN) [7],[8], where the assumption is
still stronger. More attention is paid to the clean speech
model than to the environment, and it is assumed that
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not only the mean but also the variance of the cepstral
coefficients should be invariant for various utterances.
Even though there is no simple analytical expression
that implies that any distortion appears in a form of
cepstral multiplication, numerical simulations support
the argument, and hence the environmental noise can
be removed by deviding cepstral coefficients by their
variance. After all, Histogram Equalization (HEQ) [9],
[10] uses the stronger assumption that the shape of the
entire distribution of cepstral coefficients is invariant.
In HEQ, any detail of the cepstral distribution is re-
garded irrelevant and to be removed.

From this perspective, we can say that any nor-
malization can be applied to any parameter if we have
an reliable assumption about the invariance related to
the parameter. That is the motivation of our work,
in which we try to apply normalization techniques not
only to cepstral parameters, but also to their time-
derivatives. Although it is true that the cepstral mean
can be interpreted as the estimated convolutional noise,
we do not pay much attention to the origin of the ir-
relevant information that is erased by normalization.
Instead, we focus only on finding transformations that
preserve the relevant information in speech. This paper
compares and discusses such simple models and trans-
formations, and shows that speech recognition perfor-
mance can be improved by their use. More improtantly,
these transformations are extended to the delta cepstra.

The remainder of this paper is organized as fol-
lows. In the next section, we describe the concept of
HEQ and our implementation of it. In section 3, var-
ious versions of Delta-Cepstrum Normalization (DCN)
are introduced. Parametric optimization of DCN is also
discussed in this section. Section 4 presents experimen-
tal results for the speech database which we created us-
ing a PDA, and the last section gives the conclusions
and future works.

2. Histogram Equalization

Histogram Equalization is a procedure that is com-
monly used in image processing[11]. Balchandran and
Mammone [12] first applied it to the amplitudes of
speech signals, and Dharanipragada and Padmanab-
han [13] applied it to cepstral features as an adapta-
tion method. Some more recent papers [9], [10] applied
feature normalization methods for robust speech recog-
nition.

The basic idea of HEQ is that the distribution of
cepstral coefficients in the test data should be identi-
cal to that of the training data. This idea introduces
the necessity of the nonlinear transformation that gen-
erates the required distribution of the output cepstral
coefficients, while minimizing the total distortion be-
tween cepstral coefficients before and after the trans-
formation. In the case where we can treat each dimen-
sion of the cepstral vector as independent, finding the
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transformation is easy by using the cumulative density
function (CDF), the integral of the probability density
function (PDF). Since the CDF is a monotonic increas-
ing function between 0 and 1, the inverse function can
be defined. Thus, the transformation of HEQ is defined
as follows:

z; = HEQ(y:) = Cx' (Cy (v:)) (1)

where Cx is the CDF estimated from training data,
Cy is the CDF of the test data, y; is a cepstral co-
efficient of the i** frame, and z; is the corresponding
transformed cepstral coefficient. Since HEQ is applied
to each cepstral dimension independently, we omit the
other subscript for the cepstral dimension in this paper.

Usuanlly there is a huge number of samples in the
training data, and we can get an almost continuous
curve of the CDF from the precise histogram. The num-
ber of samples in a test utterance is small, but we can
define the CDF at sample points simply by sorting the
cepstral parameters and obtaining their relative ranks,
because the CDF is a function of the number of frames
that have smaller values than the current point. After
sorting, we calculate Cy'(t/N) for t = 0,1,2,...,N
(where N is the number of frames) by interpolation us-
ing the pre-stored numeric table of C}l. The way of
calculating CDF values can be interpreted as an exten-
sion of the quantile based HEQ[14], where the number
of quantiles is the same as the number of frames.

There are some issues in the implementation of
HEQ. In [9], the CDF obtained from the Gaussian PDF
was used as the reference. Even though the distribution
of cepstral coefficients tends to be Gaussian in some
cases, we made the reference CDF according to (1) to
make it more precise. Another issue is whether MVN
should be applied to the training data before obtaining
the the reference CDF. We thought that HEQ should
be a natural extension of MVN, so we applied MVN
to the training data before developing the CDF. There
is also a concern about the domain of HEQ. In [10],
it is said that applying HEQ in the Mel-filterbank do-
main is better than applying it in the cepstral domain.
However, our preliminary experiments showed the op-
posite results, so we decided to apply it in the cepstral
domain.

3. Delta-Cepstral Normalization
3.1 Normalization of time-derivative parameters

It is well known that the use of time-derivative param-
eters such as delta and delta-delta cepstra improves
speech recognition accuracy. However, there have been
few previous studies that attempt to normalize these
features. The RASTA method [15] and other filtering
approaches make use of inter-frame information, but
they do not use the entire distribution of delta parame-
ters. Deng et al. [16] proposed an algorithm that incor-
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Fig.1 Schematic diagram of DCN. (a) Independent DCN. (b)
Sequential DCN. (c) Feedback DCN.

porates the compensation of delta cepstrum. However,
the compensation depends only on the prior Gaussian
mixture models, and the distribution of delta cepstra
among frames is not taken into account.

Mean subtraction of delta parameters does not
help because the mean of delta parameters is always
zero by definition. The variance of delta parameters
can be non-zero, but it was reported in [8] that MVN
does not need to applied to the delta and delta-delta
cepstra. It is possible that the improvement obtained
using MVN is smaller than the loss of relevant informa-
tion. However, if compensation using HEQ, that is ex-
pected to be more efficient in noisy conditions, provides
more gain than loss, we could have different results.

In the framework of normalizing delta and delta-
delta cepstra, it should be noted that those parameters
are not independent from the original cepstrum. Hence,
there are several ways with which these parameters
could be compensated. Figure 1 provides the schematic
diagram of three types of Delta-Cepstrum Normaliza-
tion (DCN). The simplest option is called Independent
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DCN, where the delta and delta-delta cepstra are cal-
culated from the original capstrum, and then HEQ is
applied to the cepstrum, the delta-cepstrum, and the
delta-delta cepstrum independently. The second op-
tion is called Sequential DCN, where HEQ is applied
to the original cepstrum, then time-derivative opera-
tion is carried out using the normalized cepstrum, and
finally HEQ is applied to the delta and delta-delta cep-
stra. In this method, the delta and delta-delta cep-
strum part can take advantage of the normalization
of the cepstrum. The third option is called Feedback
DCN, where the output of Sequential DCN is fed back
to the cepstrum part, and “A-adjustment” is executed.
A-adjustment is a procedure described in more detail
below that reduces the mismatch between the normal-
ized cepstrum and the normalized delta and delta-delta
cepstra. By introducing A-adjustment, the cepstral
normalization can take advantage of the normalization
of the delta and delta-delta cepstra. However, even
though both the delta and delta-delta cepstra are ex-
pected to be helpful, we perform A-adjustment using
the delta cepstrum only, because it is difficult to define
an appropriate A-adjustment procedure that makes use
of both delta and delta-delta. A more detailed descrip-
tion of Feedback DCN including A-adjustment follows.

In Feedback DCN we describe the observed cep-
stral coefficients by y;. After applying HEQ, we obtain
normalized coefficients z;.

Delta-cepstral coefficients are defined as follows.
1
Az,- = 5(2,’4,1 — 22;1). (3)

The error function is then defined to be the difference
between the original delta cepstrum and the normalized
delta cepstrum.

Finally, the cepstrum is modified so that the error func-
tion decreases.

z; =z —ale41 —ei_1) (5)

a is a weight parameter. Using these values of z;, the
delta and delta-delta cepstra are recalculated, and the
resulting parameters are fed into the decoder.

3.2 Optimization of weight parameter

In the A-adjustment procedure, the weight parameter «
plays an important role. The optimal value of a can be
obtained by minimizing the adjusted total error func-
tion. First, the delta cepstrum after DCN is obtained
as

1
Ax; = §($i+1 - xi—l)
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= Az, + ae; — %(eiH —ei_2). (6)

Using this, the adjusted total error function E is defined
as

N
E =) (HEQ(Az) - Az;)?
=1

( a—1)e C; (€it2 + 6i—2))2 (7)

Mz

i=1
where we assumed the cyclic boundary condition
Yi+N = Yi (8)
that leads to similar cyclic boundary conitions of other
parameters. Then we get

3 1
FE = (§K0 — 2K2 + §K4)a2 - 2(K0 - KQ)O( + KO (9)

where Ky, K5, and K, are the quadratic terms in regard
to e;.

N N N

Z ef = Zefw = Ze?—Q = Ko (10)
i=1 i=1 i=1

N N

Z €i€i+2 = Zeiei_g = K2 (11)
i=1 i=1

N
Z €i—neirr = Ky (12)
=1

Finally, we get the value of o that minimizes the ad-
justed total error function E.
2(Ky — K
a=_2Ko—Ks) (13)
3Ky —4K> + K4

We can also say that the cross correlation among e;s
is small, so Ky is usually much larger than K5 and
K,. Therefore a = 2/3 is a good approximation of the
optimal value.

3.3 MAP estimation

When we applied HEQ to the feature vector (either
cepstrum, delta cepstrum, or delta-delta cepstrum), it
was assumed that the shape of the distribution of the
feature vector is completely the same as the distribution
of the reference. However, the shape of the distribution
can change according to the uttered sentence, although
it is probably similar to the reference. Therefore, there
is a risk of overfitting if one has every confidence in the
normlized feature vector. The simplest way to avoid it
is to introduce the idea of the MAP estimation [17] with
the assumption that the prior probaility distribution of
the feature vector is a Gaussian, whose mean is the
output of the HEQ estimator.

13

p(x;) = N(z; : 2, Zi) (14)

where z; is the output of any HEQ-based estimator, and
Y. is the unknown variance. The variance represents
the unreliability of the HEQ estimation, so it becomes
small if the utterance is long or made of well-balanced
phones. The observation probability distribution can
also be approximated by a Gaussian,

p(yilzi) = N(yi : 2:, %) (15)

where ¥, is also an unkown variance, that represents

the distortion made by the environment. Using the
Baysian rule
p(y|z)p(z)
plzly) = ——F———= 16
(z[y) P (16)

and assuming that there is no prior knowledge about
p(y;), the posterior probability distribution of z; is sim-
ply the product of two Gaussians, given by
¥2x2
X2 432

Y2y + X2z
¥2+32

p(zily) = N(w; : ) (A7)
that gives the MAP estimation of z; as a weighted sum
of y; and z;. Since we do not have any knowledge about
Y, and X¥,, the optimal weight would be determined
experimentally.

4. Experiments
4.1 Experimental setup

The proposed algorithms were evaluated in a series of
recognition experiments. Triphone HMMs with 2000
tied states (8 Gaussians / state) were trained using the
5000-word LDC Wall Street Journal database (WSJO0).
The Sphinx-IIT decoder developed by CMU was used
for decoding, with a trigram language model. Speech
input was sampled by 11.025kHz, and 13 MFCCs were
computed every 10ms.

We recorded 330 utterances from eight speakers si-
multaneously using two microphones: the built-in mi-
crophone of the PDA (Compaq iPAQ PocketPC Model
3630) and a close-talk microphone (Optimus Nova 80).
Each speaker uttered 40 to 43 sentences chosen from
the WSJO database. The perplexity of the test set is
64.35. Recording was done in an office room with no
window, where some computers were making fan noises.
Using these recordings, we prepared two test sets. The
first set was the read data recorded by the PDA mi-
crophone. The SNR of the first set was estimated as
18dB using NIST’s stnr tool. The data are corrupted by
both additive noise from computer fans in the room and
the spectral tilt the PDA microphone. A second set of
artificial data were obtained by digitally adding the rel-
atively clean speech data recorded using the close-talk
microphone to noise recorded by the PDA microphone
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Table 1  Recognition results for real data
WER (%)
Baseline (CMN) 41.5
MVN 33.5
TEQ 30.2
Independent DCN 27.5
Sequential DCN 27.0
Feedback DCN 25.6
Close-talk 16.4

with varying SNR from 0dB to 25dB. The spectral tilt
of the close-talk microphone is small, and the additive
noise is the same as the first set except that the ampli-
tude is adjusted to each SNR value.

4.2 Experiments using real data

Table 1 shows the word error rates (WERs) obtained
by various methods using the real data set. Since the
number of words in the hypothesis is not always the
same as the number of words in the transcript, dynamic
programming is used to align the hypothesis and the
transcript, and the WER is defined as
S+I+D

WER = —— (18)
where S, I, D are the number of substitution, insertion,
and deletion errors respectively, and N is the number of
words in the transcript. We regard CMN as the base-
line because it is a widely used algorithm, and compare
it with other algorithms. It is shown that MVN and
HEQ improve the recognition accuracy as expected. In-
dependent DCN gives certain improvement from HEQ),
that is 9% relative WER reduction. Sequential DCN
is slightly better than Independent DCN, 11% relative
WER reduction. Finally, Feedback DCN results in the
best performance, that is 15% relative WER reduction.
It should be noted that the value of the weight param-
eter « is set to 1 in this experiment. As the reference,
the WER obtained by the close-talk microphone with
no additional noise is 16.4%, that is regarded as the
lower limit of any compensation method.

4.3 Optimizing weight and MAP parameters

To evaluate the dependency of WERSs on the weight pa-
rameter a, we made recognition experiments with var-
ious values of a. The results are shown in Fig. 2. The
point o = 0 corresponds to HEQ. (see eq. (5)) From
this point, there is a rapid WER decrease to a = 0.4,
but then the curve becomes rather flat. The differ-
ence is small from a = 0.4 to a = 1.0 including the
case where the «a is optimized for each utterance usgin
eq.(13), so we will use a = 1.0 in the rest of this paper
for simplicity.

We also made experiments with various MAP pa-
rameters. In Figs. 3 and 4, the parameter § is de-
fined as X2 /(X2 + X2). Figure 3 shows the results with
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Table 2 Recognition results for real data using combination
with VTS
WER (%)
VTS (CMN) 23.3
VTS + MVN 25.4
VTS + HEQ 27.3
VTS + Independent DCN 23.4
VTS + Sequential DCN 23.6
VTS + Feedback DCN 22.7

HEQ (no Delta-Cepstrum Normalization), and Figure
4 shows the results with DCN. In both cases, WERs
decrease from 8 = 0 to 8 = 0.4, but for larger 3, the
difference is small even though the best results were
obtained with 3 being slightly smaller than 1.0. The
value of § will also be set to 1.0 in the rest of the paper.

4.4 Combination with VTS

VTS (Vector Taylor Series) [6] is known as one of the
most powerful compensation algorithms developed for
quasi-stationary additive noise and linear filtering. In
[18], it is reported that HEQ reduces the residual noise
of VTS, so one can achieve better results by applying
HEQ after VTS. To verify this result and check the
extensibility to DCN, we performed some additional
experiments using VTS.

Table 2 shows the word error rates obtained us-
ing VTS as well as various combination of VTS and
other methods. The WER obtained by VTS alone (with
CMN) is 23.3%, that is better than even the best case
of DCN, but the WER becomes higher when we apply
MVN after VTS. Applying HEQ after VTS makes the
WER still worse, that is opposite to the result described
in [18]. Independent DCN and Sequential DCN are bet-
ter than MVN and HEQ, but their WERSs are slightly
greater than VTS only. However, if we apply Feedback
DCN after VTS, we obtain a relative improvement in
WER of about 3% compared to VTS alone.

4.5 Experiments using artificial data

To investigate the SNR-dependency of DCN, we carried
out experiments using the artificial data set that was
made by various SNR. The results are shown in Fig. 5.
Since Feedback DCN was the best among three types
of DCN in the previous experiments, we used Feedback
DCN only. VTS in combination with DCN was also
tested.

Obviously DCN outperformed HEQ over almost all
range of SNR. The performance of DCN is noticeable
especially in the lower SNR range, and it is even better
by itself than VTS at 0dB. The use of DCN after VTS
improves recognition accuracy over the result obtained
by VTS only for SNRs below about 15dB, but it is not
helpful in the higer SNR range.

Since we have estimated the SNR of the real data
as 18dB, we can compare the results from the real data

15

100
80
g
3 60
3
g e
- 40 A "
5 / Baseline X
= / MVN %
HEQ + |
20 ‘ DCN O
VTS m
VTS+DCN O
0 ) 1
0 5 10 15 20 25
SNR (dB)
Fig.5 Recognition results for artificial data
Table 3 Comparison of WERs from real and artificial data.

(a) WER(%) obtained from real data (b) WER(%) obtained by
interpolating results from artificial data

(a) (b)

Baseline (CMN) 41.5  46.1
MVN 33.5 36.8
AEQ 30.2  34.9

Feedback DCN 25.6 31.6
VTS 27.0 21.6

VTS + Feedback DCN  25.6 22.2

and the artificial data at 18dB using interpolation. Ta-
ble 3 shows the comparison. The numbers of the artifi-
cial data were interpolated using 15dB and 20dB points.
As seen in the table, they have similar tendencies but
VTS is more effective for the artificial data, and DCN
is not helpful after VTS for the artificial data at this
point. That would be because the way that we made
the artificail data is matched to the one assumed in the
theory of VTS, while the read data include nonlinear
distortion.

4.6 Computational complexity

One of the advantages of HEQ is fast execution owing
the possibility of being implemented via table lookup.
This makes HEQ very attractive for the use in small
devices. On the other hand, EM-based algorithms such
as VTS are usually very slow. To confirm the same ad-
vantage of DCN, we measured the time consumed by
the CPU to compensate 330 utterances of the real data
set, and calculated the average time to compensate one
second of speech. The experiment was carried out with
an Intel Celeron 2.0GHz processor and 256MB mem-
ory running on the Linux operating system. Execution
times for the various algorithms are shown in Table 3.

Compensation by HEQ includes sorting of the cep-
stral coefficients and interpolation of the CDF using the
pre-stored numeric table. Those procedures are simple
enough and can be done in very short time. Thus, HEQ
requires only 1.2ms to compensate one second speech.
In Independent and Sequential DCN, there are three
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Table 4 Execution time for 1 second speech

WER (%)
MVN 0.0001
HEQ 0.0012
Independent DCN 0.0033
Sequential DCN 0.0033
Feedback DCN 0.0019
VTS 2.8395

equalization operations for the cepstrum, the delta cep-
strum, and the delta-delta cepstrum. That is why it
takes approximately three times as much time as HEQ.
In Feedback DCN, we did not apply HEQ to the delta-
delta cepstrum, so the execution time is about twice
that of HEQ. Apart from those small differences, all of
three DCN algorithms ran in less than 1% of real time.
In constrast, VTS requires much more than real time
due to its time-consuming EM iterations.

5. Conclusions

In this paper, we have introduced a new feature nor-
malization algorithm that is based on the normaliza-
tion of time-derivative parameters. This procedure, re-
ferred to as Delta-Cepstrum Normalization (DCN), is
quite simple to implement and provides greater recog-
nition accuracy than either Cepstrum Mean Normal-
ization (CMN) or Histogram Equalization (HEQ). The
performance of DCN approached that of Vector Taylor
Series (VTS) and with only of a small fraction of the
computational cost of VT'S. We investigated three im-
plementations of DCN, Independent, Sequential, and
Feedback DCN. The best implementation, Feedback
DCN, provedes a relative improvement of 15% com-
pared to standard HEQ using real data recorded by
the built-in microphone of an iPAQ. We also showed
that Feedback DCN can reduce recognition error rate
when it is applied after VTS.

Implementation of DCN may include parametric
expressions such as the weight factor of A-adjustment,
a, and the MAP estimation parameter, 5. However,
experimental results showed that simple setting that
a = 3 = 1 gives the near optimal performance, even
though one can acheive 1% or less relative WER reduc-
tion by using optimal value of a and f.

The results using artificial data showed that DCN
is helpful especially in the lower SNR range. However,
in the higher SNR range, VTS is effective enough be-
cause the noise model we used to make the artificial
data is matched to the one assumed in the theory of
VTS. In such a situation, DCN is less effective either
by itself or after VTS.

Fast run times for the HEQ and DCN algorithms
are observed when the algorithms are implemented us-
ing table lookup. As a result, these algorithms are at-
tractive for small devices used in noisy conditions, such
as PDAs, cellular phones, and in-vehicle systems.
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So far we have examined the effect of DCN on the
data with stationary noises, but our future work would
include the research on the non-stationary noise envi-
ronment, which small devices often face to. It is also
important to combine these methods with multiple mi-
crophone techniques. After those efforts, we expect
that the world with ubiquitous voice-activated small
devices will apear.
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