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Abstract

Planetary rovers operate in environments where human intervention is expensive, slow,
unreliable, or impossible. It is therefore essential to monitor the behavior of these
robots so that contingencies may be addressed before they result in catastrophic fail-
ures. This monitoring needs to be efficient since there is limited computational power
available on rovers.

We propose an efficient particle filter for monitoring faults that combines the Un-
scented Kalman Filter (UKF) [7] and the Variable Resolution Particle Filter (VRPF)
[16]. We begin by using the UKF to obtain an improved proposal distribution for a
particle filter which tracks discrete fault variables as part of its state space. This re-
quires computing an unscented transform for every particle and every possible discrete
transition to a fault or nominal state at each instant in time. Since there are potentially
a large number of faults that may occur at any instant, this approach does not scale
well. We use the VRPF to address this concern. The VRPF tracks abstract states that
may represent single states or sets of states. There are many fewer transitions between
states when they are represented in abstraction. We show that the VRPF in conjunction
with a UKF proposal improves performance and may potentially be used in large state
spaces. Experimental results show a significant improvement in efficiency.

1 Introduction

A number of future space exploration missions include rovers. To prevent mission failure,
it is essential to be able to detect and recover from faults. Here a fault is defined as a
deviation from the expected behavior of the system, while a failure is a complete interrup-
tion of the system’s ability to perform its required operations. The faults addressed here
include mechanical component failures, such as broken motors and gears; faults due to en-
vironmental interactions, such as a wheel stuck against a rock; and sensor failures, such as
broken encoders. Interpreting these faults requires context sensitive interpretation of sensor
data that can be obtained by continuously monitoring the dynamics of the system, which
tend to differ according to operating conditions. For example, for a rover, high power draw
on flat ground may be a cause for concern, but high power draw on a slope might be per-
fectly acceptable. Sensors do not directly report these dynamics because they are noisy
and limited, i.e., they do not have complete information about the state of the rover and the
environment that it is operating in. In addition, there are a large number of components that
can fail in various combinations at any instant in time and the computational resources are
too limited to consider all possible combinations.



We focus here on the rover domain. The fault monitoring problem is formulated in terms
of providing a distribution over the unobservable discrete fault and operational states of a
rover from noisy measurements of continuous sensor readings. We address this problem
using a probabilistic technique called Bayes filtering. Bayes filters estimate the distribution
over the state space (the belief state) of a dynamic system conditioned on the data. Tracking
an exact posterior is intractable for the fault monitoring problem because the state space is
very large. We use a special case of a Bayes filter called the particle filter to approximate
the distribution over the state space [11]. Particle filters [3, 6] are a Monte Carlo method
for monitoring dynamic systems by approximating the belief state with a set of samples
or “particles”. The benefits of this approach are that it is non-parametric and that it can
represent arbitrary distributions. Both discrete and continuous variables can be represented
with a single particle filter. Particle filters are easily implemented based on a forward
simulation.

The main drawback of particle filters is that the sampling process has a high variance,
particularly in high-dimensional spaces. As a result, an extremely large number of particles
are needed to obtain a reasonable approximation of the belief state. It is not feasible to
use such a large number of particles, given the computational constraints of a planetary
rover. In this paper we present an improved particle filter that reduces the variance of
the particle filter estimate by taking into account the next measurement when generating
particles. This is done by computing an approximately optimal proposal distribution for
each transition using an Unscented Kalman Filter (UKF) [7]. Particles are then generated
from this proposal distribution. To improve the scalability of this approach we use the
Variable Resolution Particle Filter (VRPF). The VRPF introduced the notion of abstract
states that may represent individual states or sets of states [16]. The VRPF dynamically
varies the resolution of the state space for computational efficiency. Where belief is strong,
resolution is fine. Where belief is low, resolution is coarse, abstracting multiple similar
states together. The VRPF reduces the number of next state transitions. Experimental
results show a significant improvement in efficiency.

2 BAYESIAN MODEL FOR MONITORING FAULTS

Let D represent the finite set of discrete fault and operational modes of the rover, d
t

2 D

the state of the rover at time t and fd
t

g the discrete, first order Markov chain representing
the evolution of the state over time. The problem of monitoring the state of the rover
consists of providing a belief (a distribution over the state set D) at each time step as it
evolves based on the following transition model:
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3 CLASSICAL PARTICLE FILTER

The monitoring problem consists of estimating the marginal p(d
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There is no closed form solution to this recursion, hence we use a particle filter approxi-
mation. A particle filter (PF) [5, 8] is a Monte Carlo approximation of the posterior in a
Bayes filter. PFs approximate the posterior with a set of N fully instantiated state samples
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where Æ(�) denotes the Dirac delta function. It can be shown that as N ! 1 the approx-
imation in (3) approaches the true posterior density [14]. Because it is difficult to draw
samples from the true posterior, we instead draw them from a more tractable distribution
q(�), called the proposal (or importance) distribution. There are a large number of possible
choices for the proposal distribution, the only condition being that its support must include
that of the posterior. The importance weights are used [12, 13] to account for the discrep-
ancy between the proposal distribution q(�) and the true distribution p(x
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The simplest choice for the proposal distribution is the transition probability

q(x

t

; d

t

) = p(x

t

; d

t

j x

[i℄

t�1

; d

[i℄

t�1

) = p(x

t

j x

[i℄

t�1

; d

t

)p(d

t

j d

[i℄

t�1

)

in which case the importance weight is equal to the likelihood
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This is the most widely used proposal distribution [1, 4, 9] and is simple to compute, but it
can be inefficient since it ignores the most recent measurement z

t

. Particularly in the fault
diagnosis domain, where there are a large number of possible faults that may occur at any
instant in time, the most recent measurement can be very informative.

4 METHODS FOR ENHANCING MONITORING EFFICIENCY

A well-known problem with particle filters is that a large number of particles are often
needed to obtain a reasonable approximation of the posterior distribution. For real-time
fault detection and identification, maintaining such a large number of particles is typically
not practical. However, the variance of the particle-based estimate can be high with a
limited number of samples, since a large number of faults may potentially occur at any
instant. In addition, faults are typically not very likely and so some parts of the state space
transition to other parts with very low probability. Consider the problem of diagnosing
locomotion faults on a robot. The probability of a stalled motor is low and wheel faults
on the same side generate similar observations. Motors on any of the wheels may stall
at any time. A particle filter that produces an estimate with a high variance is likely to
result in identifying some arbitrary wheel fault on the same side, rather than identifying the
correct fault. Here we describe a method that enables efficient monitoring by producing
low variance estimates even for small sample sizes. The approach combines the Unscented
Kalman Filter with the Variable Resolution Particle Filter.

4.1 UNSCENTED KALMAN FILTER
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distribution, so we instead use UKFs [7] to approximate it. This approximation is similar
to an unscented particle filter [15], but it takes into account the fact that some of our state
variables are discrete while others are continuous.

Bayes’ rule and our conditional independence assumptions imply
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The normalizing constants in the above equations are

�

[i℄

= 1=p(z j x

[i℄

t�1

; d

[i℄

t�1

)

�

[i℄

d

t

= p(z

t

j x

[i℄

t�1

; d

t

)

We can ignore �[i℄ since it doesn’t depend on x

t

or d
t

. The discrete transition probability

p(d

t

j d

[i℄

t�1

) is known. So, we will use UKFs to approximate �
[i℄

d

t

and p(x

t

j x

[i℄

t�1

; d

t

; z

t

)

for each particle i and possible discrete transition d
t

. To compute these approximations we
need to examine each possible pair of i and d

t

separately; this process can be computation-
ally expensive, a complaint which we will return to in section 4.2.

The UKF is a recursive minimum mean square error estimator that often provides an im-
provement over the Extended Kalman Filter (EKF) for nonlinear models. The EKF lin-
earizes the nonlinear process and measurement models using the first order terms of a
Taylor series expansion. The UKF, on the other hand, does not approximate the nonlinear
process and measurement models. It uses the actual models and instead approximates the
distribution of the state variable as a Gaussian. The Gaussian approximation is specified
using a minimal set of deterministically chosen samples called sigma points. Each sigma
point is independently propagated through the process and measurement models, and the
set of propagated sigma points is analyzed to provide a posterior Gaussian approximation.
The process of calculating, propagating, and analyzing the sigma points is called an Un-
scented Transform or UT; see [7] for details.

In our case, we use an UT to approximate p(x
t

j x

[i℄

t�1

; d

t

; z

t

) as a Gaussian. This approxi-
mation will usually be excellent because we are conditioning on a single previous state and
a single possible fault. Given this approximation, we can compute analytically the values
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Only the last of these quantities is not given by the standard Kalman filter equations. It is:
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from the UT).

Once we have finished our UTs, we can sample from our proposal distribution by first
drawing d

t

and then x

t

according to (5–6), then computing importance weights via (4).
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and i, we must compute an UKF for each particle and
every possible next discrete state transition. Given that there are potentially a large number
of faults to transition to at any step, this may be inefficient. We propose to use the Variable
Resolution Particle Filter to address this.



4.2 VARIABLE RESOLUTION PARTICLE FILTER

The Variable Resolution Particle Filter (VRPF) utilizes abstract particles that may repre-
sent individual states or sets of states. With this method, a single abstract particle can
simultaneously track multiple states. A limited number of samples are therefore sufficient
for representing large state spaces. A bias-variance tradeoff is made to abstract and refine
states dynamically to change the resolution. As a result reasonable posterior estimates can
be obtained with a relatively small number of samples.

We use a multi-layered hierarchy to represent the variable resolution state space model.
Each physical (non-abstract) state is a leaf of the hierarchy. Sets of states with similar state
transition and observation models are aggregated together at each level in the hierarchy.
So, in addition to the physical states S

k

, the variable resolution model uses abstract states
A

j

that represent sets of one or more physical states. We use domain knowledge to create
a multi-layer hierarchy of abstract states:
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In the example above, the VRPF would aggregate the wheel faults on the same side of
the rover together into an abstract fault state. Given a fault, the abstract state representing
the side on which the fault occurs would have high likelihood and the samples in this
state would be assigned a high importance weight. This would result in multiple copies of
these samples on resampling proportional to weight. Once there are sufficient particles to
populate all the refined states represented by the abstract state, the resolution of the state
would be changed to the states representing the individual wheel faults. At this stage, the
correct hypothesis is likely to be included in this particle based approximation at the level
of the individual states and hence the correct fault is likely to be detected.

For any fixed resolution of the state space, a posterior distribution is computed by projecting
the abstract samples onto the physical states, computing the posterior sample set given the
measurement, and determining the abstract states that the posterior samples belong to. To
vary the resolution of the state space, the VRPF uses a bias-variance tradeoff. Suppose that
the VRPF is currently tracking states at one level of the hierarchy. A decision to abstract to
the next coarser resolution is made if the combination of bias and variance in the abstract
state A

j

is less than the combination of bias and variance of all its children A

i

, as shown
below:
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On the other hand if the state space is currently at the coarser resolution and the reverse of
equation (8) holds, then the VRPF refines to the next finer resolution. To avoid hysteresis,
all abstraction decisions are considered before any refinement decisions. Details on the
VRPF may be found in [16].

We create a variable resolution state space model for the discrete fault states. This reduces

the number of discrete transitions that need to be considered when computing �

[i℄

d

t

. As our
experimental results show, the resulting computational savings are significant.

5 EXPERIMENTAL RESULTS

The problem domain for our experiments involves diagnosing locomotion faults in a
physics based simulation of a six wheel rover. Figure 1(a) shows a snapshot of the rover
in the Darwin2K [10] simulator. The particle set representing the state consists of N par-

ticles, where each particle [d
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℄ is a hypothesis about the current state of the system.
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Figure 1: (a) Snapshot from the dynamic simulation of the six wheel rocker bogie rover in the sim-
ulator, (b) An example showing the normal trajectory (ND) and the change in the same trajectory
with a fault at each wheel. (c) Original discrete state transition model. The discrete states are: Nor-
mal driving (ND), right and left, front, middle and rear wheel faulty (RF, RM, RR, LF, LM, LR) (d)
Abstract discrete state transition model. The states, RF, RM and RR have been aggregated into the
Right Side wheel faulty states and similarly LF, LM and LR into Left Side wheel faulty states (RS and
LS). (e) State space model where RS has been refined. All states have self transitions that have been
excluded for clarity.

d
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t

is the discrete fault or normal state and x

[i℄

t

is the multi-dimensional continuous state
representing the change in position and orientation of the rover. Each discrete fault state
has a different observation and predictive model for the continuous state. The probability
of a discrete state is determined by the density of samples in that state.

The Markov model representing the discrete state transitions consists of 7 states. As shown
in figure 1(c) the normal driving (ND) state may transition back to the normal driving state
or to any one of six fault states: right front (RF), right middle (RM), right rear (RR), left
front (LF), left middle (LM) and left rear (LR) wheel stuck. Each of these faults cause
a change in the rover dynamics, but the faults on each side (right and left) have similar
dynamics.

Figure 2 shows a comparison of the error from monitoring the state using a classical particle
filter and a particle filter that uses an UKF proposal. The X axis shows the number of
particles used, the Y axis shows the KL divergence from an approximation of the true
posterior computed using a large number of samples. For the experiment in figure 2, the
continuous measurements were the absolute rover position. 1000000 samples were used to
compute an approximation to the true distribution. The KL divergence is computed over
the entire length of the data sequence and is averaged over multiple runs over the same
data set.1 The data set included normal operation and each of the six faults. Figure 2(a)
demonstrates that using an UKF proposal dramatically improves the performance. Figure
2(b) shows the KL-divergence along the Y axis and wall clock time2 along the X axis.
Both filters were coded in matlab and share as many functions as possible.

Given that the three wheels on each side of the rover have similar dynamics, we constructed
a hierarchy for the VRPF that clusters the fault states on each side together. Figure 1(d)
shows this hierarchical model, where the abstract states right side fault (RS), and left side
fault (LS) represent sets of states fRF, RM, RRg and fLF, LM, LRg respectively. The

1The results are an average over 50 to 5 runs with repetitions decreasing as the sample size was
increased.

2Given that this is wall clock time, it should be taken with a grain of salt. The tests were run on
lab machines used by multiple users. We hope to have minimized the influence of other processes by
running the tests at night.
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Figure 2: Comparison of the KL divergence from the true distribution for the classical particle filter
and a particle filter that uses an UKF proposal, against (a) number of particles used, (b) wall clock
time.

highest level of abstraction therefore consists of nodes fND, RS, LSg. Figure 1(e) shows
how the state space in figure 1(d) would be refined if the bias in the abstract state RS given
the number of particles outweighs the reduction in variance over the specialized states RF,
RM and RR at a finer resolution.

When particle filtering is performed with the VRPF, the particles are initialized at the high-
est level in the abstraction hierarchy, i.e., in the abstract states ND, RS and LS. If a RF fault
occurs, this is likely to result in a high likelihood of samples in RS. These samples will
multiply, which may then result in the bias in RS exceeding the reduction in variance in RS
over RF, RM and RR, thus favoring tracking at the finer resolution. Additional observations
should then assign a high likelihood to RF.

Figure 3 shows a comparison of the performance of the classical particle filter, a particle fil-
ter with an UKF proposal (UPF) and a VRPF with an UKF proposal distribution (VR-UF).
The improvement in performance of the VR-UF over UPF is expected to be even greater
when the variable resolution state space model is larger and results in a larger reduction in
the size of the state space than the simple experiment we present. This is because a UKF
needs to be computed for every possible discrete state transition. The discrete state transi-
tions between the abstract state in the VR-UF are smaller than the discrete state transitions
between the physical states used in UPF.

6 CONCLUSIONS

We present an efficient method for monitoring hybrid state spaces and demonstrate the
applicability of the approach for fault diagnosis on rovers. Unlike a number of existing
methods, our approach is valid even when the process is non-linear. It is based on par-
ticle filters and has all the advantages of particle filters which include the ability to rep-
resent non-parametric posteriors, non-linear processes, and easy extension to an anytime
approach. The main drawback of particle filters is that a large number of samples may be
needed for reasonable approximations. Our approach uses an Unscented Kalman Filter to
focus particles in regions of the state space with high predictive likelihood which requires
a comparatively smaller number of samples for performance comparable to a classical par-
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Figure 3: Comparison of the KL divergence from the true distribution for the classical particle filter,
a particle filter with UKF proposal and the VRPF with UKF proposal, for a hybrid state space against
(a) the number of particles used, (b) wall clock time.

ticle filter. In addition it uses the Variable Resolution Particle Filter that maintains samples
in different regions of the state space at dynamically varying resolution to minimize the
number of next state transitions that must be considered when computing the predictive
likelihood using an UKF approximation. Our experimental results show a significant im-
provement in performance with this approach. Although we used the UKF approximation
at each time step, one may choose to use it only when a transition is made from a nor-
mal to fault state since this transition introduces a high uncertainty in the continuous state
estimate.
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