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for the future of architectures conclude the paper. 
A b s t r a c t  

Architectures form the backbone of complete robotic sys- 
tems. The right choice of architecture can go a long way 
in facilitating the specification, implementation and valida- 
tion of robotic systems. Conversely, of course, the wrong 
choice can make one's life miserable. We present some of 
the needs of robotic systems, describe some general classes 
of robot architectures, and discuss how different architec- 
tural styles can help in addressing those needs. The paper, 
like the field itself, is somewhat preliminary, yet it is hoped 
that it will provide guidance for  those who use, or develop, 

robot architectures. 

1 Introduct ion 

There have been some remarkable and inspiring suc- 
cess stories for robotics over the past few years. For ex- 
ample, the surgeries performed with robot assistance, 
vehicles capable of autonomously driving on highways 
for hundreds of kilometers, the Sojourner rover ex- 
ploring Mars, robots for hazardous waste cleanup, de- 
mining, agriculture, and autonomous museum tour- 
guides. Such robotic systems, working in challenging 
applications, rely upon theoretical progress allied to 
technical advances and the exponentially increasing 
power of computers. 
A common feature of such systems is their complex- 
ity, which also grows apace and provides its own chal- 
lenges. FRAMEWORKS FOR MANAGING THIS GROWING 

COMPLEXITY is the theme of this symposium on Ar- 
chitectures for Robot Control and Coordination. Mod- 
ern robotic systems, which need concurrent embedded 
real-time performance, are typically too complex to be 
developed and operated using conventional program- 
ming techniques. Rather,  managing complexity de- 
mands frameworks and tools that embody well-defined 
concepts to enable the effective realization of systems 

to meet high-level goals. 
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The term robot architecture encompasses several dif- 
ferent notions. Of particular interest are architectural 
structure and style. Architectural structure refers to 
how a system is divided into subsystems, and how 
those subsystems interact. This is often represented 
by the traditional "boxes and arrows" diagrams. Ar- 
chitectural style refers to the computational  concepts 
that  underlie a given system. For instance, one system 
might use a publish-subscribe message passing style of 
communication, while another  may use a more syn- 
chronous client-server approach. 
All robotic systems embody some architectural struc- 
ture and style (and often a single robot system uses 
several styles together).  However, it is sometimes dif- 
ficult to determine post hoc exactly what architecture 
was used. The architecture and the implementation 
are often intimately tied together,  in a "build it and 
make it work" manner.  This is unfortunate,  as a well- 
conceived architecture can have many advantages in 
the specification, execution, and validation of robot 
systems. 
An architecture should facilitate the development of 
robotic systems by providing beneficial constraints on 
design and implementation of the desired application, 
without being overly restrictive. While this criterion 
is easy to express, it is much harder to operational- 
ize. In particular, different applications have different 
needs, which can be best satisfied with different archi- 
tectures. While matching the right architecture to the 
application is much more of an art  than a science, in 
this paper we endeavor to provide some guidelines and 
insights to guide that  choice. 
The paper is organized as follows: section 2 introduces 
some of the different architectural styles encountered 
in the literature. In sections 3, 4, and 5, we discuss how 
the development of complex robotic systems can be 
facilitated using control architectures, focusing on the 
specification, execution, and validation phases. Trends 
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flow between them. 
2 R o b o t  Archi tec tures  

Robot systems differ from other software applications 
in many ways. Foremost are the need to achieve high- 
level, complex goals, the need to interact with a com- 
plex, often dynamic environment, while ensuring the 
system's own dynamics, the need to handle noise and 
uncertainty, and the need to be reactive to unexpected 
changes. These needs influence how robotic systems 
are designed, how they operate,  and how they are val- 
idated (and even what it means to be validated). In 
addition, many robots belong to the class of critical 
systems I7]. In such systems, errors during operation 
can have significant consequences and system safety 
issues play an essential role. 
Most of the architectural styles described in the tech- 
nical l i terature can be classified into three categories: 
hierarchical, behavioral, and hybrid. The hierarchical 
style adopts a top/down approach [3]. It highlights the 
supremacy of high-level control and restricts low-level 
horizontal communications. It has poor flexibility and 
has been adapted with difficulty to the control of new 
generation robots, which have to handle many sensors 
in reactive and reflex loops. 
In contrast,  the behavioral architectures adopt a 
bot tom-up approach [8]. This style uses groups of soft- 
ware modules known as "behaviors" which run con- 
currently and interact through communication and 
through the environment.  With this style, designing 
high-level control to achieve non trivial objectives is 
often difficult. Further,  composition laws do not have 
enough semantics to allow safety issues to be easily 
considered. 
Hybrid architectures are the most recent [6, 20, 19, 5, 
22, 7, 1]. The hybrid style combines both reactive and 
deliberative control in a heterogeneous architecture. It 
facilitates the design of efficient low-level control with 
a connection to high-level reasoning. The connection 
between the two levels can be tricky, however, and 
must be carefully designed and implemented to provide 
the right mix of reactivity and deliberation. 
We now turn to discussions of how the use of robot 
architectures can address the needs of robotic systems, 
focusing on the processes of system specification, run- 
time execution, and overall validation. 

3 Specif icat ion 

Perhaps the foremost issue in designing robotic sys- 
tems is the need to manage the complexity of inter- 
actions - both interactions between the system and 

its environment, and interactions between individual 

68
components of the system. 
One way of dealing with this complexity is through 
modularity within a given structure - overall system 
complexity can be reduced by decomposing it into 
smaller components with well-defined abstraction lev- 
els and interfaces between them. Architectural styles 
such as data  flow support  this by making upstream 
components independent from downstream compo- 
nents. This contrasts, for instance, with a composi- 
tion style based on function calls, where the invoking 
modules depend on the return values of the callees. 
Similarly, publish-subscribe message passing encour- 
ages the use of independent modules [23], whereas a 
client-server style may increase dependency and lead 
to more complex interactions. 
Often, system decomposition is hierarchical - modu- 
lar components are themselves built with other mod- 
ules. Architectures tha t  explicitly support  this type 
of decomposition can lead to more modular systems, 
which has a postive impact on the execution phase. 
However, while hierarchical decomposition of robotic 
systems is generally regarded as a "desirable quality", 
debates continue over the dimensions along which to 
decompose. For instance, the RCS architecture [2] ad- 
vocates decomposition along a temporal  dimension - 
each layer in the hierarchy operates at a characteristic 
frequency an order of magnitude slower than the layer 
below. Many architectures such as TCA [23], RAPs 
[131, PRS ll61, Laas [1], ORCCAD [71, and Subsump- 
tion [8] advocate decomposition based on task abstrac- 
tion, with more or less well defined semantics. In some 
situations, decomposition based on spatial abstraction 
may be more useful, such as when dealing with prob- 
lems involving both local and global navigation. The 
main lesson is that  different applications need to de- 
compose problems in different ways, and architectures 
need to be flexible enough to accommodate different 
decomposition strategies. 
Another way of dealing with complexity is to provide 
expressive languages and tools. Such languages and 
tools, when based on solid theories, can provide con- 
structs that  constrain design in certain ways, while 
hiding the complexity of the underlying concepts. Ar- 
chitectures should enable different languages and rep- 
resentations to be used when and where appropri- 
ate, integrating them seamlessly. For instance, typi- 
cal robotic applications involve both continuous and 
discrete control [7]. Architectures should address the 
problem of bridging the gap between those two do- 
mains - finding some interface that  respects both rep- 
resentations, yet facilitates information and control 
 



Researchers have developed many high-level languages 
tuned to particular robotic tasks. Languages for real- 
time behaviors include the Subsumption language I8], 
ALPHA [14[, and Skills [6]. Other approaches are to 
provide graphical programming environments for spec- 
ifying control strategies. Code is then automatically 
generated from the graphical descriptions. Architec- 
tures that use this technique include ControlShell [22], 
O~CCAD, and Labview. 
The use of high-level languages is even more preva- 
lent at the symbolic, discrete control level. In par- 
ticular, languages for specifying task-level control are 
quite common. They  include RAPs ]13], TCA I23], 
PRS [16], Propice [1], ESL [15], MAESTRO [9] and 
TDL [24]. A significant distinction between these lan- 
guages is whether it is self-contained, a language ex- 
tension, or a library. A self-contained language, such 
as RAPS or PRS, is often not very expressive and diffi- 
cult to integrate with other code unless abstract  views 
are provided to facilitate connection between modules, 
such as in MAESTRO. A language extension is a su- 
perset of an existing language that  includes explicit 
task-level control constructs. For instance, ESL is an 
extension of Lisp and TDL is an extension of C + + .  
The advantage here is that  it is easy to incorporate 
task-level control along with other computations, since 
it is all specified in the same language, and in the same 
basic way. 
Finally, an important  aspect of robotic systems is the 
detection and handling of exceptional conditions. Such 
situations tend to be numerous and can arise at any 
time, but with low probability. Architectures can help 
in specifying appropriate reaction strategies by dis- 
tinguishing nominal from exceptional behavior, and 
by enabling developers to specify such behaviors in 
a modular and incremental fashion. In some architec- 
tures, such as Subsumption, there are no exceptions - 
every state is t reated in the same way. In other ar- 
chitectures, exceptions are treated specially and are 
specified in a different fashion from "nominal" behav- 
ior. In particular, such architectures often have the 
notion of "jumping" to an exception handler and then 
returning back to resume normal operations after the 
exception has been handled. To support  this, archi- 
tectures such as ESL, ORCCAD, ControlShell, TCA 
and TDL allow named exceptions to be specified hi- 
erarchically. This enables designers to specify both 
specific exception handlers that  are applicable to re- 
stricted situations, such as retrying a move, as well as 
more general exception handlers that  have wider scope 
and more global effects, such as aborting the task al- 

together [12]. 
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4 Execut ion  

While architectures have an essential role in the de- 
sign and specification of a robotic application, they 
also play a significant role in the run-time execution 
of robotic software. For robotic systems, run-time ex- 
ecution typically includes issues such as real-time re- 
sponse, appropriate goal-directed behavior, and reliable 
reactivity to environmental changes. 
While all robotic systems must be reactive, some ap- 
plications demand more in terms of strong real-time 
response. Some architectures enable designers to spec- 
ify the frequency at which behaviors should run, and 
then schedule execution to meet the constraints. The 
CIRCA architecture does this by using an explicit 
scheduler in conjunction with a real-time operating 
system [20]. ORCCAD and ControlShell also provide 
run-time support  for scheduling execution at different 
frequencies. In contrast,  many behavior-based archi- 
tectures, such as Subsumption and the skills of the 
3T architecture, operate  without any real-time guar- 
antees. Basically, the hope is that  response will be 
"fast enough" for the domain. Whether  real-time guar- 
antees are needed or "fast enough" is sufficient depends 
on the characteristics of the robotic application itself. 
With respect to goal-directed behavior, architectures 
can provide mechanisms for managing tasks and be- 
haviors, such as task decomposition and behavior arbi- 
tration, and for managing interactions between tasks 
and behaviors, such as resource management,  multi- 
tasking and temporal  sequencing. The idea is to pro- 
vide constructs that  are commonly needed for task- 
level control. This alleviates the implementer from 
the responsibility of ensuring that  the code performs 
according to specifications. 
The most basic task-management capability is facili- 
ties for concurrent execution, either by multi-tasking 
in a single process (such as ControlShell provides) or 
by a collection of distributed processes (such as pro- 
vided in TCA).  Some architectures (such as RAPs and 
the Skill Manager of 3T) manage concurrency inter- 
nally, through agenda queues. However, these tend to 
be less general solutions and do not easily allow distri- 
bution across multiple processors. 
In addition to supporting concurrency, many robot ar- 
chitectures provide more direct task management ca- 
pabilities. For instance, behavioral-style architectures 
typically include functionality for arbitrating amongst 
concurrent, potentially conflicting, behaviors. Some 
architectures handle this by blocking the output  of a 
subset of the behaviors, either through overrides, as in 

Subsumption, or by dynamically selecting which be- 



t ractable to guarantee liveness and safety for a system 
haviors will run, as in 3T. Other architectures address 
this problem by combining the outputs  of multiple be- 
haviors to form a single output  command, as in Aura 
[4] and DAMN [21]. The tradeoffs are that  blocking 
outputs  typically leads to more predictable and com- 
putationally efficient systems, but combining outputs 
tends to be more flexible, since all behaviors have a 
potential effect on the chosen output .  
At the task-control level, the main problem addressed 
is how to schedule tasks. This typically involves speci- 
fying temporal  constraints between tasks, such as "task 
A cannot run until task B is finished", "C must start  
10 seconds after D starts", "E must terminate when F 
completes", etc. Many architectures provide languages 
(RAPs, ESL, TDL, MAESTRO, PRS, Propice) that  
support  such constraints and run-time environments 
to enforce them. While they differ in detail, most op- 
erate by maintaining some sort of agenda queue as 
well as a hierarchical representation of the task de- 
composition. An added degree of expressiveness on 
top of the temporal  constraints is provided when ar- 
chitectures enforce restrictions on resource utilization 
amongst tasks. 
With respect to reliable reactive behaviors, an ar- 
chitecture can provide software support  for monitor- 
ing the environment and invoking exception handlers, 
when appropriate.  Clearly, the ability to detect and 
react in a reliable manner depends on the real-time 
capabilities of the system, but there is more to the 
management of such exceptional conditions. This in- 
eludes support  for cleanly terminating existing tasks, 
and if necessary invoking recovery strategies, then, if 
possible, resuming the original tasks. 
Architectures may also provide run-time support  for 
arbitrating between applicable recovery strategies, 
such as organizing and invoking exception handlers in 
a hierarchical fashion. This type of non-local control 
flow is difficult to program, so existing support  is very 
beneficial. Many of the existing robot architectures 
implement the type of hierarchical "catch and throw" 
exception mechanism found in languages such as Lisp, 
Ada, C + + ,  and Java. The differences are mainly that  
in the robot architectures, these capabilities are tightly 
integrated with other task-level execution constructs, 
such as task suspension or task termination. 

5 Val idat ion 

By "validation" we mean both testing and formal verifi- 
cation. Testing includes both unit and system testing. 
Since complex robotic systems are typically designed 

and implemented in a modular fashion, it is impor- 

70 
tant  to be able to unit test a component before the 
entire system is completed. However, the response of a 
component typically depends on the behavior of other 
system components.  Thus, testers often need to stub 
out components by replacing them with functionally 
identical, yet simpler modules in order to see how the 
component being tested reacts in that  context. Archi- 
tectural support  for this capability includes the use of 
anonymous publish-subscribe messaging. 
Also, in testing it is often desirable to replace the ac- 
tual robot hardware with a simulation. Since the hard- 
ware and simulation typically run at different speeds, 
it is often desirable to have the architecture maintain 
an internal clock that  differs fl'om the real-time clock, 
in order to ensure that  the relative timings of events is 
the same for both simulation and actual robot. 
Architectures can also aid in testing (and debugging) 
by providing methods for instrumenting robotic sys- 
tems that  do not (unduly) affect real-time performance 
126]. One such method is logging significant system 
events. For instance, ControlShell, through its Stetho- 
scope tool, enables users to view internal variables of 
an executing real-time system. TCA enables run-time 
logging of all message traffic. Similarly, the Remote 
Agent architecture [19] has extensive support  for log- 
ging events and state changes, where the logger runs as 
a background process so as not to interfere with other 
processing. 
Still more useful is the visualization and /or  analysis 
tools that  operate over such log data. For instance, 
Stethoscope enables users to graphically display, in 
real-time, continuous variables. Tools developed for 
the Remote Agent allow users to visualize message 
traffic and task execution [25]. Further development 
of automatic analysis and diagnostic tools is definitely 
warranted. 
Robotic systems typically have huge state spaces - 
much larger than can be tested by trial and error. 
Formal verification provides a mean of guaranteeing 
certain system properties, such as safety, liveness, and 
absence of resource conflicts. The basic idea is to for- 
mally model aspects of the robotic system's behavior 
and to deternfine if that  behavior meets some given 
specifications. Architectures can facilitate this in two 
ways. First, the behavior of the architecture can be 
formally specified, which facilitates modeling the be- 
havior of any robotic system which uses that  architec- 
ture. Second, the architecture may provide languages 
that  are constrained in a way that  makes formal verifi- 
cation tractable. For instance, if an architecture repre- 
sents behaviors using finite state automata,  it may be 



built using that  architecture. 
For instance, aspects of the task executive component 
of the Remote Agent were modeled using temporal  
logic and verified using model checking [17]. ORC- 
CAD promotes the use of the synchronous modeling 
of the discrete-event parts of the system in conjunc- 
tion with the description of continuous time aspects. 
ORCCAD also uses TIMED-ARGOS and the KRONOS 
symbolic verification tool to model the quantitative 
temporal  characteristics of real-time systems [11]. The 
systematization of the verification process makes such 
analyses accessible to non-specialists, immediately in- 
tegrable in a complete programming environment and 
thus less error prone. Two main types of properties 
are identified: the first ones are related to critical op- 
erating issues such as safety and liveness properties; 
the second ones are operational properties related to 
the completion of the desired objective such as the co- 
herency of the specification with the requirements of 
the application. In addition, verification methods can 
be used to create abstract views to help the user during 
the specification phase. 

6 Future Trends 

The area of robot  architectures has seen much good 
research, and several commercial products exist that  
embed at least some of those ideas. However, there 
remains much more to be done. In particular, sys- 
tems integration and debugging remain two big open 
areas for research. More work is needed to provide 
standards for components, communication, and sys- 
tem decomposition. 
Ill particular, it is important  to view these architec- 
tures not as monolithic entities, but  as parts of an over- 
all solution. In this view, the best aspects of different 
architectural styles need to be identified, isolated, and 
"packaged", so that  they can seamlessly "play along" 
with other architectural styles, lye are still far from 
having this. One reason is that  the abstraction lev- 
els used in the existing architectures are far from be- 
ing compatible. The community needs to define (and 
agree upon!) precise and eventually standardized "in- 
terfaces" between levels, independent of the underlying 
structures and styles. 
In the area of system debugging, much work is needed 
to formalize different architectural styles. This is im- 
portant  so that developers can understand precisely 
what their system will be doing. Formalization also 
aids in automatic  test generation and verification. 
More visualization and analysis tools need to be de- 

veloped, so that  users may track down and correct 
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problems. In addition, it would be useful to develop 
general replay mechanisms that  enable developers to 
record all relevant da ta  from a given run and play it 
back in non-real t ime [26]. 
Another open problem is how to compare different ar- 
chitectures and architectural  styles. Research papers 
on architectures are typically descriptive - describing 
what the system did and how it was organized - but 
rarely provide metrics that  would enable readers to de- 
termine what effect, if any, the architecture itself had 
on system performance. While we offer no ready so- 
lutions to this problem, one observation is that,  since 
architectures can address needs in specification, execu- 
tion and validation, it is legitimate to compare archi- 
tectures along any of those axes [10]. For instance, 
one might report  on how a particular architectural 
style made the specification of a system easier, or how 
it provided increased guarantees of real-time perfor- 
mance, or how it reduced the time to field a validated 
system. It is important  to develop (and use!) quantita- 
tive criteria for evaluation of integrated systems (c.f. 
evaluation measures of haptic devices [18]). Even if 
quantitative comparison is not possible, reporting on 
the whole development cycle, ra ther  than just on the 
final product,  can help in qualitatively assessing the 
effects of different architectural styles and structures. 

7 Summary 

This paper has tried to present some of the difficulties 
in developing complex robotic systems, and discussed 
how architectures can help alleviate some of those diffi- 
culties. While architectures alone cannot create com- 
plete working systems, good architectural styles and 
structures can go a long way in making the specifica- 
tion, execution, and validation easier and more reli- 
able. We hope that  in providing some observations on 
the problems and potential  solutions, we can provide 
guidance to those who want to use, or develop, robot 
architectures for their systems. 
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