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Abstract—The ability for an information-fusion system to
track and identify potentially multiple objects in a dynamic
environment is essential for many applications, such as automated
surveillance, traffic monitoring, human-robot interaction, etc.
The main challenge is due to the noisy and incomplete perception
including inevitable false negative and false positive errors,
usually originated from some low-level sensors or detectors. To
address this challenge, we propose a novel particle filtering over
sets based approach to multi-object tracking and identification.
We model the multi-object tracking problem as a hidden Markov
model with states and observations represented as finite sets. We
then develop motion and observation functions accordingly, and
do the inference via particle filtering. The corresponding object
identification problem is then formulated and solved by using the
expectation-maximization method. The set formulation enables
us to avoid directly performing observation-to-object association.
We empirically confirm that the proposed algorithm outperforms
the state-of-the-art in a popular PETS dataset.

INTRODUCTION

The ability to detect/recognize, track and identify multi-
objects is essential in many domains such as automated
surveillance, traffic monitoring, human-robot interaction, etc.
Provided with a low-level detector, the main challenge for
multi-objects tracking and identification is to sequentially
reason about the number of objects, and to estimate the state
of each object from ambiguous observations, in presence of
noisy and incomplete perception including inevitable false and
missing detections — false positives and false negatives re-
spectively [14]. Most multi-object tracking (MOT) approaches
follow a tracking-by-detection paradigm [24], where an object
detector runs on each frame to recognize all potential objects,
and proposes a set of detections as input for a tracker,
which estimates the true world state accordingly. Tracking-by-
detection algorithms can be roughly classified into two groups:
online and offfine. Online tracking intends to recursively
estimate the current state given past observations in a filtering
way; offline tracking finds an optimal trajectory given the
whole sequence of observations. In this paper, we mainly focus
on online tracking problems.

In the context of online MOT, most existing approaches
assume one or more hypotheses on observation-to-object data-
associations, and perform Bayesian filtering on each object
separately [24]. The global nearest neighbor (GNN) based
filters find the best hypothesis that minimizes a cost function
defined based on total distance or likelihood [5]. The joint
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probabilistic data-association (JPDA) based filters update each
object by using all detections available weighted according to
posterior association probabilities [8]. The multiple hypoth-
esis tracking (MHT) method attempts to maintain a set of
hypotheses with high posterior probabilities in a tree structure
[19]. Provided that these methods perform separate Bayesian
updates by assuming specific data-associations, it is difficult
for these methods to recover from wrong assumptions. Instead,
we propose to avoid directly performing observation-to-object
association, by using a joint state represented as a set to encode
the number of objects, and the entire world state in terms of
all objects. The filtering step then reasons about the joint state,
as well as the data-associations in a Bayesian-optimal way.

The main contribution of this paper is the overall multi-
object tracking and identification over sets (MOTIS) algorithm,
together with associated techniques we introduce to make
it possible, including: 1) the assignment and false-missing
pruning strategies to approximate the observation function,
2) a data-association based particle refinement method, 3) a
Bayesian density estimation approach to estimate motion and
proposal weights, and 4) an expectation-maximization (EM)
based object identification procedure to identify each individ-
ual object from particles. To compare with existing work, we
evaluate MOTIS on the standard PETS2009 benchmark data.
The experimental results show that our approach outperforms
the state-of-the-art in terms of overall tracking accuracy and
ID-switch error significantly.

RELATED WORK

Joint multi-object probability density (JMPD) [10] also
applies a joint state formalization similar to our work. In each
frame, they assume discretized pixel measurements (larger
than object size) as the observation, and approximate the
observation likelihood by counting the number of objects
occupying each pixel. Instead, we assume a set of continuous
detections as the observation, encode the joint state as a
set, and approximate the observation function by considering
all possible data-associations (with prunings). Sarkka et al.
[20] propose a Rao-Blackwellized particle filtering approach,
under the assumption that there is a (very large) constant
number of objects, while only an unknown, varying number
of objects are visible. Their method encodes a possibility of
data-associations in each particle, and separately updates each



object within a particle using Kalman filters. Our method
encodes all possible data-associations in a particle by using a
set formulation, and implicitly reason about data-associations
via observation likelihood in joint space. Random finite set
(RFS) [13, 23, 22, 12] models MOT according to a specialized
theory of finite set statistics (FISST) [9]. From a mathematical
point of view, central FISST concepts such as set integral and
set derivative are beyond the scope of standard probability
theory. Our method has some of the same advantages, but stays
much simpler with only conventional probabilistic concepts.
Bai et al. [2] propose the idea of particle filtering over sets
(PES), particularly focusing on intention understanding in the
domain of human-robot interaction. In this paper, we extend
PFS to general MOT domains, formalize the identification
problem, and present much more thorough technical details
and experimental results.

THE APPROACH

In this section, we present our main approach, namely multi-
object tracking and identification over sets (MOTIS).

A Set as a Random Variable

Before introducing the entire approach, we first present our
treatment of a set as a random variable, particularly the defini-
tion of the probability/density of observing a set. Please notice
that, we may use probability and density interchangeably in
this paper where there is no ambiguity.

Theorem 1. Let random variable S be a set of n random
variables S = {X;}i=1.n. The joint probability of observing
a set S = {x;}i=1.n, where x; are n distinct values, is
Pr(S) = > ,ca, Pr(X1 = 250), X2 = 7502),..., Xn =
Ty(ny), Where Ay, is the set of all permutations of {i}i=1.n,
and Pr(Xl = To(1), Xo = To(2)y -+ , X = mg(n)) is the joint
probability of observing X1 = x51) AN X2 = o)\ N Xy, =
Lo (n)-

Proof. When observing S = {x;}i—1.n, Wwe do not know
each value x € {x;};=1., comes from which random variable
X € {Xi}i=1.n. The probability of observing S counts all
possibilities, which are all assignments from random variables
to the observed values. An assignment v is a bijection
¥ {X; i1 — {@i}iz1.n, corresponding to a permutation
of elements of S. O

Corollary 1. Let O = {0;}i=1.n, be a set of n distinct objects.
Sampling without replacement for k times, suppose the result
is a set S = {0(;)}i=1:r. The joint probability of observing S
. _ 1 _ 1 ny __ n!

is Pr(S) = k!n(n—l)m(n—k+l) BRK where (k) = B(n—Fk)
is the binomial coefficient.

Corollary 2. Let X be a random variable following a
probability function fx(z), and S = {X;}i—1.n be a set
of random variables, whose elements are independent and
identically distributed as X, the joint probability of observing
a set S ={z;}i=1:n is Pr(S) = n![[,<,<,, fx(zi).

Notice that, when we say S = {X;}i=1., is a set with
random variables with size n, we imply that there are no ties

among values in S according to the definition of a set. As an
example, suppose we toss a fair coin for two times, there are 3
possible observations in terms of sets: { Head}, { Head, T'ail}
and {T'ail}. According to Corollary 2, Pr({Head, Tail}) =
1/2. However, Corollary 2 does not cover the cases with two
Heads and two T'ails.

The HMM Formalization

Motion model.: Formally, we define a joint state as a finite
set of all objects, S = {s;};—1./5/. An object is represented
as a high-dimensional vector s = (x,y,%,y), where (z,y)
and (z,y) are the position and velocity respectively, both in
world frame. We assume each object moves independently
following a random-acceleration moving model: (z,y) <«
(2.9) + (&, 9)7 + (@.§)7% and (i,5) « (i,9) + (@ 7)7,
where 7 is the update time interval, and (&, ) is the random
acceleration, computed as (Z,¢y) = (pcos@,psinf), where
p ~ N(0,07) is the dash power, and 6 ~ U(0,2m) is the
dash direction. Here, N and U/ denote Gaussian and uniform
distributions; and, ag is the dash power variance. Furthermore,
we model the fact that objects may occasionally move into or
out from the monitoring filed as a birth-death process with
birth rate A and death rate |.S|u per second.

Observation model.: Observations are sequentially pro-
vided by a low-level object detector as a set of detections,
O = {o0i}i=1;|0|- We assume a detection o = (z,y,c)
includes a position (z,y) in world frame and a confidence
value ¢ € [0,1]. The confidence value reflects the internal
classification confidence of the detector, which, for example,
may come from margin distances of support vector machines
(SVMs) used in the detection algorithm. If the detector can
not provide confidence values, we can just use default values.
Thus this is actually a general formulation.

Let’s first consider the case for a single object and a single
detection. Given state s = (x,y,&,¥), we denote Pr(o | s)
as the probability of observing detection o = (2,9, ¢),
computed as Pr(o | s) = Pr(c | 1)Pr(2/,y'|x,y), where
Pr(c| 1) is the probability of having confidence ¢ given that
there is truly an object, and Pr(z’,y’ | z,y) is the probability
of having a detection in position (z’,y’) given that the object
is in position (x,y). We use a Beta distribution to model
Pr(c | 1) = Beta(c | 2,1), and a Gaussian distribution to
model Pr(z/,y' | z,y) = N(2/,y' | z,y,X), where X is the
covariance.

In the case of false detection, let Pr(o | &) be the
probability of observing o = (2,4, ¢), computed as Pr(o |
@) = Pr(c | 0)fp(a’,y"), where Pr(c | 0) is the probability
of having confidence ¢ given that there is no object, and
fo(2’,y’) is a background distribution giving the probability
that a false detection is occurring in position (z’,7’). We use
a Beta distribution to model Pr(c | 0) = Beta(c | 1,2), and
a uniform distribution over the monitoring area to model f3.

In general cases, we assume at a single time step, an object
can result in at most one detection, and a detection can origi-
nate from at most one object. Let 7' C O and M C S be the
set of false and missing detections, each possible combination



of F and M must satisfy |O — F| = |S — M]|. Denoted by
O oS = {(F;, M;)}i—1.|00s| the set of all F-M pairs, we
have [0 0 5| = o< icumngonispy (7)) (F) = (957, We
assume that false and missing detections are independently
following Poisson processes with parameters v and |S|¢ per
second. Suppose the update time interval is 7, according to
Corollaries 1 and 2, the observation function is

2.

(F,M)€O08

M| —ISler
(jar)

where Pr(O — F | S — M) gives the probability of observing
the same number of detections given objects. For conve-
nience, we define fr(F) = (v7)lFle="" [I,cr Plo] @), and
(ISlgn)™Mle=1S1ET 4 : O-F
fu (M) = T ) hereinafter. Let Wg~), be
1M

the set of all possible assignments from S — M to O — F,
assuming conditional independence between observations, we
have

PrO—F[S-M)= Y ][] Pr((s)]s). @

¢€\pg:1€1 seS—M

Pr(O | 8) = Pr(O—F|S—M)-(vr)Fle7v™

oEF

Combining Equations 1 and 2, we have the full obser-
vation function, which has ZO<i<min{|O| 151} (l?l) (lfl)i! =
(22 IOLISIE ymin{|OLISI}) terms. It is intractable to com-
pute the full expression in real time for even moderate state

or observation sizes. Approximations are made in practice.

Observation Function Approximation

Assignment pruning.: Equation 2 has m! (m = |S — M| =
|O — F|) terms in total, which makes it intractable in practice.
Basically not all assignments need to be considered, since most
of them have relatively very small probabilities compared with
the best assignment, particularly for cases when m > 2. To
this end, we convert probabilities Pr(o | s) to costs ¢(s,0) =
—log(Pr(o | s)), and find the assignments in cost-increasing
order by following Murty’s algorithm [18] until the probability
ratio of the last assignment to the first assignment is lower than
a threshold. In general, optimized Murty’s algorithm finds the
top-k best assignments of an assignment problem with size
N x N in O(kN?) time complexity.

False-missing pruning.: The set of all possible F-M pairs
has size (‘O‘als '), leading to a huge time complexity when
computing the full observation function. The idea is to find
the possible F-M pairs (F, M) in probability decreasing order
until fz(F) fpr (M) is lower than a threshold with the help of a
priority queue. The overall approximated observation function
with this pruning strategy is implemented in Algorithm 1,
where a priority queue is used to ensure that F'-M pairs are
evaluated in a probability-decreasing order. The Murty func-
tion in Algorithm 1 approximates Equation 2 using assignment
pruning strategy as described in the previous section.

We show that Algorithm 1 finds the F-M pairs in
a probability decreasing order. We define frp(i,5) =

Algorithm 1: ObservationFunction

Input: A set of detections O, and a set of objects .S
Output: Probability of observing O given S
Let (@ < a descending priority queue initially empty
Let F « a list of all possible false detections F
Let M <« a list of all possible missing detections M
Sort F according to fz(-) in descending order
Sort M according to fas(-) in descending order
Add (1,1) to @ with priority fr(F[1])far(M][1])
Letp+ 0
repeat
Let (i,7) + Pop (Q)
Let q £ (F[i]) far (M)
if |7[i]| = |M]j]| then

| p < p+qMurty (F[i], M[j])
if i + 1 < |F| then

L Add (i + 1,7) to Q with priority

fr(Fli+1]) far(M]j])
if j +1 < |[M| then
Add (i,7 + 1) to @ with priority

L Fr(FE]) far (M5 +1])
until ¢ < threshold or Q is empty
return p

Fr(Fi]) far(M]4]) for short. In the kth (1 < k < |F||M])
iteration of the loop, let @ be the priority queue before
popping, and let (ig,jx) be the popped element, we have
(ik, jk) = argmax; jyeq, fFm(i,7), and Qg1 U (ik, ji) =
QrUL[ix+1 < [F[J(ix +1, jx) UL[jr +1 < M| (g, ji +1).
Since frar(in +1,Jk) < fra(ie, jx) and frar(ie, e +1) <
frm (i, jk), we have fear(ipst,je+1) < fra(ix, i) for
1 <k <|F||IM]|—1. So Algorithm 1 finds the F-M pairs in
a desired probability decreasing order.

Farticle Filtering

We use particle filter to make the inference in the for-
mulated HMM. A particle is defined as a set of object
states, X = {s;};—1. x| The posterior distribution over states
Pr(S; | O1,04,...,0;) is approximated as a set of weighted
particles P; = {(Xt(i),wgi)>}i:1;N, such that Z?{:lw =1
In each step of updating, for particle X;_1 € P;_1, a new
particle is proposed from a proposal distribution: Xy ~ (- |
X;—1,0¢). The motion, observation and proposal weights are
computed as: m; = Pr(Xt | Xi—1), o = Pr(O; | Xt)
and p; = W(Xt | X:—1,0;) respectively. The particle weight
is then updated as w; < w;_1™%. Finally, a set of new
particles P, is generated by normalizing and resampling from
Pt—l-

Farticle refinement.: In common implementations of par-
ticle filters, new particles are usually proposed directly from
the motion model, in which case updating particle weights
simplifies to w; ¢ w;_j0;. However this simple proposal
strategy does not work well in MOT domains, because for
newly appearing objects, the probability that the motion based



proposals will match the new detections is extremely small.
To overcome this difficulty, a refinement method is developed
to make more informative proposals.

For detection o = (2’,y', ¢), the probability that it is not a
false detection is.Pr(l |c) = P.r(c‘l)?ZEi‘)llgigi‘})) Pro) = in
our Beta assumptions, by assuming prior probabilities Pr(1) =
Pr(0) = 0.5. Given that this detection is not a false detection,
the probability that it originates from state s = (x,y,-,) is
Pr(s | o) =nPr(o | s)Pr(s) = N(2/,y' | z,y, %) in Gaus-
sian assumption, if the prior distribution of s is assumed to be
uniform. Therefore, for a new detection o € O, we in principle
propose object s distributed as Pr(s | o) with probability c.
We denote this mixture proposal distribution as 75(- | 0), with
(D | 0) =1—cand m4(s | 0) = N,y | z,y, %), if
o= (2',y',c) and s = (z,vy,-,-). Notice that the velocity of
s is ignored in the proposal distribution. The question is, for
each particle X, how to determine whether a detection o € O
is new or it originates from an existing object s € X. We
find out possible new detections by seeking the most likely
data-association between X and O.

Formally, a data-association between particle X and obser-
vation O is defined as a 3-tuple ¢ = (F, M, ) where FF C X
is the set of false detections, M C O is the set of missing
detections, and ) € \Il?(:ﬁ/l is an assignment from X — M to
O — F. Equation 1 can then be re-written as Pr(O | X) =
>, Pr(0, ¢ | X). Let ¢* = argmax, Pr(O, ¢ | X) be the
optimal data-association in terms of observation likelihood.
Suppose ¢* = (F*, M*,v*), then F* is intuitively the most
likely set of new detections given X. The resulting proposal
distribution 7,(- | X;—1,0;) is implemented as follows.

1) Sample X, ~ Pr(- | X;_1) using only motion model,

2) Find best data-association ¢* = (F™*, M* ¢*) given X],

3) Propose new objects X' = {s | s ~ ms(- | 0),0 € F*},

4) Propose a refined particle X' + X] U X',

5) Return X; argmaxx ¢ x: xy} Pr(O¢ | X).

Note that Step 2 can be easily approximated by running
Algorithm 1, and Step 5 is used as an acceptance test to ensure
a better proposal in terms of O is returned. Temporary results
of running Algorithm 1 are cached and reused in Step 2, Step
5 and further update steps whenever possible. The resulting
proposal strategy is very efficient at capturing new objects. It
turns out that we do not need to propose any new objects in
the motion model. We simply set the object birth rate to 0 in
experiments.

Bayesian density estimation.: Using the refined proposal
distribution, it is necessary to compute motion and proposal
weights when updating particles in order to make the updated
particles consistent with the underlying Bayesian filtering
equation. However in particle filtering framework, we are not
able to necessarily have the explicit expression of motion func-
tion to compute these weights. A Bayesian density estimation
method is proposed to alleviate this difficulty.

For a set of particles P = {X;};—1.n, let P’ be the set of
particles proposed directly from motion model: P’ = {X’ |
X" ~ Pr(- | X),X € P}, and P” be the set of refined
particles: P = {X" | X" ~ 7.(- | X'), X" € P'}. Following

the idea of [4], we estimate motion and proposal weights by
seeing P’ and P” as data and building density estimators over
them: Pr(X” | X) ~ Pr(X” | P') and 7. (X" | X) ~
Pr(X” | P"), where X" is the refined proposal from X.

Assuming object states are independently distributed as an
unknown distribution f5, we have Pr(X | P) = n! Pr(|X| =
n | P)llsex fs(s | P), defined over sets according to
Corollary 2. Furthermore, we assume the number of objects
follows a Poisson distribution with unknown parameter -.
Suppose -y is priorly distributed as a Gamma distribution with
parameters (g, 5o ), then the posterior distribution of + is also
Gamma with updated parameters (o = g+ > ycp | X|, 5 =
Bo + N) by following the Bayesian method. Hence the
posterior predictive of the number of objects is a negative
binomial distribution with number of failures » = « and
success rate p = ﬁ That is to say, Pr(|X| =n | P) =
NB(n;r,p) = (”Jr;*l)p"(l —p)". A kernel density estimator
(KDE) is further used to approximate fs(s | P). Denoted by
H(P) = {s | s € X, X € P} the set of all objects in P,
fs is approximated as fs(s | P) = ripy Loencr) O —
2oy — '), where s = (x,y,-,-) and ¢ is the standard
Gaussian function. Notice that velocities ((&,¥)) are ignored
in estimation and coordinates (r and y) are assumed to be
independent here.

Object Identification

Although a set of updated particles P; encodes completely
the joint posterior distribution, an object identification process
is needed to identify each individual object, which provides
more useful information for high-level tasks. For example,
two particles may state that the joint state is either {s1,s2}
or {ss3,84,85}. Although this is a complete posterior dis-
tribution of joint state in terms of particles over sets, it
lacks detailed information on the object level, which refers
to the existence and actual state for particular objects. An
object identification procedure is incorporated to provide
such results as {objecty, objects, objects}, where object; =
(s, confidence), where confidence is the probability that
this object exists. The link between a state in a particle and
an object is treated as a hidden variable. An expectation-
maximization (EM) algorithm is developed to make the infer-
ence by iteratively proposing hidden variables and updating
the joint state.

An identified object (or identity for short) is defined as a
3-tuple h = (s, ¢, p), where s is the expected state, ¢ € [0, 1] is
the confidence value, and p is a unique ID number. Identity h
is estimated from an associated subset H(h) C H(P;) (named
state pool) as: s = ﬁ Zs'e”ﬂ(h) s, and ¢ = W Let
Ly = {hi}i=1.|1, be the list of identities at cycle ¢, initially
Ly = @. For each o € O, we propose a new identity h,
with H(h,) initially empty. Let Lo, = {ho, | 0 € O:}
be the set of all potential new identities, the set of all
candidates to be identified at cycle t is Cy = L;—1 U Lo,.
As aforementioned, each identity h € C; is associated with a
state pool H(h), which is equivalent to labelling each state s
such that H(h) = {s | I(s) = h,s € H(P:)}. Let fp, be the



state distribution of identity h € Cy, and P = {f}, | h € C;}
be the set of all identity distributions, we propose an object
identification process to find the best estimation of P* that
can optimally explain the updated particles, formally P* =
argmaxp max; Pr(P, [ | P).

The EM algorithm seeks the maximum a posteriori (MAP)
by iteratively applying the following two steps (in a k-means
algorithm way):

E step: [(*) = argmax, Pr(P,, 1 | P*~1),

M step: P**) = argmaxp Pr(P;, 1*~1) | P).

The E step is equivalent to finding a labeling method for
each particle X € P; such that [] _y fi(s)(s) is maximized,
given f, € P*~1_ which is then solved by reducing to N
number of the best assignment sub-problems. The M step is
approximated in an MLE way taking account of the current ob-
servation O;. Each detection o € O, is associated with a subset
H(o) C H(P;), constructed by selecting the most likely data-
association (F™*, M*,*) = ¢* = argmax, Pr(O, ¢ | X)
given particle X, and updating H(y*(s)) as: H(¢*(s)) <
H(p*(s)) U s for all s € X. Notice that cached results in
the particle filtering step are reused here. For each h € Cy,
f}(tk) is then computed as: ff(bk)(s) = Y oco, n(s;0) +
F0(5,2) = Yoco, Pr(s | 0)fr(0) + (s, 8) = Soco, 115 €
H(0)]frn(0)+1[Vo: s & H(0)]fn(2), where 1 is the indicator
function, f(0) is the probability that detection o is generated
from identified object h, and f () is the probability that iden-
tified object h does not have a detection. We then approximate
Jn(0) = Pr(o | h)Pr(h) ~ %[H(0) N H(h)], and fu(2) =
Pr(@ | h)Pr(h) = & |H(h) — U,co, H(0) N H(R)|. There-
fore, we have P = {f¥) | b € C,}.

The algorithm runs the M step first with [(9) initialized
according to the converged/final labeling from the last cycle,
taking account of deletion, addition and repetition of states
during the particle filtering step. It then iteratively proposes a
sequence of new distributions P*) and new labeling [(F+1)
until convergence or a maximal number of steps is reached.
The final labeling [ is used to construct L; as: Ly = {I(s) |
s € H(Py)}. Notice that |L;| < |Cy|, since candidates with
finally empty state pools will not be included in L,. Thus the
algorithm is able to tell each individual objects with confidence
values from updated particles, where each particle represents
a set of potential objects.

EXPERIMENTAL EVALUATION

In the first experiment, we evaluate the approximation error
introduced by pruning strategies. We generated a random
scenario with a length of 1,000 cycles according to a birth-
death process with birth rate A\ = 0.06/s and death rate
u = 0.02/s. When computing Equation 1 and Equation 2,
we record the result with and without pruning respectively as
v and v’, then the relative error is calculated as |”’T”'| Let
T’ be the assignment pruning ratio threshold, and 7" be the
false-missing pruning threshold. To evaluate the assignment
pruning, we fixed 7" to be 0.001, ran the resulting approach
with variable T over the generated scenario, and reported
the average relative error and the average time usage. In the
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Fig. 1: Approximation error test: assignment pruning.

]-OO T L] T T 0'9
‘ Avg. Relative Error —e—
. Avg. Time Usage —eo— 0.8
— —o—o—¢
g 10 — 0.7 o
£ &
b5 %
o // 5
= {06 *
= @
= / £
= 1 = 0.5 &
0 N, s
z \ {04 <=
'\HrN/"
0.1 0.3

le-05 0.0001 0.001 0.01 0.1 1

False-missing pruning threshold

Fig. 2: Approximation error test: false-missing pruning.

Before pruning | Equation 2 | Equation 1

Avg. terms 32.66 + 0.09 | 1466.52 4 34.77
Max. terms 5040 2.5018 x 108
After pruning | |

Avg. terms 2.11 +£0.01 29.23+0.13
Max. terms 145 3043

Pruning rate 93.50% 97.95%

Relative error 0.026% 3.30%

TABLE I: Detailed results of pruning experiments with 77 =
0.1 and T"” = 0.001.

experiment, trivial cases in which the assignment problem was
smaller than 2 x 2 were not counted. Figure 1 depicts the
results in logarithm form, from which it can be seen that, as 7"
grows, the average relative error increases near proportionally
and the average time usage decreases almost exponentially.
However, the average relative error stays to be rather small. It
is no more than 2% even if T” is exactly chosen to be 1, in
which case only top-2 assignments are calculated. To evaluate
the false-missing pruning, we fixed 7" to be 0.1, and ran the
algorithm with different 7" over the generated scenario. The



| Parameter | MOTIS
A Object birth rate (1/s) 0.0
1| Object death rate (1/s) 0.02
op | Dash power deviation (m2/s) 1.0
v False detection rate (1/s) 6.0
13 Missing detection rate (1/s) 2.0
T Update time interval (s) 0.14

T’ | Assignment pruning threshold 0.1

T" | False-missing pruning threshold 0.001
3> | Observation covariance 0.51
ag | Initial Gamma o parameter 2.0
Bo | Initial Gamma [ parameter 1.0
A’ | Min. area of bounding box (m?) 0.5
A" | Max. area of bounding box (m?) 2.5
R | Min. conf. of reported identities 0.4
N | Number of total particles 128
H | Max. number of EM steps 10

TABLE II: Parameters used in empirical evaluation of MOTIS
on the PETS2009 dataset.

results are shown in Figure 2. A similar trend can be observed
in the figure. However, T” has relatively higher impact on the
approximation error than 7”. In the following experiments, 7"’
and 7" are chosen to be 0.1 and 0.001 respectively. Detailed
results in this case are shown in Table I.

In the second experiment, we evaluate MOTIS on the S2L.1
sequence of the challenging PETS2009 dataset [7], to compare
with existing MOT algorithms. The video is filmed with ~ 7
fps from a high viewpoint. It contains 795 frames, showing up
to 8 ground truth humans and 13 raw detections. We mainly
evaluate our algorithm in the cropped region, which covers
approximately an area of 19.0 x 15.8m?, as in [1], while
also report the results in the whole area. The cropped data
has at most 11 detections, and on average 5.67 detections
per frame. Each detection consists a confidence value, and a
bounding box with center point, height and width information
in image frame. The data has a camera calibration file, so
it is possible to transform raw detections into world frame.
The full dataset collected by Milan (2014) is available at
http://www.milanton.de/data.html publicly. In the experiment,
we treat detections with extremely large/small bounding boxes
as having confidence 0. Only identified humans with identifi-
cation confidence higher than 0.4 are reported for evaluation.
Table II outlines the used parameters.

We evaluate the performance of MOTIS in terms of the
CLEAR MOT metrics [3]. The distance threshold used for
evaluation is 1.0m, which is widely used in literature. The
Multiple Object Tracking Accuracy (MOTA) takes into ac-
count false positives, false negatives and identity switches.
The Multiple Object Tracking Precision (MOTP) is simply
the average distance d in meters between true and estimated
objects, normalized to a percentage as 100 x (1 — d)%. In
more detail, let n; be the number of correct matches between
ground truth and tracking results found at cycle ¢ by solving
a constrained assignment problem (under distance threshold
1.0m) following CLEAR MOT, dgl) be the distance between
ground truth object s,@ and its corresponding tracked identity

Frame id 70 Frame id 143

>

Frame id 750

Fig. 3: Tracking results of MOTIS on the PETS2009 S2L1
dataset. A video showing the whole results is available at http:
/1goo.gl/4Qlley.

hgi), MOTP is defined as

Zt Zlgignt d£1)
Do '
Let g; be the ground truth number of objects, a; be the number

of tracked identities, and m; be the number of mismatches (i.e.
identity switches) in the mapping, MOTA is defined as

(g¢ + ar — 2ng +my)
Zt gt

It can be seen that if averaged distance between each ground
truth object and its tracked identity is zero, then MOTP equals
100%; if the number of ground truth objects equals the number
of matches, the number of tracked objects equals the number
of matches, and there is no ID-switch errors, then MOTA
equals 100%. MOTA and MOTP show the ability of the tracker
in terms of estimating human positions and intentions under
the consideration of confidence, and WMTA indicates the
performance at tracking and keeping their trajectories.

Furthermore, we also report the metrics proposed in [11],
which counts the number of mostly tracked (MT) trajectories,
track fragmentations (FM) and identity switches (IDS). An
object is mostly tracked when at least 80% of its ground
truth trajectory is found. Track fragmentations count how
many times a ground truth trajectory changes its status from
“tracked” to “not tracked”. Table III presents the experimental
results, and Figure 3 shows some tracking examples. In
the figures, white bounding boxes are the raw detections;
trajectories, and current states in particles are depicted with
different colors indicating different identified humans.

In comparison, Breitenstein et al. [6] track each object
separately with greedy data-association via particle filtering,
which can be seen as a good baseline for our method. Segal
et al. [21] model MOT as a switch linear dynamical system
and take advantage of a trained pedestrian and outlier detector

MOTP =1 — 3)

MOTA =1 — 2

: “)



Algorithm | MOTA | MOTP | IDS | MT | FM
MOTIS! (proposed) |93.1% | 76.1% | 3.6 | 18.0 | 16.0
MOTIS* 2 (proposed) | 90.6% | 74.5% | 4.8 | 17.6 | 20.4
Milan et al. [17] 87.9% | 645% | 29| 19 -
Milan et al. [15] 90.6% | 80.2% | 11| 21 6
Milan et al. [16] 90.3% | 743% | 22| 18| 15
Segal et al. [21] 92% 75% 4 18 18
Segal® et al. [21] 90%| 75%| 6| 17| 21
Zamir et al.? [25] 90.3% | 69.0% 8 - -
Andriyenko et al. [1] 81.4% | 76.1% 15 19 21
Breitenstein? et al. [6] | 56.3% | 79.7% - - -

Laveraged over 16 runs.
2 L . .
evaluated within tracking region not cropped.

TABLE III: Comparison of quantitative results on the
PETS2009 S2L1 dataset.

in the object domain. Zamir et al. [25] utilize generalized
minimum clique graphs to solve the data-association problem
by incorporating both motion and appearance information.
Andriyenko et al. [1], Milan et al. [15] and Milan et al. [16]
formulate MOT as an offline optimization problem over splines
given an energy function, and initial tracks obtained from per-
object extended Kalman filters given greedy data-associations.
Milan et al. [17] exploits low level image information and
associates every (super)-pixel to a specific target or classifies it
as background, which, as a result, obtains a video segmentation
in addition to the classical bounding-box representation in un-
constrained, real-world videos. It can be seen from the results
that, our algorithm outperforms the state-of-the-art, being able
to run online in a Bayesian recursive way without using any
data dependent information (such as object appearance).

CONCLUSION

In this paper, we present a novel multi-object tracking and
identification over sets (MOTIS) approach to the multi-object
tracking and identification problem. From a multi-object track-
ing point of view, our approach avoids directly performing
observation-to-object association by using a set formulation,
and inferring the posterior distribution, as well as the data-
association, in joint space. The overall method significantly
outperforms the state-of-the-art on the challenging PETS2009
dataset in terms of overall tracking accuracy and ID-switch
errors. In future work, we plan to apply MOTIS in more
realistic domains and conduct more systematic theoretical and
experimental evaluations.
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