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Abstract

Particle filters are used extensively for tracking the state
of non-linear dynamic systems. This paper presents a
new particle filter that maintains samples in the state
space at dynamically varying resolution for computa-
tional efficiency. Resolution within statespace varies by
region, depending on the belief that the true state lies
within each region. Where belief is strong, resolution is
fine. Where belief is low, resolution is coarse, abstract-
ing multiple similar states together. The resolution of the
statespace is dynamically updated as the belief changes.
The proposed algorithm makes an explicit bias-variance
tradeoff to select between maintaining samples in a bi-
ased generalization of a region of state space versus in
a high variance specialization at fine resolution. Sam-
ples are maintained at a coarser resolution when the bias
introduced by the generalization to a coarse resolution is
outweighed by the gain in terms of reduction in variance,
and at a finer resolution when it is not. Maintaining sam-
ples in abstraction prevents potential hypotheses from
being eliminated prematurely for lack of a sufficient
number of particles. Empirical results show that our vari-
able resolution particle filter requires significantly lower
computation for performance comparable to a classical
particle filter.

1 Introduction

A number of problems in AI and robotics require estima-
tion of the state of a system as it changes over time from a
sequence of measurements of the system that provide noisy
(partial) information about the state. Particle filters have been
extensively used for Bayesian state estimation in nonlinear
systems with noisy measurements [Isard and Blake, 1998;
Fox et al., 1999; Doucet et al., 2001]. The Bayesian approach
to dynamic state estimation computes a posterior probability
distribution over the states based on the sequence of measure-
ments. Probabilistic models of the change in state over time
(state transition model) and relationship between the mea-
surements and the state capture the noise inherent in these
domains. Computing the full posterior in real time is often
intractable. Particle filters approximate the posterior distri-
bution over the states with a set of particles drawn from the
posterior. The particle approximation converges to the true

Bayesian posterior in the limit as the number of samples go to
infinity. For real-time state estimation it is impractical to have
an infinitely large number of particles. With a small number
of particles, the variance of the particle based estimate can be
high, particularly when there are a large number of possible
state transitions.

This paper presents a new particle filter, the variable res-
olution particle filter (VRPF), for tracking large state spaces
efficiently with low computation. The basic idea is to rep-
resent a set of states1 rather than a single state with a single
particle and thus increase the number of states (or hypothe-
ses) that may be tracked with the same number of particles.
This makes it possible to track a larger number of states for
the same computation, but results in a loss of information that
differentiates between the states that are lumped together and
tracked in abstraction. We formalize this tradeoff in terms of
bias and variance. Tracking in abstraction at a coarser res-
olution introduces a bias over tracking at a finer resolution,
but it reduces the variance of the estimator given a limited
number of samples. By dynamically varying the resolution in
different parts of the state space to minimize the bias-variance
error, a finite set of samples are used in a highly efficient man-
ner. Initial experimental results support our analysis and show
that the bias is more than compensated for by the reduction
in variance from not eliminating potential hypotheses prema-
turely for lack of a sufficient number of particles.

2 Bayesian Filtering

We denote the multivariate state at time t as X
t

and measure-
ments or observations as O

t

. As is commonly the case, we
concentrate on the discrete time, first order Markov formu-
lation of the dynamic state estimation problem. Hence, the
state at time t is a sufficient statistic of the history of mea-
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), includes all the available infor-
mation upto time t and provides the optimal solution to the
state estimation problem. In this paper we are interested in
estimating recursively in time a marginal of this distribution,
the filtering distribution, p(X
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), as the measurements be-

1or regions of a continuous state space



come available. Based on the Markovian assumption, the re-
cursive filter is derived as follows:
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This process is known as Bayesian filtering, optimal filter-
ing or stochastic filtering and may be characterized by three
distributions: (1) a transition model p(X

t
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), (2) an ob-
servation model p(O

t

jX

t

), and, (3) an initial prior distribu-
tion, p(X

0

). In a number of applications, the state space is
too large to compute the posterior in a reasonable time. Par-
ticle filters are a popular method for computing tractable ap-
proximations to this posterior.

2.1 Classical Particle Filter

A Particle filter (PF) [Metropolis and Ulam, 1949; Gordon
et al., 1993; Kanazawa et al., 1995] is a Monte Carlo ap-
proximation of the posterior in a Bayes filter. PFs are non-
parametric and can represent arbitrary distributions. PFs ap-
proximate the posterior with a set of N fully instantiated state

samples or particles, P
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where Æ(:) denotes the Dirac delta function. It can be shown
that as N !1 the approximation in (2) approaches the true
posterior density [Doucet and Crisan, 2002]. In general it
is difficult to draw samples from, p(X

t
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); instead, sam-
ples are drawn from a more tractable distribution, q(:), called
the proposal or importance distribution. Each particle is as-
signed a weight, w[i℄ to account for the fact that the sam-
ples were drawn from a different distribution [Rubin, 1988;
Rubinstein, 1981]. There are a large number of possible
choices for the proposal distribution, the only condition be-
ing that its support must include that of the posterior. The
common practice is to sample from the transition probability,
p(X
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), in which case the importance weight is equal to
the likelihood, p(O

t
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). The experiments in this paper were
performed using this proposal distribution. The PF algorithm
is:
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3 Variable Resolution Particle Filter

A well known problem with particle filters is that a large num-
ber of particles are often needed to obtain a reasonable ap-
proximation of the posterior distribution. For real-time state
estimation maintaining such a large number of particles is
typically not practical. However, the variance of the particle
based estimate can be high with a limited number of samples,
particularly when the process is not very stochastic and parts
of the state space transition to other parts with very low, or
zero, probability. Consider the problem of diagnosing loco-
motion faults on a robot. The probability of a stalled motor
is low and wheels on the same side generate similar observa-
tions. Motors on any of the wheels may stall at any time. A
particle filter that produces an estimate with a high variance
is likely to result in identifying some arbitrary wheel fault on
the same side, rather than identifying the correct fault.

The variable resolution particle filter introduces the notion
of an abstract particle, in which particles may represent in-
dividual states or sets of states. With this method a single
abstract particle simultaneously tracks multiple states. A lim-
ited number of samples are therefore sufficient for represent-
ing large state spaces. A bias-variance tradeoff is made to
dynamically refine and abstract states to change the resolu-
tion, thereby abstracting a set of states and generalizing the
samples or specializing the samples in the state into the indi-
vidual states that it represents. As a result reasonable poste-
rior estimates can be obtained with a relatively small number
of samples. In the example above, with the VRPF the wheel
faults on the same side of the rover would be aggregated to-
gether into an abstract fault. Given a fault, the abstract state
representing the side on which the fault occurs would have
high likelihood. The samples in this state would be assigned a
high importance weight. This would result in multiple copies
of these samples on resampling proportional to weight. Once
there are sufficient particles to populate all the refined states
represented by the abstract state, the resolution of the state
would be changed to the states representing the individual
wheel faults. At this stage, the correct hypothesis is likely to
be included in this particle based approximation at the level
of the individual states and hence the correct fault is likely to
be detected.

For the variable resolution particle filter we need: (1) A
variable resolution state space model that defines the relation-
ship between states at different resolutions, (2) an algorithm
for state estimation given a fixed resolution of the state space,
(3) a basis for evaluating resolutions of the state space model,
and (4) and algorithm for dynamically altering the resolution
of the state space.



3.1 Variable resolution state space model

We could use a directed acyclic graph (DAG) to represent the
variable resolution state space model, which would consider
every possible combination of the (abstract)states to aggre-
gate or split. But this would make our state space exponen-
tially large. We must therefore constrain the possible com-
binations of states that we consider. There are a number of
ways to do this. For the experiments in this paper we use
a multi-layered hierarchy where each physical (non-abstract)
state only exists along a single branch. Sets of states with
similar state transition and observation models are aggregated
together at each level in the hierarchy. In addition to the phys-
ical state set fX

k

g, the variable resolution model, M consists
of a set of abstract states fS

j

g that represent sets of states and
or other abstract states.
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Figure 1(a) shows an arbitrary Markov model and figure 1(b)
shows an arbitrary variable resolution model for 1(a). Figure
1(c) shows the model in 1(b) at a different resolution.

We denote the measurement at time t as z

t

and the se-
quence of measurement z

1

: : : z

t

as zt. From the dynamics,
p(x
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), and measurement probabilities p(z
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), we com-
pute the stationary distribution (Markov chain invariant distri-
bution) of the physical states �(x

k

)

[Behrends, 2000].

3.2 Belief state estimation at a fixed resolution

This section describes the algorithm for estimating a distri-
bution over the state space, given a fixed resolution for each
state, where different states may be at different fixed resolu-
tions. For each particle in a physical state, a sample is drawn
from the predictive model for that state p(x

t

jx

t�1

). It is then
assigned a weight proportional to the likelihood of the mea-
surement given the prediction, p(z

t
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t

). For each particle in
an abstract state, S

j

, one of the physical states, x
t

, that it
represents in abstraction is selected proportional to the prob-
ability of the physical state under the stationary distribution,
�(x

t

). The predictive and measurement models for this phys-
ical state are then used to obtain a weighted posterior sample.
The particles are then resampled proportional to their weight.
Based on the number of resulting particles in each physical
state a Bayes estimate with a Dirichlet(1) prior is obtained as
follows:
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where, n(x
t

) represents the number of samples in the physi-
cal state x
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and j N
t

j represents the total number of particles
in the particle filter. The distribution over an abstract state S
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at time t is estimated as:
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3.3 Bias-variance tradeoff

The loss l, from a particle based approximation p̂(x
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where, b(p̂(x
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)) is the bias and v(p̂(x
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)) is the variance.
The posterior belief state estimate from tracking states at

the resolution of physical states introduces no bias. But the
variance of this estimate can be high, specially with small
sample sizes. An approximation of the sample variance at the
resolution of the physical states may be computed as follows:
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The loss of an abstract state S
j

, is computed as the weighted

sum of the loss of the physical states x
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, as follows2:
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The generalization to abstract states biases the distribution
over the physical states to the stationary distribution. In other
words, the abstract state has no information about the relative
posterior likelihood, given the data, of the states that it repre-
sents in abstraction. Instead it uses the stationary distribution
to project its posterior into the physical layer. The projection
of the posterior distribution p̂(S
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), of abstract state S
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the resolution of the physical layer ~p(x
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As a consequence of the algorithm for computing the pos-
terior distribution over abstract states described in section 3.2,
an unbiased posterior over physical states x
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is available at no
extra computation, as shown in equation (4). The bias b(S
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introduced by representing the set of physical states x
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in abstraction as S
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It is the weighed sum of the squared difference between the
unbiased posterior p̂(x
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), computed at the resolution of the
physical states and the biased posterior ~p(x
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), computed at
the resolution of abstract state S
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.
An approximation of the variance of abstract state S
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computed as a weighted sum of the projection to the physical
states as follows:
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2The relative importance/cost of the physical states may also be
included in the weight
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Figure 1: (a)Arbitrary Markov model (b) Arbitrary variable resolution model corresponding to the Markov model in (a). Circles that enclose
other circles represent abstract states. S2 and S3 and S6 are abstract states. States S2, S4 and S5 form one abstraction hierarchy, and states
S3, S6, S7, S8 and S9 form another abstraction hierarchy. The states at the highest level of abstraction are S1, S2 and S3. (c) The model in
(b) with states S4 and S5 at a finer resolution.

The loss from tracking a set of states x
t

2 S

j

, at the resolu-
tion of the physical states is thus:
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The loss from tracking the same set of states in abstraction as
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is:
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There is a gain in terms of reduction in variance from gener-
alizing and tracking in abstraction, but it results in an increase
in bias. Here, a tradeoff between bias and variance refers to
the process of accepting a certain increase in one term for a
larger reduction in the other and hence in the total error.

3.4 Dynamically varying resolution

The variable resolution particle filter uses a bias-variance
tradeoff to make a decision to vary the resolution of the state
space. A decision to abstract to the coarser resolution of ab-
stract state S

j

, is made if the state space is currently at the
resolution of states S

i

, and the combination of bias and vari-
ance in abstract state S

j

, is less than the combination of bias
an variance of all its children S

i

, as shown below:
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On the other hand if the state space is currently at the reso-
lution of abstract state S

j

, and the reverse of equation (14) is
true, then a decision to refine to the finer resolution of states
S

i

is made. The resolution of a state is left unaltered if its
bias-variance combination is less than its parent and its chil-
dren. To avoid hysteresis, all abstraction decisions are con-
sidered before any refinement decisions.

Each time a new measurement is obtained the distribution
of particles over the state space is updated. Since this alters
the bias and variance tradeoff, the states explicitly represented
at the current resolution of the state space are each evaluated
for gain from abstraction or refinement. Any change in the
current resolution of the state space is recursively evaluated
for further change in the same direction.

4 Experimental results

The problem domain for our experiments involves diagnos-
ing locomotion faults in a physics based simulation of a six
wheel rover. Figure 2(a) shows a snapshot of the rover in the
Darwin2K [Leger, 2000] simulator.

The experiment is formulated in terms of estimating dis-
crete fault and operational modes of the robot from contin-
uous control inputs and noisy sensor readings. The discrete
state, x

t

, represents the particular fault or operational mode.
The continuous variables, z

t

, provide noisy measurements of
the change in rover position and orientation. The particle set

P

t

therefore consists of N particles, where each particle x
[i℄

t

is a hypothesis about the current state of the system. In other
words, there are a number of discrete fault and operational
states that a particle may transition to based on the transition
model. Each discrete fault state has a different observation
and predictive model for the continuous dynamics. The prob-
ability of a state is determined by the density of samples in
that state.

The Markov model representing the discrete state transi-
tions consists of 7 states. As shown in figure 2(c) the normal
driving (ND) state may transition back to the normal driv-
ing state or to any one of six fault states: right front (RF),
right middle (RM), right rear (RR), left front (LF), left mid-
dle (LM) and left rear (LR) wheel stuck. Each of these faults
cause a change in the rover dynamics, but the faults on each
side (right and left), have similar dynamics.

Given that the three wheels on each side of the rover have
similar dynamics, we constructed a hierarchy that clusters the
fault states on each side together. Figure 2(d) shows this hier-
archical model, where the abstract states right side fault (RS),
and left side fault (LS) represent sets of states fRF, RM, RRg
and fLF, LM, LRg respectively. The highest level of abstrac-
tion therefore consists of nodes fND, RS, LSg. Figure 2(e)
shows how the state space in figure 2(d) would be refined if
the bias in the abstract state RS given the number of parti-
cles outweighs the reduction in variance over the specialized
states RF, RM and RR at a finer resolution.

When particle filtering is performed with the variable reso-
lution particle filter, the particles are initialized at the highest
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Figure 2: (a) Snapshot from the dynamic simulation of the six wheel rocker bogie rover in the simulator, (b) An example showing the normal
trajectory (ND) and the change in the same trajectory with a fault at each wheel. (c) Original discrete state transition model. The discrete
states are: Normal driving (ND), right and left, front, middle and rear wheel faulty (RF, RM, RR, LF, LM, LR) (d) Abstract discrete state
transition model. The states, RF, RM and RR have been aggregated into the Right Side wheel faulty states and similarly LF, LM and LR into
Left Side wheel faulty states (RS and LS). (e) State space model where RS has been refined. All states have self transitions that have been
excluded for clarity.

level in the abstraction hierarchy,i.e. in the abstract states ND,
RS and LS. Say a RF fault occurs, this is likely to result in a
high likelihood of samples in RS. These samples will mul-
tiply which may then result in the bias in RS exceeding the
reduction in variance in RS over RF, RM and RR thus favor-
ing tracking at the finer resolution. Additional observations
should then assign a high likelihood to RF.

The model is based on the real-world and is not very
stochastic. It does not allow transitions from most fault states
to other fault states. For example, the RF fault does not tran-
sition to the RM fault. This does not exclude transitions to
multiple fault states and if the model included multiple faults,
it could still transition to a “RF and RM” fault, which is dif-
ferent from a RM fault. Hence, if there are no samples in
the actual fault state, samples that end up in fault states with
dynamics that are similar to the actual fault state may end up
being identified as the fault state. The hierarchical approach
tracks the state at an abstract level and does not commit to
identifying any particular specialized fault state until there is
sufficient evidence. Hence it is more likely to identify the
correct fault state.

Figure 3(a) shows a comparison of the error from moni-
toring the state using a classical particle filter that tracks the
full state space, and the VRPF that varies the resolution of
the state space. The X axis shows the number of particles
used, the Y axis shows the KL divergence from an approxi-
mation of the true posterior computed using a large number of
samples. 1000 samples were used to compute an approxima-
tion to the true distribution. The KL divergence is computed
over the entire length of the data sequence and is averaged
over multiple runs over the same data set 3. The data set in-
cluded normal operation and each of the six faults. Figure
3(a) demonstrates that the performance of the VRPF is su-

3The results are an average over 50 to 5 runs with repetitions
decreasing as the sample size was increased.

perior to that of the classical filter for small sample sizes. In
addition figure 3(b) shows the Kl-divergence along the Y axis
and wall clock time along the X axis. Both filters were coded
in matlab and share as many functions as possible.

5 Discussion and Future Work

This paper presents a novel approach for state abstraction in
particle filters that allows efficient tracking of large discrete,
continuous or hybrid state spaces. The advantage of this ap-
proach is that it makes efficient use of the available computa-
tion by selecting the resolution of the state space based on an
explicit bias-variance tradeoff. It performs no worse than a
classical particle filter with an infinite number of particles 4.
But with limited particles we show that its performance is
considerably superior. The VRPF does not prematurely elim-
inate potential hypotheses for lack of a sufficient number of
particles. It maintains particles in abstraction until there are a
sufficient number of particles to provide a low variance esti-
mate at a lower resolution.

The VRPF generalizes from current samples to unsampled
regions of the state space. Regions of the state space that had
no samples at time t may acquire samples at time t + 1 on
abstraction. This provides additional robustness to noise that
may have resulted in eliminating a likely hypothesis. [Koller
and Fratkina, 1998] addresses this by using the time t sam-
ples as input to a density estimation algorithm that learns a
distribution over the states at time t. Samples at time t+1 are
then generated using this generalized distribution. [Ng et al.,
2002] uses a factored representation to allow a similar mix-
ing of particles. The VRPF uses a bias-variance tradeoff to
generalize more selectively and efficiently.

We have presented the variable resolution particle filter for
a discrete state space. We plan to extend it to a continuous

4There is a minor overhead in terms of evaluating the resolution
of the state space
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Figure 3: Comparison of the KL divergence from the true distribution for the classical particle filter and the VRPF, against (a) number of
particles used, (b) wall clock time.

state space where regions of state space, rather than sets of
states are maintained at different resolutions. A density tree
may be used for efficiently learning the variable resolution
state space model with abstract states composed of finitely
many sub-regions.

The VRPF makes efficient use of available computation
and can provide significantly improved posterior estimates
given a small number of samples. However, it should not
be expected to solve all problems associated with particle im-
poverishment. For example, it assumes that different regions
of the state space are important at different times. We have
generally found this to be the case, but the VRPF does not im-
prove performance if it is not. Another situation is when the
transition and observation models of all the states are highly
dissimilar and there is no possibility for state aggregation.
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