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Abstract

Architectures form the backbone of complete robotic sys-
tems. The right choice of architecture can go a long way
in facilitating the specification, implementation and velida-
tion of robotic systems. Conversely, of course, the wrong
choice can make one’s life miserable. We present some of
the needs of robotic systems, describe some general classes
of robot architectures, and discuss how different architec-
tural styles can help in addressing those needs. The paper,
like the field itself, is somewhat preliminary, yet it is hoped
that it will provide guidance for those who use, or develop,
robot architectures.

1 Introduction

There have been some remarkable and inspiring suc-
cess stories for robotics over the past few years. For ex-
ample, the surgeries performed with robot assistance,
vehicles capable of autonomously driving on highways
for hundreds of kilometers, the Sojourner rover ex-
ploring Mars, robots for hazardous waste cleanup, de-
mining, agriculture, and autonomous museum tour-
guides. Such robotic systems, working in challenging
applications, rely upon theoretical progress allied to
technical advances and the exponentially increasing
power of computers.

A common feature of such systems is their complex-
ity, which also grows apace and provides its own chal-
lenges. FRAMEWORKS FOR MANAGING THIS GROWING
COMPLEXITY is the theme of this symposium on Ar-
chitectures for Robot Control and Coordination. Mod-
ern robotic systems, which need concurrent embedded
real-time performance, are typically too complex to be
developed and operated using conventional program-
ming techniques. Rather, managing complezity de-
mands frameworks and tools that embody well-defined
concepts to enable the effective realization of systems
to meet high-level goals.
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The term robot architecture encompasses several dif-
ferent notions. Of particular interest are architectural
structure and style. Architectural structure refers to
how a system is divided into subsystems, and how
those subsystems interact. This is often represented
by the traditional “boxes and arrows” diagrams. Ar-
chitectural style refers to the computational concepts
that underlie a given system. For instance, one system
might use a publish-subscribe message passing style of
communication, while another may use a more syn-
chronous client-server approach.

All robotic systems embody some architectural struc-
ture and style (and often a single robot system uses
several styles together). However, it is sometimes dif-
ficult to determine post hoc exactly what architecture
was used. The architecture and the implementation
are often intimately tied together, in a “build it and
make it work” manner. This is unfortunate, as a well-
conceived architecture can have many advantages in
the specification, execution, and validation of robot
systems.

An architecture should facilitate the development of
robotic systems by providing beneficial constraints on
design and implementation of the desired application,
without being overly restrictive. While this criterion
is easy to express, it is much harder to operational-
ize. In particular, different applications have different
needs, which can be best satisfied with different archi-
tectures. While matching the right architecture to the
application is much more of an art than a science, in
this paper we endeavor to provide some guidelines and
insights to guide that choice.

The paper is organized as follows: section 2 introduces
some of the different architectural styles encountered
in the literature. In sections 3, 4, and 5, we discuss how
the development of complex robotic systems can be
facilitated using control architectures, focusing on the
specification, execution, and validation phases. Trends
for the future of architectures conclude the paper.



2 Robot Architectures

Robot systems differ from other software applications
in many ways. Foremost are the need to achieve high-
level, complez goals, the need to interact with a com-
plez, often dynamic environment, while ensuring the
system’s own dynamics, the need to handle noise and
uncertainty, and the need to be reactive to unezpected
changes. These needs influence how robotic systems
are designed, how they operate, and how they are val-
idated (and even what it means to be validated). In
addition, many robots belong to the class of critical
systems [7]. In such systems, errors during operation
can have significant consequences and system safety
issues play an essential role.

Most of the architectural styles described in the tech-
nical literature can be classified into three categories:
hierarchical, behavioral, and hybrid. The hierarchical
style adopts a top/down approach [3]. It highlights the
supremacy of high-level control and restricts low-level
horizontal communications. It has poor flexibility and
has been adapted with difficulty to the control of new
generation robots, which have to handle many sensors
in reactive and reflex loops.

In contrast, the behavioral architectures adopt a
bottom-up approach [8]. This style uses groups of soft-
ware modules known as “behaviors” which run con-
currently and interact through communication and
through the environment. With this style, designing
high-level control to achieve non trivial objectives is
often difficult. Further, composition laws do not have
enough semantics to allow safety issues to be easily
considered.

Hybrid architectures are the most recent [6, 20, 19, 5,
22, 7, 1]. The hybrid style combines both reactive and
deliberative control in a heterogeneous architecture. It
facilitates the design of eflicient low-level control with
a connection to high-level reasoning. The connection
between the two levels can be tricky, however, and
must be carefully designed and implemented to provide
the right mix of reactivity and deliberation.

We now turn to discussions of how the use of robot
architectures can address the needs of robotic systems,
focusing on the processes of system specification, run-
time execution, and overall validation.

3 Specification

Perhaps the foremost issue in designing robotic sys-
tems is the need to manage the complezity of inter-
actions — both interactions between the system and
its environment, and interactions between individual
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components of the system.

One way of dealing with this complexity is through
modularity within a given structure — overall system
complexity can be reduced by decomposing it into
smaller components with well-defined abstraction lev-
els and interfaces between them. Architectural styles
such as data flow support this by making upstream
components independent from downstream compo-
nents. This contrasts, for instance, with a composi-
tion style based on function calls, where the invoking
modules depend on the return values of the callees.
Similarly, publish-subscribe message passing encour-
ages the use of independent modules 23], whereas a
client-server style may increase dependency and lead
to more complex interactions.

Often, system decomposition is hierarchical - modu-
lar components are themselves built with other mod-
ules. Architectures that explicitly support this type
of decomposition can lead to more modular systems,
which has a postive impact on the execution phase.
However, while hierarchical decomposition of robotic
systems is generally regarded as a “desirable quality”,
debates continue over the dimensions along which to
decompose. For instance, the RCS architecture [2] ad-
vocates decomposition along a temporal dimension -
each layer in the hierarchy operates at a characteristic
frequency an order of magnitude slower than the layer
below. Many architectures such as TCA [23], RAPs
[13], PRS [16], Laas [1], OrccAD (7], and Subsump-
tion [8] advocate decomposition based on task abstrac-
tion, with more or less well defined semantics. In some
situations, decomposition based on spatial abstraction
may be more useful, such as when dealing with prob-
lems involving both local and global navigation. The
main lesson is that different applications need to de-
compose problems in different ways, and architectures
need to be flexible enough to accommodate different
decomposition strategies.

Another way of dealing with complexity is to provide
expressive languages and tools. Such languages and
tools, when based on solid theories, can provide con-
structs that constrain design in certain ways, while
hiding the complexity of the underlying concepts. Ar-
chitectures should enable different languages and rep-
resentations to be used when and where appropri-
ate, integrating them seamlessly. For instance, typi-
cal robotic applications involve both continuous and
discrete control [7]. Architectures should address the
problem of bridging the gap between those two do-
mains - finding some interface that respects both rep-
resentations, yet facilitates information and control
flow between them.



Researchers have developed many high-level languages
tuned to particular robotic tasks. Languages for real-
time behaviors include the Subsumption language [§],
ALPHA [14], and Skills [6]. Other approaches are to
provide graphical programming environments for spec-
ifying control strategies. Code is then automatically
generated from the graphical descriptions. Architec-
tures that use this technique include ControlShell [22],
ORcCAD, and Labview.

The use of high-level languages is even more preva-
lent at the symbolic, discrete control level. In par-
ticular, languages for specifying task-level control are
quite common. They include RAPs [13], TCA [23],
PRS [16], Propice [1], ESL [15], MAESTRO [9] and
TDL [24]. A significant distinction between these lan-
guages is whether it is self-contained, a language ex-
tension, or a library. A self-contained language, such
as RAPS or PRS, is often not very expressive and diffi-
cult to integrate with other code unless abstract views
are provided to facilitate connection between modules,
such as in MAESTRO. A language extension is a su-
perset of an existing language that includes explicit
task-level control constructs. For instance, ESL is an
extension of Lisp and TDL is an extension of C++.
The advantage here is that it is easy to incorporate
task-level control along with other computations, since
it is all specified in the same language, and in the same
basic way.

Finally, an important aspect of robotic systems is the
detection and handling of exceptional conditions. Such
situations tend to be numerous and can arise at any
time, but with low probability. Architectures can help
in specifying appropriate reaction strategies by dis-
tinguishing nominal from exceptional behavior, and
by enabling developers to specify such behaviors in
a modular and incremental fashion. In some architec-
tures, such as Subsumption, there are no exceptions —
every state is treated in the same way. In other ar-
chitectures, exceptions are treated specially and are
specified in a different fashion from “nominal” behav-
ior. In particular, such architectures often have the
notion of “jumping” to an exception handler and then
returning back to resume normal operations after the
exception has been handled. To support this, archi-
tectures such as ESL, Orccabp, ControlShell, TCA
and TDL allow named exceptions to be specified hi-
erarchically. This enables designers to specify both
specific exception handlers that are applicable to re-
stricted situations, such as retrying a move, as well as
more general exception handlers that have wider scope
and more global effects, such as aborting the task al-
together [12].
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4 Execution

While architectures have an essential role in the de-
sign and specification of a robotic application, they
also play a significant role in the run-time ezecution
of robotic software. For robotic systems, run-time ex-
ecution typically includes issues such as real-time re-
sponse, appropriate goal-directed behavior, and reliable
reactivity to environmental changes.

While all robotic systems must be reactive, some ap-
plications demand more in terms of strong real-time
response. Some architectures enable designers to spec-
ify the frequency at which behaviors should run, and
then schedule execution to meet the constraints. The
CIRCA architecture does this by using an explicit
scheduler in conjunction with a real-time operating
system [20]. ORccaD and ControlShell also provide
run-time support for scheduling execution at different
frequencies. In contrast, many behavior-based archi-
tectures, such as Subsumption and the skills of the
3T architecture, operate without any real-time guar-
antees. Basically, the hope is that response will be
“fast enough” for the domain. Whether real-time guar-
antees are needed or “fast enough” is sufficient depends
on the characteristics of the robotic application itself.
With respect to goal-directed behavior, architectures
can provide mechanisms for managing tasks and be-
haviors, such as task decomposition and behavior arbi-
tration, and for managing interactions between tasks
and behaviors, such as resource management, multi-
tasking and temporal sequencing. The idea is to pro-
vide constructs that are commonly needed for task-
level control. This alleviates the implementer from
the responsibility of ensuring that the code performs
according to specifications.

The most basic task-management capability is facili-
ties for concurrent execution, either by multi-tasking
in a single process (such as ControlShell provides) or
by a collection of distributed processes (such as pro-
vided in TCA). Some architectures (such as RAPs and
the Skill Manager of 3T) manage concurrency inter-
nally, through agenda queues. However, these tend to
be less general solutions and do not easily allow distri-
bution across multiple processors.

In addition to supporting concurrency, many robot ar-
chitectures provide more direct task management ca-
pabilities. For instance, behavioral-style architectures
typically include functionality for arbitrating amongst
concurrent, potentially conflicting, behaviors. Some
architectures handle this by blocking the output of a
subset of the behaviors, either through overrides, as in
Subsumption, or by dynamically selecting which be-



haviors will run, as in 3T. Other architectures address
this problem by combining the outputs of multiple be-
haviors to form a single output command, as in Aura
[4] and DAMN [21]. The tradeoffs are that blocking
outputs typically leads to more predictable and com-
putationally efficient systems, but combining outputs
tends to be more flexible, since all behaviors have a
potential effect on the chosen output.

At the task-control level, the main problem addressed
is how to schedule tasks. This typically involves speci-
fying temporal constraints between tasks, such as “task
A cannot run until task B is finished”, “C must start
10 seconds after D starts”, “E must terminate when F
completes”, etc. Many architectures provide languages
(RAPs, ESL, TDL, MAESTRO, PRS, Propice) that
support such constraints and run-time environments
to enforce them. While they differ in detail, most op-
erate by maintaining some sort of agenda queue as
well as a hierarchical representation of the task de-
composition. An added degree of expressiveness on
top of the temporal constraints is provided when ar-
chitectures enforce restrictions on resource utilization
amongst tasks.

With respect to reliable reactive behaviors, an ar-
chitecture can provide software support for monitor-
ing the environment and invoking exception handlers,
when appropriate. Clearly, the ability to detect and
react in a reliable manner depends on the real-time
capabilities of the system, but there is more to the
management of such exceptional conditions. This in-
cludes support for cleanly terminating existing tasks,
and if necessary invoking recovery strategies, then, if
possible, resuming the original tasks.

Architectures may also provide run-time support for
arbitrating between applicable recovery strategies,
such as organizing and invoking exception handlers in
a hierarchical fashion. This type of non-local control
flow is difficult to program, so existing support is very
beneficial. Many of the existing robot architectures
implement the type of hierarchical “catch and throw”
exception mechanism found in languages such as Lisp,
Ada, C++, and Java. The differences are mainly that
in the robot architectures, these capabilities are tightly
integrated with other task-level execution constructs,
such as task suspension or task termination.

5 Validation

By “validation” we mean both testing and formal verifi-
cation. Testing includes both unit and system testing.
Since complex robotic systems are typically designed
and implemented in a modular fashion, it is impor-
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tant to be able to unit test a component before the
entire system is completed. However, the response of a
component typically depends on the behavior of other
system components. Thus, testers often need to stub
out components by replacing them with functionally
identical, yet simpler modules in order to see how the
component being tested reacts in that context. Archi-
tectural support for this capability includes the use of
anonymous publish-subscribe messaging.

Also, in testing it is often desirable to replace the ac-
tual robot hardware with a simulation. Since the hard-
ware and simulation typically run at different speeds,
it is often desirable to have the architecture maintain
an internal clock that differs from the real-time clock,
in order to ensure that the relative timings of events is
the same for both simulation and actual robot.
Architectures can also aid in testing (and debugging)
by providing methods for instrumenting robotic sys-
tems that do not (unduly) affect real-time performance
[26]. One such method is logging significant system
events. For instance, ControlShell, through its Stetho-
scope tool, enables users to view internal variables of
an executing real-time system. TCA enables run-time
logging of all message traffic. Similarly, the Remote
Agent architecture [19] has extensive support for log-
ging events and state changes, where the logger runs as
a background process so as not to interfere with other
processing.

Still more useful is the visualization and/or analysis
tools that operate over such log data. For instance,
Stethoscope enables users to graphically display, in
real-time, continuous variables. Tools developed for
the Remote Agent allow users to visualize message
traffic and task execution [25]. Further development
of automatic analysis and diagnostic tools is definitely
warranted.

Robotic systems typically have huge state spaces -
much larger than can be tested by trial and error.
Formal verification provides a mean of guaranteeing
certain system properties, such as safety, liveness, and
absence of resource conflicts. The basic idea is to for-
mally model aspects of the robotic system’s behavior
and to determine if that behavior meets some given
specifications. Architectures can facilitate this in two
ways. First, the behavior of the architecture can be
formally specified, which facilitates modeling the be-
havior of any robotic system which uses that architec-
ture. Second, the architecture may provide languages
that are constrained in a way that makes formal verifi-
cation tractable. For instance, if an architecture repre-
sents behaviors using finite state automata, it may be
tractable to guarantee liveness and safety for a system



built using that architecture.

For instance, aspects of the task executive component
of the Remote Agent were modeled using temporal
logic and verified using model checking [17]. ORrc-
CAD promotes the use of the synchronous modeling
of the discrete-event parts of the system in conjunc-
tion with the description of continuous time aspects.
ORCCAD also uses TIMED-ARGOS and the KRONOS
symbolic verification tool to model the quantitative
temporal characteristics of real-time systems [11]. The
systematization of the verification process makes such
analyses accessible to non-specialists, immediately in-
tegrable in a complete programming environment and
thus less error prone. Two main types of properties
are identified: the first ones are related to critical op-
erating issues such as safety and liveness properties;
the second ones are operational properties related to
the completion of the desired objective such as the co-
herency of the specification with the requirements of
the application. In addition, verification methods can
be used to create abstract views to help the user during
the specification phase.

6 Future Trends

The area of robot architectures has seen much good
research, and several commercial products exist that
embed at least some of those ideas. However, there
remains much more to be done. In particular, sys-
tems integration and debugging remain two big open
areas for research. More work is needed to provide
standards for components, communication, and sys-
tem decomposition.

In particular, it is important to view these architec-
tures not as monolithic entities, but as parts of an over-
all solution. In this view, the best aspects of different
architectural styles need to be identified, isolated, and
“packaged”, so that they can seamlessly “play along”
with other architectural styles. We are still far from
having this. One reason is that the abstraction lev-
els used in the existing architectures are far from be-
ing compatible. The community needs to define (and
agree upon!) precise and eventually standardized “in-
terfaces” between levels, independent of the underlying
structures and styles.

In the area of system debugging, much work is needed
to formalize different architectural styles. This is im-
portant so that developers can understand precisely
what their system will be doing. Formalization also
aids in automatic test generation and verification.
More visualization and analysis tools need to be de-
veloped, so that users may track down and correct
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problems. In addition, it would be useful to develop
general replay mechanisms that enable developers to
record all relevant data from a given run and play it
back in non-real time [26].

Another open problem is how to compare different ar-
chitectures and architectural styles. Research papers
on architectures are typically descriptive — describing
what the system did and how it was organized — but
rarely provide metrics that would enable readers to de-
termine what effect, if any, the architecture itself had
on system performance. While we offer no ready so-
lutions to this problem, one observation is that, since
architectures can address needs in specification, execu-
tion and validation, it is legitimate to compare archi-
tectures along any of those axes [10]. For instance,
one might report on how a particular architectural
style made the specification of a system easier, or how
it provided increased guarantees of real-time perfor-
mance, or how it reduced the time to field a validated
system. It is important to develop (and use!) quantita-
tive criteria for evaluation of integrated systems (c.f.
evaluation measures of haptic devices [18]). Even if
quantitative comparison is not possible, reporting on
the whole development cycle, rather than just on the
final product, can help in qualitatively assessing the
effects of different architectural styles and structures.

7 Summary

This paper has tried to present some of the difficulties
in developing complex robotic systems, and discussed
how architectures can help alleviate some of those diffi-
culties. While architectures alone cannot create com-
plete working systems, good architectural styles and
structures can go a long way in making the specifica-
tion, execution, and validation easier and more reli-
able. We hope that in providing some observations on
the problems and potential solutions, we can provide
guidance to those who want to use, or develop, robot
architectures for their systems.
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