
Xavier: An Autonomous Mobile Robot on the Web

Reid Simmons, Joaquin Fernandez1, Richard Goodwin2,
Sven Koenig3, Joseph O’Sullivan

School of Computer Science, Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

For the past three years, we have been running an
experiment in web-based interaction with an autonomous
indoor mobile robot. The robot, Xavier, can accept
commands to travel to different offices in our building,
broadcasting camera images as it travels. The experiment,
which was originally designed to test a new navigation
algorithm, has proven very successful, with over 30,000
requests received and 210 kilometers travelled, to date.
This article describes the autonomous robot system, the
web-based interfaces, and how they communicate with the
robot. It highlights lessons learned during this experiment
in web-based robotics and includes recommendations for
putting future mobile robots on the web.

Introduction
In December 1995, we began what we assumed would be a
short (two to three month) experiment to demonstrate the
reliability of a new algorithm that we had developed for
autonomous indoor navigation [12]. To provide a continual
source of commands to the robot, we set up a web page in
which users throughout the world could view the robot’s
progress and command its behavior. What we failed to
anticipate was the degree of interest an autonomous mobile
robot on the web would have. Now, three years, 30,000
requests and 210 kilometers later, Xavier continues to
fascinate people who have read about it in the popular
press, stumbled across its web page, or found it through one
of the many links to its web site (http://www.cs.cmu.edu/
~Xavier).

The mobile robot, Xavier (Figure 1), is built on top of a 24
inch diameter base from Real World Interface. The
commercial base is a four-wheeled synchro-drive
mechanism that allows for independent control of the
translational and rotational velocities. The torso and
superstructure of Xavier were designed and built by a class
of Computer Science graduate students in 1993. The
sensors on Xavier include bump panels, wheel encoders, a
24 element sonar ring, a Nomadics front-pointing laser
light striper with a 30 degree field of view, and a Sony color

camera on a Directed Perception pan-tilt head. Xavier also
has a speaker and a speech-to-text card. Control,
perception, and planning are carried out on two 200 MHz
Pentium computers, running Linux. A 486 laptop, also
running Linux, sits on top of the robot and provides for
graphical display and communication to the outside world
via a Wavelan wireless Ethernet system. The three on-
board computers are connected to each other via thin-wire
Ethernet.

Although our main research focus has not been the web-
based aspects of Xavier, the experiment has taught us
several things about the interactions between remote users
and autonomous robots. The main lessons are about robot
reliability and the types of remote interactions that are
useful, together with some sociological anecdotes about
people, technology, and the web.

Xavier differs from most other web-based robots in that it
is mobile and autonomous (the Rhino tour guide robot [1]
is another, highly successful, web-based autonomous
mobile robot). Mobility impacts web-based robots because
the bandwidth achievable by (affordable) radio modems is
rather limited. Thus, real-time visual feedback and control
is often difficult to achieve, especially if the workspace of
the robot is a large area (such as a whole building) so that

1. Now at University of Vigo, Vigo, Spain.
2. Now at IBM T J Watson Research Center, Yorktown Heights, NY.
3. Now at Georgia Institute of Technology, Atlanta, GA.

Figure 1: Xavier



radio coverage becomes a factor. Also, battery power is
limited, so the robot can operate only a few hours per day.

Autonomy can help in reducing the bandwidth
requirements for control, but introduces problems of its
own, particularly in the area of interactivity. People seem to
prefer “hands on” control, and do not get the same type of
immediate feedback with an autonomous mobile robot that
they would with a teleoperated one. This is exacerbated by
the limited up-time of the robot, which reduces the chances
for people to see the robot actually operating when they
happen to come to its web site.

Despite these challenges, we believe that Xavier has been
quite a successful (if somewhat inadvertent) experiment in
web-based robotics. In particular, it has given thousands of
people their first introduction to the world of mobile robots.
Judging by the feedback we have received, the overall
response to Xavier has been extremely positive and people
are generally very impressed that robots can have such
capabilities (many want one for their own). 

The next section describes the on-board navigation
software system of Xavier. The following section describes
the off-board interface to the web, and how it interfaces to
Xavier. We then present some lessons learned over the past
three years with regards to autonomous mobile robots and
web-based interaction.

Autonomous Navigation System
The Xavier navigation system is a layered architecture
(Figure 2), consisting of servo-control (provided by the
commercial base and pan-tilt head), obstacle avoidance,
navigation, and path planning. Each layer receives
“guidance” from the layer above and provides commands
to the layer below. Each layer also filters and abstracts
information for the higher layers, enabling them to operate
more globally without getting swamped by data. While the
navigation system and each of the individual layers have

been described elsewhere [11], we give a brief overview
here of the salient features of the system.

The servo-control layer, which controls both the base and
pan-tilt head, provides simple velocity and/or position
control. It also provides feedback on command execution
and position information, based on encoder readings. The
servo-control layer is primarily commercial software that
comes with the hardware.

The obstacle avoidance layer keeps the robot moving in a
desired direction, while avoiding static and dynamic
obstacles (such as tables, trash cans, and people). It uses the
Lane-Curvature Method [8], which tries to find highly
traversable lanes in the desired direction, and uses the
Curvature-Velocity Method [10] to switch between lanes
and avoid dynamic obstacles. Both methods take vehicle
dynamics into account to provide safe, high-speed motion
(Xavier averages about 45 cm/sec in peopled
environments).

The navigation layer is responsible for getting the robot
from one location to another. It uses a Partially Observable
Markov Decision Process (POMDP) model to maintain a
probability distribution of where the robot is at all times,
choosing actions based on that distribution [5, 7, 12]. Thus,
while the robot usually never knows precisely where it is,
it rarely gets lost.

The path planning layer determines efficient routes based
on a topological map, augmented with rough metric
information, and the capabilities of the robot. It uses a
decision-theoretic approach to choose plans with high
expected utility, taking sensor and actuator uncertainty into
account [5]. For instance, if there is a reasonable chance
that the robot will miss seeing a corridor intersection (and
thus have to backtrack), the planner might choose a
somewhat longer path that avoids that intersection
altogether.

The Xavier navigation system is implemented as a
collection of asynchronous processes, distributed over the
three computers on-board Xavier, that are integrated and
coordinated using the Task Control Architecture (TCA).
TCA provides facilities for interprocess communication
(message passing), task decomposition, task
synchronization, execution monitoring, exception
handling, and resource management [9]. Using TCA, new
processes can be easily added and removed from the
system, even as it is running.

In addition to the layers described above, there are
processes that control the camera and pan-tilt head, provide
speech generation, and monitor the robot’s execution and
recover from failures [2].

Web-Based Interface
The World Wide Web interface was designed with the
intention of making it easy for non-roboticists to interact

Figure 2: The Navigation System

Path Planning
(Decision-Theoretic Planning)

Navigation
(POMDPs)

Obstacle Avoidance
(Lane-Curvature Method)

Servo-Control
(Commercial)

In
te

rp
ro

ce
ss

 C
om

m
un

ic
at

io
n

an
d

 C
oo

rd
in

at
io

n 
(T

C
A

)



with the robot. The command interface web page (Figure 3)
shows Xavier’s current status (updated every 5-10 seconds)
and provides a discrete list of destinations to send the robot
(about a dozen different locations, mainly offices and
classrooms, for each floor of our building), a list of simple
tasks to perform at that location, and space to enter an
(optional) email address. The tasks that Xavier can perform
at a destination include taking a picture, saying “hello”, and
telling a robot-related knock-knock joke (the
overwhelmingly favorite task).

When the user submits the task request, a confirmation web
page is sent back immediately that indicates when the robot
will likely carry out the task (either immediately, if the
robot is operational and not busy, at some time in the near
future if it is up and busy, or some time in the indefinite
future if the robot is not currently on line). If the request
includes a legitimate email address, Xavier will send email
after it achieves the task, and will include a mime-encoded
image (gif format) showing what it saw when it reached
that destination (plus the text of the knock-knock joke it
told, if that was its task).

In addition to the command interface page, there is a
monitoring web page that includes the robot’s current
status, a zoomable map of the floor Xavier is currently on,
and a color picture of what it currently sees (Figure 4). Both
the map and the camera image are sent as gifs and are
updated every 5-10 seconds. The map shows the area
around the robot and its most likely pose, based on the
probability distribution the robot maintains. Additional
web pages include information about our lab, statistics on
Xavier’s performance, a guestbook, and a “robot joke
contest” page.

The web-based interface is implemented as an additional
on-board layer on top of the navigation system (Figure 2)
plus off-board processes for managing the web site (Figure
5). The task sequencing layer is responsible for carrying
out Xavier’s tasks. This includes commanding the path
planning layer to navigate to the requested goal location,
centering the robot at the doorway if the destination is an
office or classroom, and executing the given task (taking a
picture, saying “hello”, telling a knock-knock joke).
Currently, the task sequencing layer has only limited ability
to monitor for task achievement or to recover from failures.
Related work, however, has developed a much more
sophisticated task sequencing layer [4, 11].

The communications bridge process, which also resides
on board, is responsible for exchanging data between the
on-board and off-board processes over a radio modem.
Data exchange is via the TCA message passing facility,
which is built on top of TCP-IP. The bridge process
receives task and data requests from the off-board
processes and forwards them to the appropriate on-board
processes. In the other direction, the communications
bridge receives position estimates, route plans and camera
images (gifs) from the on-board processes and forwards
them to the off-board processes.

The rationale for having one process responsible for all on-
board/off-board communications is that if radio
communication is lost for a while, the other on-board
processes are not blocked trying to send data. In this way,
Xavier autonomously (and safely) continues to carry out its
tasks, even if it loses communication with the outside
world.

Figure 3: Command Interface Web Page Figure 4: Xavier Monitoring Web Page



The web site management system consists of two off-board
processes, running on a Sparc5 workstation that interface to
a Netscape web server, also running on the Sparc machine.
The task manager is responsible for queueing user
requests, dispatching requests to the task sequencing layer
(via the communications bridge), and sending email
confirmations to users after each task is completed. The
task manager uses a simple scheduling algorithm that tries
to minimize the time until users’ requests get executed. It
computes the utility of going to a particular location as the
sum of the utilities for each pending request for that
destination, where the utility of an individual request is an
exponential function of how long the request has been
pending. The task manager then chooses the destination
with the highest utility. Thus, it will be indifferent between
a destination for which a single user has been waiting a
fairly long period of time and one where many users have
been waiting shorter periods. Note that, in particular, there
has been no effort to minimize the overall travel distance of
the robot, since the original goal of the experiment was to
stress-test the navigation system.

The web manager process is responsible for maintaining
the web pages. It requests position information and camera
images, creates a gif showing the robot in the map, and
creates new web pages with the robot status, map, and
camera images. It also creates new command interface
pages, depending on the floor Xavier is currently on (or
which floor it will be on when it next runs). The web
manager actually creates four types of pages that differ
only in the bandwidth requirements needed for viewing on
the web. The pages with the lowest bandwidth

requirements contain a low-resolution camera image and
are updated every 20 seconds. The pages with the highest
bandwidth requirements have a high-resolution image and
are updated continually with streaming images (“push”
technology).

While the robot is on line infrequently, due to battery limits
and other research demands for use of the robot, the task
manager and web manager processes are always running. If
the web manager cannot connect (via TCA and the
communications bridge) to the on-board processes, it
assumes the robot is off-line, and adjusts the status message
accordingly. When the task manager receives a request and
Xavier is off line, it queues the request. In this way, users
can get access to the robot, eventually, even if they are
unable to connect to it during normal operational hours
(due to timezone differences, etc.)

Lessons Learned
The main lesson learned was about the reliability of the
navigation system. During three years of web-based
operation (December 1995 through December 1998),
Xavier received over 30,000 requests and carried out over
4,700 separate tasks (since requests are queued and then
bundled together, the number of tasks is smaller than the
total number of requests). In the process, Xavier operated
for over 340 hours and traveled over 210 kilometers
(Figure 6). The average success rate for the past three years
in achieving tasks is about 95%, and that has increased to
about 98% in recent months (Figure 7, see also [11] for a
discussion of the navigation results). We also learned that
nothing beats having naive users to test a system’s
reliability. One example: the first day we put Xavier on the
web, the software crashed repeatedly. The reason was that
people were requesting Xavier to go to where it already
was, and we had never tested that capability before. While
the fix was simple, it nonetheless gave us renewed respect
for the need to test thoroughly, and in an unbiased manner.

From the perspective of web-based robotics, we learned
lessons that stemmed from the facts that the robot was both

Figure 5: Off-Board and On-Board System

Task Sequencing

Task
Manager

Web
Manager

Off-Board

Web Server

On-Board

Communications Bridge

Navigation
System

Figure 6: Cumulative Travel Distance for Xavier



mobile and autonomous. The robot’s mobility had both
positive and negative impacts on web interactions. The
positive effect (gleaned through comments in our
guestbook) was that users felt that controlling a mobile
robot remotely was a unique experience. However, many of
the effects of mobility on connecting with the Web were
negative. Running on batteries limits the on-line time of the
robot to a few hours per day. Even though the web interface
is always operational, the fact is that most web visitors do
not see Xavier in action when they happen to visit its web
site (this is exacerbated by the fact that, in the past year, we
have taken Xavier on line less frequently -- it is now down
to about once a week). The need for radio communication
limits the bandwidth to the robot, which lessens the
interactivity that can be achieved.

Probably the most severe effect of mobility on web-based
interaction is a sociological one: Users can see what Xavier
sees, but they cannot see Xavier itself. This is often very
disorienting, especially since the images are updated only
every few seconds (higher bandwidth would definitely
help). The Rhino tour guide robot [1] overcame this
problem by using an overhead camera to track the robot,
which was feasible in their case because they operated in an
environment where the robot was usually in view of the
single camera. Another approach would be to use a pair of
robots, each watching the other. One of the visitors to the
web site suggested having a full-length mirror on one of the
walls and making that one of Xavier’s destinations, so that
people can command Xavier to go and look at itself.

On the other hand, the fact that Xavier is autonomous had
mostly positive effects on web-based interactions. For one,
autonomy mitigated the effects of low bandwidth and
unreliable communication. Since the robot is being tasked
at a high level (traveling to discrete locations), high
bandwidth interaction is not strictly necessary. Even if
communication is lost completely, Xavier can still continue
achieving its current task. In particular, none of the
navigation components are affected by loss of
communication, so the robot’s safety (and that of the

people it encounters) is not affected. When communication
is restored, the off-board processes reconnect with the on-
board communications bridge, often automatically and
usually without need to restart processes. Although, from
the perspective of user interaction, this is an advantage only
if communication is lost for short periods of time, as is in
fact the case with Xavier’s wireless network.

The only real negative impact of autonomy on web-based
interaction is that commanding at a high level is not as
interactive as teleoperation. Some users have expressed an
interest in being able to choose an arbitrary location on the
map for Xavier to go. Although the navigation system can
handle that, for logistical reasons we do not want to allow
that level of control. In particular, many occupants of our
building are not too keen on having the robot visit them and
tell them jokes on a regular basis.

One of the more surprising lessons learned was the degree
to which people accept Xavier at face value. Given the
nature of the web, it would be comparatively simple to
“fake” Xavier’s travels with a series of canned images and
simple simulator (much simpler, probably, than creating an
autonomous mobile robot). For the most part, however, few
web visitors have ever questioned the authenticity of the
robot. One exception occurred early on. Since Xavier uses
a probabilistic navigation scheme, with a spatial resolution
of one meter, it sometimes stops near, but not actually at, its
destination. In such cases, the pictures emailed back to
requesters would show walls, rather than doors or open
offices. Occasionally, we would get back responses
questioning whether Xavier was really doing what it
claimed. We solved this by training a neural net to
recognize visually when the camera was pointed towards a
doorway and then using a simple visual servoing routine to
move the robot directly in front of the door. After this
extension was implemented, we did not receive any more
comments about whether the robot was real.

An especially popular aspect are the knock-knock jokes
Xavier tells (popular with web visitors, not so much with
the occupants of our building). We created a “jokes
contest” web page for people to submit knock-knock jokes
that involve Xavier (example: “Knock knock” -- “Who’s
there?”; “Xavier” -- “Xavier who?”; “Zave-yer self from
these awful jokes, turn me off”). New jokes continue to be
submitted, even after three years, testifying to the
collective creativity on the web. Some visitors have even
suggested allowing users to submit arbitrary messages for
Xavier to say at its destination. Imagine the sociological
consequences of that on the residents of our building!
Sometimes creativity can be taken a bit too far...

Based on our experience, we have a number of
observations that can guide the implementation of future
web-based robots. The most important is the need for high-
quality feedback. When we first constructed the web
interface to Xavier in 1995, one priority was to minimize

Figure 7: Tasks Attempted & Successfully Performed



the bandwidth used, so that the web interface would not
interfere with other projects. The result is a rather slow
refresh rate (5-10 second), which makes it difficult to see
what Xavier is doing.

Since the original design, Xavier’s computational power
has tripled and standardized low bandwidth mechanisms
and protocols such as Java and RealVideo have been
developed and become ubiquitous. It is now possible, with
a low computational overhead to Xavier, to generate a
continuous low-bandwidth, real-time video feed. Similarly,
it is possible to construct dedicated Java applets so that map
and position information can be displayed rapidly and
efficiently (for instance, Minerva uses such a mechanism
effectively [13]).

An important part of the feedback mechanism is a
guestbook where users can leave comments. This is
invaluable, both for gauging the diversity and range of
users and for soliciting suggestions. In addition to the usual
collection of scatological and self-promotional comments,
there are indications in Xavier’s guestbook that an
autonomous robot on the web strikes a particular chord
with audiences not often associated with robots:

 “I am 4 and my name is Alexander. I am going to be 5 in 2
weeks and I want a robot for my birthday to clean up my
room and play pinch attack. My cat’s name is Zoe. I liked
seeing pictures of you. I go to Brookview Montessori and I
do the hundred board. I would like to play games with you
on the computer. I have to go to bed now, we are leaving
now. Thank-you and goodbye.” - Alex T. March 7, 1998.

 “This is fantastic! I’m new to the web and feel like a kid in
a toy store for the first time. I happen to be 54 years old.” -
Mary H. October 9, 1998.

Taking this a step further, robotic web sites should host
interactive “chat rooms” for discussions related to robotics,
technology and the web. Such mechanisms have been used
with great success by the Tele-Garden project [3].

Some users want more technical information about the
robot, including details on robot construction and
programming. To accommodate this, we constructed a
complete web site around our original web interface. We
find, however, that there are always unanswered questions.
While it is time-consuming, it is important to keep the
informational web pages accurate and current for
disseminating technical information to the public at large.

By far, the largest complaint is from users who miss those
few hours when Xavier is live on the web (especially users
in very different time zones). We have tried to alleviate this
in several ways, including sending email to notify users
when the tasks are completed. We are also considering
notifying users a few minutes before their queued requests
are to be undertaken, to give them a chance to see Xavier
live. However, none of this solves the fundamental problem
that the Web demands immediate feedback -- continuous

24 hour presence is an important goal for future web based
robots.

Overall, our web-based robot experiment has been very
successful. It has conclusively demonstrated the reliability
of our navigation system, has given our robot project very
good publicity, and has introduced many people around the
world to the wonders (and limitations) of autonomous
mobile robots. While the scientific results of the
experiment have long since been achieved, we have no
intention of putting a halt to this experiment in interactive,
web-based robotics.

Acknowledgments
Xavier is the result of the collaborative efforts of many
people. Special mention goes to Lonnie Chrisman,
Domingo Gallardo, Karen Zita Haigh, Nak Yong Ko and
Sebastian Thrun. Greg Armstrong has worked tirelessly to
maintain Xavier and to make sure it carries out its
appointed rounds. Thanks also to the thousands of web
visitors who have watched and commanded Xavier over
the years.

References
[1] W. Burgard, A. Cremers, D. Fox, D. Hahnel, G. Lakemeyer,

D. Schulz, W. Steiner, S. Thrun. The Interactive Museum
Tour-Guide Robot. in Proc. National Conference on Artificial
Intelligence, pp 11-18, Madison WI, 1998.

[2] J. L. Fernandez and R. Simmons. Robust Execution Monitor-
ing for Navigation Plans. In Proc. Intelligent Robots and Sys-
tems (IROS), Victoria Canada, 1998.

[3] K. Goldberg, J. Santarromana, G. Bekey, S. Gentner, R. Mor-
ris, C. Sutter, J. Wiegley. A Telerobotic Garden on the World
Wide Web. SPIE Robotics and Machine Perception Newslet-
ter, 5:1, March 1996.

[4] K. Z. Haigh, M. M. Veloso. Interleaving Planning and Robot
Execution for Asynchronous User Requests. Autonomous
Robots, 5:1, pp 79-95, March 1998.

[5] S. Koenig, R. Goodwin and R. Simmons. Robot Navigation
with Markov Models: A Framework for Path Planning and
Learning with Limited Computational Resources. In Dorst,
van Lambalgen and Voorbraak, eds. Reasoning with Uncer-
tainty in Robotics, volume 1093 of Lecture Notes in Artificial
Intelligence, pp 322-327, Springer. 1996.

[6] S. Koenig, R.G. Simmons. Xavier: A Robot Navigation Archi-
tecture Based on Partially Observable Markov Decision Pro-
cess Models. In Artificial Intelligence Based Mobile Robotics:
Case Studies of Successful Robot Systems, D. Kortenkamp, R.
Bonasso, R. Murphy (eds.), MIT Press, pp 91-122, 1998.

[7] S. Koenig, R.G. Simmons. Unsupervised Learning of Proba-
bilistic Models for Robot Navigation, In Proceedings of the
International Conference on Robotics and Automation, pp
2301-2308, Minneapolis MN, April 1996.

[8] N.Y. Ko and R. Simmons. The Lane-Curvature Method for
Local Obstacle Avoidance. In Proc. Intelligent Robots and
Systems (IROS), Victoria Canada, 1998.

[9] R. Simmons. Structured Control for Autonomous Robots.
IEEE Transactions on Robotics and Automation, 10:1, Feb.
1994.



[10]R. Simmons. The Curvature-Velocity Method for Local
Obstacle Avoidance. In Proc. of the International Conference
on Robotics and Automation (ICRA), pp 3375-3382, 1996.

[11] R. Simmons, R. Goodwin, K. Z. Haigh, S. Koenig and J.
O’Sullivan. A Layered Architecture for Office Delivery
Robots. In Proc. Autonomous Agents ‘97, pp 245-252, Marina
del Rey, CA, February 1997.

[12]R. Simmons and S. Koenig. Probabilistic Robot Navigation in
Partially Observable Environments. In Proc. of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp
1080-1087, Montreal Canada, 1995.

[13]S. Thrun, M. Bennewitz, W. Burgard, F. Dellaert, D. Fox, D.
Haehnel, C. Rosenberg, N. Roy, J. Schulte and D. Schulz.
MINERVA: A Second Generation Mobile Tour-Guide Robot.
In Proc. of the International Conference on Robotics and
Automation, March 1999.


