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Robotic Syste8. Robotic Systems Architectures and Programming

David Kortenkamp, Reid Simmons

Robot software systems tend to be complex. This
complexity is due, in large part, to the need to con-
trol diverse sensors and actuators in real time, in
the face of significant uncertainty and noise. Robot
systems must work to achieve tasks while moni-
toring for, and reacting to, unexpected situations.
Doing all this concurrently and asynchronously
adds immensely to system complexity.

The use of a well-conceived architecture,
together with programming tools that support
the architecture, can often help to manage that
complexity. Currently, there is no single archi-
tecture that is best for all applications – different
architectures have different advantages and dis-
advantages. It is important to understand those
strengths and weaknesses when choosing an
architectural approach for a given application.

This chapter presents various approaches to
architecting robotic systems. It starts by defining
terms and setting the context, including a recount-
ing of the historical developments in the area of
robot architectures. The chapter then discusses
in more depth the major types of architectural
components in use today – behavioral control
(Chap. 38), executives, and task planners (Chap. 9)
– along with commonly used techniques for inter-
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connecting those components. Throughout, em-
phasis will be placed on programming tools and
environments that support these architectures.
A case study is then presented, followed by a brief
discussion of further reading.

8.1 Overview

The term robot architecture is often used to refer to two
related, but distinct, concepts. Architectural structure
refers to how a system is divided into subsystems and
how those subsystems interact. The structure of a robot
system is often represented informally using traditional
boxes and arrows diagrams or more formally using tech-
niques such as unified modeling language (UML) [8.1].
In contrast, architectural style refers to the computational
concepts that underlie a given system. For instance, one

robot system might use a publish–subscribe message
passing style of communication, while another may use
a more synchronous client–server approach.

All robotic systems use some architectural structure
and style. However, in many existing robot systems it
is difficult to pin down precisely the architecture being
used. In fact, a single robot system will often use sev-
eral styles together. In part, this is because the system
implementation may not have clean subsystem bound-
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aries, blurring the architectural structure. Similarly, the
architecture and the domain-specific implementation are
often intimately tied together, blurring the architectural
style(s).

This is unfortunate, as a well-conceived, clean
architecture can have significant advantages in the spe-
cification, execution, and validation of robot systems.
In general, robot architectures facilitate development by
providing beneficial constraints on the design and im-
plementation of robotic systems, without being overly
restrictive. For instance, separating behaviors into
modular units helps to increase understandability and
reusability, and can facilitate unit testing and validation.

8.1.1 Special Needs of Robot Architectures

In some sense, one may consider robot architectures as
software engineering. However, robot architectures are
distinguished from other software architectures because
of the special needs of robot systems. The most impor-
tant of these, from the architectural perspective, are that
robot systems need to interact asynchronously, in real
time, with an uncertain, often dynamic, environment. In
addition, many robot systems need to respond at varying
temporal scopes – from millisecond feedback control to
minutes, or hours, for complex tasks.

To handle these requirements, many robot archi-
tectures include capabilities for acting in real time,
controlling actuators and sensors, supporting concur-
rency, detecting and reacting to exceptional situations,
dealing with uncertainty, and integrating high-level
(symbolic) planning with low-level (numerical) control.

While the same capability can often be implemented
using different architectural styles, there may be ad-
vantages of using one particular style over another.
As an example, consider how a robot system’s style
of communications can impact on its reliability. Many
robot systems are designed as asynchronous processes
that communicate using message passing. One popular
communication style is client–server, in which a mes-
sage request from the client is paired with a response
from the server. An alternate communication paradigm
is publish–subscribe, in which messages are broadcast
asynchronously and all modules that have previously
indicated an interest in such messages receive a copy.
With client–server-style message passing, modules typ-
ically send a request and then block, waiting for the
response. If the response never comes (e.g., the server
module crashes) then deadlock can occur. Even if the
module does not block, the control flow still typically
expects a response, which may lead to unexpected re-

sults if the response never arrives or if a response to
some other request happens to arrive first. In contrast,
systems that use publish–subscribe tend to be more
reliable: because messages are assumed to arrive asyn-
chronously, the control flow typically does not assume
any particular order in which messages are processed,
and so missing or out-of-order messages tend to have
less impact.

8.1.2 Modularity and Hierarchy

One common feature of robot architectures is modu-
lar decomposition of systems into simpler, largely
independent pieces. As mentioned above, robot sys-
tems are often designed as communicating processes,
where the communications interface is typically small
and relatively low bandwidth. This design enables the
processes/modules to handle interactions with the envi-
ronment asynchronously, while minimizing interactions
with one another. Typically, this decreases overall sys-
tem complexity and increases overall reliability.

Often, system decomposition is hierarchical – modu-
lar components are themselves built on top of other
modular components. Architectures that explicitly sup-
port this type of layered decomposition reduce system
complexity through abstraction. However, while hier-
archical decomposition of robotic systems is generally
regarded as a desirable quality, debate continues over
the dimensions along which to decompose. Some archi-
tectures [8.2] decompose along a temporal dimension
– each layer in the hierarchy operates at a character-
istic frequency an order of magnitude slower than the
layer below. In other architectures [8.3–6], the hierar-
chy is based on task abstraction – tasks at one layer
are achieved by invoking a set of tasks at lower levels.
In some situations, decomposition based on spatial ab-
straction may be more useful, such as when dealing with
both local and global navigation [8.7]. The main point is
that different applications need to decompose problems
in different ways, and architectural styles can often be
found to accommodate those different needs.

8.1.3 Software Development Tools

While significant benefit accrues from designing sys-
tems using well-defined architectural styles, many
architectural styles also have associated software tools
that facilitate adhering to that style during implemen-
tation. These tools can take the form of libraries of
functions calls, specialized programming languages, or
graphical editors. The tools make the constraints of the
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architectural style explicit, while hiding the complexity
of the underlying concepts.

For instance, inter-process communication libraries,
such as common object request broker architecture
(CORBA) [8.8] and inter-process communication (IPC)
package [8.9], make it easy to implement message pass-
ing styles, such as client–server and publish–subscribe,
respectively. Languages, such as Subsumption [8.10]
and Skills [8.11] facilitate the development of data-
driven, real-time behaviors, while languages such as the
execution support language (ESL) [8.12] and the the
plan execution interchange language (PLEXIL) [8.13]
provide support for reliably achieving higher-level
tasks. Graphical editors, such as found in Control-
Shell [8.14], Labview [8.15] and open robot controller

computer aided design (ORCCAD) [8.6], provide
constrained ways to assemble systems, and then auto-
matically generate code that adheres to the architectural
style.

In each case, the tools facilitate the development
of software in the given style and, more importantly,
make it impossible (or, at least, very difficult) to vio-
late the constraints of that architectural style. The result
is that systems implemented using such tools are typ-
ically easier to implement, understand, debug, verify,
and maintain. They also tend to be more reliable,
since the tools provide well-engineered capabilities for
commonly needed control constructs, such as message
passing, interfacing with actuators and sensors, and
handling concurrent tasks.

8.2 History

Robot architectures and programming began in the
late 1960s with the Shakey robot at Stanford Univer-
sity [8.16] (Fig. 8.1). Shakey had a camera, a range
finder, and bump sensors, and was connected to DEC
PDP-10 and PDP-15 computers via radio and video
links. Shakey’s architecture was decomposed into three

Fig. 8.1 Shakey (courtesy sri.com)
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Fig. 8.2 The sense–plan–act (SPA) paradigm (after [8.3],
with permission)

functional elements: sensing, planning, and execut-
ing [8.17]. The sensing system translated the camera
image into an internal world model. The planner took
the internal world model and a goal and generated a plan
(i. e., a series of actions) that would achieve the goal.
The executor took the plan and sent the actions to the
robot. This approach has been called the sense–plan–act
(SPA) paradigm (Fig. 8.2). Its main architectural fea-
tures are that sensing flowed into a world model, which
was then used by the planner, and that plan was exe-
cuted without directly using the sensors that created the
model. For many years, robotic control architectures and
programming focused almost exclusively on the SPA
paradigm.

8.2.1 Subsumption

In the early 1980s, it became apparent that the SPA
paradigm had problems. First, planning in any real-
world domain took a long time, and the robot would
be blocked, waiting for planning to complete. Second,
and more importantly, execution of a plan without in-
volving sensing was dangerous in a dynamic world.
Several new robot control architecture paradigms be-
gan to emerge, including reactive planning, in which
plans were generated quickly and relied more directly on
sensed information instead of internal models [8.4, 18].
The most influential work, however, was the sub-
sumption architecture of Brooks [8.3]. A subsumption
architecture is built from layers of interacting finite-state
machines – each connecting sensors to actuators di-
rectly (Fig. 8.3). These finite-state machines were called
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Fig. 8.3 Example of the Subsumption architecture (after [8.3], with permission)

behaviors (leading some to call Subsumption behavior-
based or behavioral robotics [8.19]; see also Ch. 38).
Since multiple behaviors could be active at any one
time, Subsumption had an arbitration mechanism that
enabled higher-level behaviors to override signals from
lower-level behaviors. For example, the robot might have
a behavior that simply drives the robot in random dir-
ections. This behavior is always active and the robot is
always driving somewhere. A second, higher-level be-
havior could take sensor input, detect obstacles, and steer
the robot away from them. It is also always active. In
an environment with no obstacles, the higher-level be-
havior never generates a signal. However, if it detects an
obstacle it overrides the lower-level behavior and steers
the robot away. As soon as the obstacle is gone (and the
higher-level behavior stops sending signals), the lower-
level behavior gets control again. Multiple, interacting
layers of behaviors could be built to produce more and
more complex robots.

Many robots were built using the subsumption ap-
proach – most at MIT [8.20–22]. They were quite
successful. Whereas SPA robots were slow and pon-
derous, Subsumption robots were fast and reactive.
A dynamic world did not bother them because they
constantly sensed the world and reacted to it. These
robots scampered around like insects or small rodents.
Several behavioral architectures arose in addition to Sub-
sumption, often with different arbitration schemes for
combining the outputs of behaviors [8.23, 24].

A popular example of behavior-based architectures
is Arkin’s motor-control schemas [8.25]. In this bi-
ologically inspired approach, motor and perceptual
schemas [8.26] are dynamically connected to one an-

other. The motor schemas generate response vectors
based on the outputs of the perceptual schemas, which
are then combined in a manner similar to potential
fields [8.27]. To achieve more complex tasks, the au-
tonomous robot architecture (AuRA) architecture [8.28,
29] added a navigation planner and a plan sequencer,
based on finite-state acceptors (FSAs), to the reactive
schemas.

However, behavior-based robots soon reached limits
in their capabilities. It proved very difficult to compose
behaviors to achieve long-range goals and it proved
almost impossible to optimize robot behavior. For ex-
ample, a behavior-based robot that delivered mail in an
office building could easily be built by simply wandering
around the office building and having behaviors looking
for rooms and then overriding the wandering and en-
tering the office. It was much more difficult to use the
behavioral style of architecture to design a system that
reasoned about the day’s mail to visit the offices in an op-
timal order to minimize delivery time. In essence, robots
needed the planning capabilities of the early architec-
tures wedded to the reactivity of the behavior-based
architectures. This realization led to the development
of layered, or tiered, robot control architectures.

8.2.2 Layered Robot Control Architectures

One of the first steps towards the integration of reac-
tivity and deliberation was the reactive action packages
(RAPs) system created by Firby. In his thesis [8.30], we
see the first outline of an integrated, three-layer archi-
tecture. The middle layer of that architecture, and the
subject of the thesis, was the RAPs system. Firby also
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speculated on the form and function of the other two
tiers, specifically with the idea of integrating classic
deliberative methods with the ideas of the emerging sit-
uated reasoning community, but those layers were never
implemented. Later, Firby would integrate RAPs with
a continuous low-level control layer [8.31].

Independently and concurrently, Bonasso at
MITRE [8.32] devised an architecture that began at the
bottom layer with robot behaviors programmed in the
Rex language as synchronous circuits [8.33]. These Rex
machines guaranteed consistent semantics between the
agent’s internal states and those of the world. The mid-
dle layer was a conditional sequencer implemented in
the Gapps language [8.34], which would continuously
activate and deactivate the Rex skills until the robot’s
task was complete. This sequencer based on Gapps was
appealing because it could be synthesized through more
traditional planning techniques [8.35]. This work culmi-
nated in the 3T architecture (named after its three tiers
of interacting control processes – planning, sequencing,
and real-time control), which has been used on many
generations of robots [8.36].

Architectures similar to 3T (Fig. 8.4) have
been developed subsequently. One example is AT-
LANTIS [8.37], which leaves much more control at the
sequencing tier. In ATLANTIS, the deliberative tier must
be specifically called by the sequencing tier. A third ex-
ample is Saridis’ intelligent control architecture [8.38].
The architecture begins with the servo systems available
on a given robot and augments them to integrate the exe-
cution algorithms of the next level, using VxWorks and
the VME bus. The next level consists of a set of coor-
dinating routines for each lower subsystem, e.g., vision,
arm motion, and navigation. These are implemented
in Petri net transducers (PNTs), a type of scheduling
mechanism, and activated by a dispatcher connected
to the organizational level. The organizational level is
a planner implemented as a Boltzmann neural network.
Essentially the neural network finds a sequence of ac-
tions that will match the required command received as
text input, and then the dispatcher executes each of these
steps via the network of PNT coordinators.

The LAAS architecture for autonomous systems
(LAAS) is a three-layered architecture that includes
software tools to support development/programming at
each layer [8.39]. The lowest layer (functional) con-
sists of a network of modules, which are dynamically
parameterized control and perceptual algorithms. Mod-
ules are written in the generator of modules (GenoM)
language, which produces standardized templates that
facilitate the integration of modules with one another.
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World

Memory
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  Subtask
  Subtask
Task 2
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Interpreter

Fig. 8.4 Prototype three-tiered architecture

Unlike most other three-layered architectures, the exec-
utive layer is fairly simple – it is purely reactive and
does no task decomposition. It serves mainly as a bridge
– receiving task sequences from the highest layer and se-
lecting and parameterizing tasks to send to the functional
layer. The executive is written in the Kheops language,
which automatically generates decision networks that
can be formally verified. At the top, the decision layer
consists of a planner, implemented using the indexed
time table (IxTeT) temporal planner [8.40, 41], and
a supervisor, implemented using procedural reasoning
system (PRS) [8.42, 43]. The supervisor is similar to
the executive layer of other three-layered architectures
– it decomposes tasks, chooses alternative methods for
achieving tasks, and monitors execution. By combining
the planner and supervisor in one layer, LAAS achieves
a tighter connection between the two, enabling more
flexibility in when, and how, replanning occurs. The
LAAS architecture actually allows for multiple deci-
sional layers at increasingly higher levels of abstraction,
such as a high-level mission layer and a lower-level task
layer.

Remote agent is an architecture for the autonomous
control of spacecraft [8.44]. It actually consists of four
layers – a control (behavioral) layer, an executive, a plan-
ner/scheduler, and mode identification and recovery
(MIR) that combines fault detection and recovery. The
control layer is the traditional spacecraft real-time con-
trol system. The executive is the core of the architecture
– it decomposes, selects, and monitors task execution,
performs fault recovery, and does resource management,
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turning devices on and off at appropriate times to con-
serve limited spacecraft power. The planner/scheduler
is a batch process that takes goals, an initial (projected)
state, and currently scheduled activities, and produces
plans that include flexible ranges on start and end times
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Fig. 8.5 The Syndicate multirobot architecture
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Fig. 8.6 The real-time control system (RCS) reference
architecture (after [8.46], with permission)

of tasks. The plan also includes a task to reinvoke the
planner to produce the next plan segment. An important
part of the remote agent is configuration management
– configuring hardware to support tasks and monitor-
ing that the hardware remains in known, stable states.
The role of configuration management is split between
the executive, which uses reactive procedures, and MIR,
which uses declarative models of the spacecraft and de-
liberative algorithms to determine how to reconfigure
the hardware in response to detected faults [8.45].

The Syndicate architecture [8.47] extends the 3T
model to multirobot coordination (Chap. 40). In this
architecture, each layer interfaces not only with the
layers above and below, as usual, but also with the lay-
ers of the other robots at the same level (Fig. 8.5). In
this way, distributed control loops can be designed at
multiple levels of abstraction. The version of Syndicate
in [8.48] used a distributed market-based approach for
task allocation at the planning layer.

Other noteworthy multitiered architectures have
appeared in the literature. The National Bureau of
Standards (NBS) developed for the Aeronautics and
Space Agency (NASA) the NASA/NBS standard refer-
ence model (NASREM) [8.2,49], later named real-time
control system (RCS), was an early reference model
for telerobotic control (Fig. 8.6). It is a many-tiered
model in which each layer has the same general struc-
ture, but operates at increasingly lower frequency as
it moves from the servo level to the reasoning lev-
els. With the exception of maintaining a global world
model, NASREM, in its original inception, provided
for all the data and control paths that are present in
architectures such as 3T, but NASREM was a refer-
ence model, not an implementation. The subsequent
implementations of NASREM followed primarily the
traditional sense–plan–act approach and were mainly
applied to telerobotic applications, as opposed to au-
tonomous robots. A notable exception was the early
work of Blidberg [8.50].

While three-layered robot architectures are very
popular, various two-layered architectures have been
investigated by researchers. The coupled layered archi-
tecture for robot autonomy (CLARAty) was designed
to provide reusable software for NASA’s space robots,
especially planetary rovers [8.51, 52]. CLARAty con-
sists of a functional and a decision layer. The functional
layer is a hierarchy of object-oriented algorithms that
provide more and more abstract interfaces to the robot,
such as motor control, vehicle control, sensor-based nav-
igation, and mobile manipulation. Each object provides
a generic interface that is hardware independent, so that
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the same algorithms can run on different hardware. The
decision layer combines planning and executive capa-
bilities. Similar to the LAAS architecture, this is done to
provide for tighter coordination between planning and
execution, enabling continual replanning in response to
dynamic contingencies.

Closed-loop execution and recovery (CLEaR) [8.53]
is one instantiation of the CLARAty decision layer.
CLEaR combines the continuous activity scheduling,
planning, execution and replanning (CASPER) repair-
based planner [8.54] and the task description language
(TDL) executive language [8.55]. CLEaR provides
a tightly coupled approach to goal- and event-driven be-
havior. At its heart is the capability to do fast, continuous
replanning, based on frequent state and resource updates
from execution monitoring. This enables the planner
to react to many exceptional situations, which can be
important in cases where there are many tasks, few re-
sources, and significant uncertainty. In CLEaR, both the
planning and executive components are able to handle
resource conflicts and exceptional situations – heuristics
are used to decide which component should be involved
in a given situation. The onboard autonomous science
investigation system (OASIS) system [8.56] extends
CLEaR to include science data analysis so that the archi-
tecture can be driven by opportunistic science-related
goals (such as finding unusual rocks or formations).
OASIS is planner-centric, releasing tasks to the execu-
tive component just a few seconds before their scheduled
start times.

The cooperative intelligent real-time control archi-
tecture (CIRCA) is a two-layered architecture concerned
with guaranteeing reliable behavior [8.57, 58]. It
embodies the notion of bounded reactivity – an acknowl-

edgement that the resources of the robot are not always
sufficient to guarantee that all tasks can be achieved.
CIRCA consists of a real-time system (RTS) and an ar-
tificial intelligence (AI) system (AIS) that are largely
independent. The RTS executes a cyclic schedule of
test action pairs (TAPs) that have guaranteed worst-case
behavior in terms of sensing the environment and con-
ditionally acting in response. It is the responsibility of
the AIS to create a schedule that is guaranteed to pre-
vent catastrophic failures from occurring, while running
in hard real time. The AIS does this by planning over
a state-transition graph that includes transitions for ac-
tions, exogenous events, and the passage of time (e.g.,
if the robot waits too long, bad things can happen). The
AIS tests each plan (set of TAPs) to see if it can actu-
ally be scheduled. If not, it alters the planning model,
either by eliminating tasks (based on goal prioritization)
or by changing parameters of behaviors (e.g., reduc-
ing the robot’s velocity). The AIS continues this until it
finds a plan that can be successfully scheduled, in which
case it downloads the new plan to the RTS in an atomic
operation.

Like CIRCA, ORCCAD is a two-layered archi-
tecture that is concerned with guaranteed reliability [8.6,
59]. In the case of ORCCAD, this guarantee is achieved
through formal verification techniques. Robot tasks
(lower-level behaviors) and robot procedures (higher-
level actions) are defined in higher-level languages
that are then translated into the Esterel programming
language [8.60], for logical verification, or the Timed-
Argus language [8.61], for temporal verification. The
verification is geared toward liveness and safety prop-
erties, as well as verifying lack of contention for
resources.

8.3 Architectural Components

We will take the three-tiered architecture as the prototype
for the components discussed in this chapter. Figure 8.4
shows a typical three-tiered architecture. The lowest tier
(or layer) is behavioral control and is the layer tied
most closely to sensors and actuators. The second tier
is the executive layer and is responsible for choosing
the current behaviors of the robot to achieve a task.
The highest tier is the task-planning layer and it is re-
sponsible for achieving long-term goals of the robot
within resource constraints. Using the example of an
office delivery robot, the behavioral layer is responsi-
ble for moving the robot around rooms and hallways,

for avoiding obstacles, for opening doors, etc. The exe-
cutive layer coordinates the behavioral layer to achieve
tasks such as leaving a room, going to an office, etc.
The task-planning layer is responsible for deciding the
order of deliveries to minimize time, taking into ac-
count delivery priorities, scheduling, recharging, etc.
The task-planning layer sends tasks (e.g., exit the room,
go to office 110) to the executive. All these tiers need to
work together and exchange information. The next sec-
tion deals with the problem of connecting components
to each other. We then discuss each component of the
three-tiered prototype architecture in detail.
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8.3.1 Connecting Components

All of the architecture components that have been dis-
cussed in this chapter need to communicate with each
other. They need to both exchange data and send com-
mands. The choice of how components communicate
(often called the middleware) is one of the most im-
portant and most constraining of the many decisions
a robot architecture designer will make. From previous
experience, a great deal of the problems and a majority
of the debugging time in developing robot architectures
have to do with communication between components.
In addition, once a communication mechanism is cho-
sen it becomes extremely difficult to change, so early
decisions persist for many years. Many developers roll
their own communication protocols, usually built on top
of Unix sockets. While this allows for customization
of messages, it fails to take advantage of the reliabil-
ity, efficiency, and ease of use that externally available
communication packages provide. There are two ba-
sic approaches to communication: client–server and
publish–subscribe.

Client–Server
In a client–server (also called a point-to-point) commu-
nication protocol, components talk directly with other
components. A good example of this is remote pro-
cedure call (RPC) protocols in which one component
(the client) can call functions and procedures of an-
other component (the server). A modern, and popular,
variation on this is the common object request broker
architecture (CORBA). CORBA allows for one com-
ponent to call object methods that are implemented by
another component. All method calls are defined in an
interface definition language (IDL) file that is language
independent. Every component uses the same IDL to
generate code that compiles with component to handle
communication. The advantage of this is that, when an
IDL file is changed, all components that use that IDL can
be recompiled automatically (by using make or similar
code configuration tools). CORBA object request bro-
kers (ORBs) are available for most major object-oriented
languages. Although free ORBs are available, many
commercial ORBs offer additional features and support.
One disadvantage of CORBA is that it introduces quite
a bit of additional code into applications. Some competi-
tors have tried to address this issue, such as the internet
communications engine (ICE), which has its own ver-
sion of an IDL file called the specification language
for ICE (SLICE). The biggest advantage of a client–
server protocol is that the interfaces are very clearly

defined in advance and everyone knows when the inter-
face has changed. Another advantage is that it allows for
a distributed approach to communication with no cen-
tral module that must distribute data. A disadvantage
of client–server protocols is that they introduce signifi-
cant overhead, especially if many components need the
same information. It should be noted that CORBA and
ICE also have a broadcast mechanism (called an event
channel, or the notification service, in CORBA).

Publish–Subscribe
In a publish–subscribe (also called a broadcast) pro-
tocol, a component publishes data and any other
component can subscribe to that data. Typically, a cen-
tralized process routes data between publishers and
subscribers. In a typical architecture, most components
both publish information and subscribe to information
published by other components. There are several exist-
ing publish–subscribe middleware solutions. A popular
one for robotics is the real-time innovations’ (RTI)
data distribution service (DDS), formerly the net-
work data distribution service (NDDS) [8.62]. Another
popular publish–subscribe paradigm is IPC developed
at Carnegie Mellon University [8.9]. Many publish-
subscribe protocols are converging on using extensible
markup language (XML) descriptions to define the
data being published, with the added convenience of
transmitting XML over HTTP, which allows for sig-
nificant interoperability with Web-based applications.
Publish–subscribe protocols have a large advantage
in being simple to use and having low overhead.
They are especially useful when it is unknown how
many different components might need a piece of
data (e.g., multiple user interfaces). Also, components
do not get bogged down with repeated requests for
information from many different sources. Publish–
subscribe protocols are often more difficult to debug
because the syntax of the message is often hidden in
a simple string type. Thus problems are not revealed
until runtime when a component tries, and fails, to
parse an incoming message. Publish–subscribe proto-
cols are also not as readable when it comes to sending
commands from one module to another. Instead of
calling an explicit method or function with parame-
ters, a command is issued by publishing a message
with the command and parameters in it and then hav-
ing that message be parsed by a subscriber. Finally,
publish–subscribe protocols often use a single cen-
tral server to dispatch messages to all subscribers,
providing a single point of failure and potential bot-
tleneck.
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Fig. 8.7 The JAUS reference
architecture topology (after JAUS Ref-
erence Architecture document [8.63])

JAUS
Recently, a standard has emerged in the defense robotics
community not only for a communication protocol
but also for definitions of messages that are sent via
that communication protocol. The joint architecture for
unmanned systems (JAUS) defines a set of reusable
messages and interfaces that can be used to command
autonomous systems [8.63–65]. These reusable com-
ponents reduce the cost of integrating new hardware
components into autonomous systems. Reuse also al-
lows for components developed for one autonomous
system to be used by another autonomous system. JAUS
has two components: a domain model and a reference
architecture. The domain model is a representation of
the unmanned systems’ functions and information. It
contains a description of the system’s functional and
informational capabilities. The former includes mod-
els of the system’s maneuvering, navigational, sensing,
payload, and manipulation capabilities. The latter in-
cludes models of the system’s internal data, such as
maps and system status. The reference architecture
provides a well-defined set of messages. Messages
cause actions to commence, information to be ex-
changed, and events to occur. Everything that occurs in
a JAUS system is precipitated by messages. This strat-
egy makes JAUS a component-based, message-passing
architecture.

The JAUS reference architecture defines a system
hierarchy, as shown in Fig. 8.7. The topology defines
the system as the collection of vehicles, operator control
units (OCU), and infrastructure necessary to provide the
full robotic capability. Subsystems are individual units
(e.g., vehicles or OCUs) in the system. Nodes define
a distinct processing capability within the architecture
and route JAUS messages to components. Components
provide the different execution capabilities and respond
directly to command messages. Components might be

sensors (e.g., a SICK laser or a vision sensor), ac-
tuators (a manipulator or a mobile base) or payloads
(weapons or task sensors). The topology (the layout of
particular system, subsystems, nodes, and components)
is defined by the system implementers based on task
requirements.

At the core of JAUS is a set of well-defined messages.
JAUS supports the following message types.

Command: Initiate mode changes or actions
Query: Used to solicit information from

a component
Inform: Response to a query
Event set up: Passes parameters to set up an event
Event notification: Sent when the event happens

JAUS has about 30 predefined messages that can be
used to control robots. There are messages for control of
a robotic vehicle. For example, the global vector driver
message performs closed-loop control of the desired
global heading, altitude, and speed of a mobile vehicle.
There are also sensor messages such as global pose sen-
sor, which distributes the global position and orientation
of the vehicle. There are also manipulation messages in
JAUS. For example, the set joint positions message sets
the desired joint position values. The set tool point mes-
sage specifies the coordinates of the end-effector tool
point in terms of the coordinate system attached to the
end-effector.

JAUS also has user-definable messages. Messages
have headers that follow a specific format and include
message type, destination address (e.g., system, subsys-
tem, node, and component), priority, etc. While JAUS
is primarily point to point, JAUS messages can also be
marked as broadcast and distributed to all components.
JAUS also defines coordinate systems for navigation and
manipulation to ensure all components understand any
coordinates sent to them.
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8.3.2 Behavioral Control

Behavioral control represents the lowest level of con-
trol in a robot architecture. It directly connects sensors
and actuators. While these are typically hand-crafted
functions written in C or C++, there have been spe-
cialized languages developed for behavioral control,
including ALFA [8.66], Behavioral Language [8.67],
and Rex [8.68]. It is at this level that traditional con-
trol theory (e.g., PID functions, Kalman filters, etc.)
resides. In architectures such as 3T, the behavioral layer
functions as a Brooksian machine – that is, the layer is
composed of a small number of behaviors (also called
skills) that perceive the environment and carry out the
actions of the robot.

Example
Consider an office delivery robot that operates in
a typical office building. The behavioral control layer
contains the control functions necessary to move around
in the building and carry out delivery tasks. Assum-
ing the robot has an a priori map of the building, some
possible behaviors for this robot include

1. move to location while avoiding obstacles
2. move down hallway while avoiding obstacles
3. find a door
4. find a door knob
5. grasp a door knob
6. turn a door knob
7. go through door
8. determine location
9. find office number
10. announce delivery

Each of these behaviors ties sensors (vision, range
sensing, etc.) to actuators (wheel motors, manipulator
motors, etc.) in a tight loop. In architectures such as
Subsumption, all behaviors are running concurrently
with a hierarchical control scheme inhibiting the out-
puts of certain behaviors. In AuRA [8.29], behaviors
are combined using potential functions. Other architec-
tures [8.24, 68] use explicit arbitration mechanisms to
choose amongst potentially conflicting behaviors.

In architectures such as 3T [8.36], not all of the
behaviors are active at the same time. Typically, only
a few behaviors that do not conflict would be active at
a time (e.g., behaviors 2 and 9 in the example above).
The executive layer (see Sect. 8.3.3) is responsible for
activating and deactivating behaviors to achieve higher-
level tasks and to avoid conflicts between two behaviors
competing for the same resource (e.g., an actuator).

Situated Behaviors
An important aspect of these behaviors is that they be
situated. This means that the behavior works only in
very specific situations. For example, behavior 2 above
moves down a hallway, but this is appropriate only when
the robot is situated in a hallway. Similarly, behavior 5,
which grasps a door knob, is appropriate only when the
robot is within grasping distance of a door knob. The
behavior is not responsible for putting the robot in the
particular situation. However, it should recognize that
the situation is not appropriate and signal as such.

Cognizant Failure
A key requirement for behaviors is that they know
when they are not working. This is called cognizant
failure [8.69]. For example, behavior 5 in our example
(grasping the door knob) should not continually grasp at
air if it is failing. More succinctly, the behavior should
not continue to bang its head against the wall. A com-
mon problem with early Subsumption robots is that the
behaviors did not know they were failing and contin-
ued to take actions that were not resulting in progress.
It is not the job of the behavioral control layer to decide
what to do in a failure situation; it is only necessary to
announce that the behavior has failed and halt activity.

Implementation Constraints
The behavioral control layer is designed to bring the
speed and reactivity of Subsumption to robot control.
For this reason, the behaviors in the behavioral control
layer need to follow the philosophies of Subsumption. In
particular, the algorithms used for behaviors should be
constant in state and time complexity. There should be
little or no search at the behavioral control level, and little
iteration. Behaviors should simply be transfer functions
that take in signals (from sensors or other behaviors) and
send out signals (to actuators or other behaviors), and
repeat these several times a second. This will allow for
reactivity to changing environments. More controversial
is how much state should be allowed at the behavioral
level. Brooks famously said several years ago to “use the
world as its own best model” [8.67] – that is, instead of
maintaining internal models of the world and querying
those models, the robot should instead directly sense the
world to get its data. State such as maps, models, etc.
belong at the higher levels of the three-tiered prototype
architecture, not at the behavioral control layer. Certain
exceptions, such as maintaining state for data filtering
calculations, could be made on a case-by-case basis.
Gat [8.70] argues that any state kept at the behavioral
layer should be ephemeral and limited.
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8.3.3 Executive

The executive layer is the interface between the numer-
ical behavioral control and the symbolic planning layers.
The executive is responsible for translating high-level
plans into low-level behaviors, invoking behaviors at the
appropriate times, monitoring execution, and handling
exceptions. Some executives also allocate and moni-
tor resource usage, although that functionality is more
commonly performed by the planning layer.

Example
Continuing the example of an office delivery robot, the
main high-level task would be to deliver mail to a given
office. The executive would decompose this task into
a set of subtasks. It may use a geometric path planner
to determine the sequence of corridors to move down
and intersections at which to turn. If there are doorways
along the route, a task would be inserted to open and
pass through the door. At the last corridor, the executive
would add a concurrent task that looks for the office
number. The final subtasks would be to announce that
the person has mail and to concurrently monitor whether
the mail has been picked up. If it is not picked up after
some period of time, an exception would be triggered
that invokes some recovery action (perhaps announcing
again, perhaps checking to make sure the robot is at the
correct office, perhaps notifying the planning layer to
reschedule the delivery for a later time).

Capabilities
The example above illustrates many of the capabilities
of the executive layer. First, the executive decomposes
high-level tasks (goals) into low-level tasks (behaviors).
This is typically done in a procedural fashion: the know-
ledge encoded in the executive describes how to achieve
tasks, rather than describing what needs to be done
and having the executive figure out the how by itself.
Sometimes, though, the executive may also use spe-
cialized planning techniques, such as the route planner
used in the example above. The decomposition is typi-
cally a hierarchical task tree (Fig. 8.8), with the leaves
of the task tree being invocations and parameterizations
of behaviors.

Besides decomposing tasks into subtasks, executives
add and maintain temporal constraints between tasks
(usually between sibling tasks only, but some executive
languages permit temporal constraints between any pair
of tasks). The most common constraints are serial and
concurrent, but most executives support more expressive
constraint languages, such as having one task begin 10 s

DeliverMail

Speak
Center

OnDoor

LookFor
Door Move

Center
OnDoor

Navigate
to

Monitor
Pickup

Fig. 8.8 Hierarchical task tree for mail-delivery task
(lozenge nodes are interior; rectangular nodes are leaves;
hexagonal node is an execution monitor; solid arrows are
parent–child relationships; dashed arrows are sequential
constraints)

after another one starts or having one task end when
another ends.

The executive is responsible for dispatching tasks
when their temporal constraints are satisfied. In some
executives, tasks may also specify resources (e.g., the
robot’s motors or camera) that must be available before
the task can be dispatched. As with behaviors, arbitrating
between conflicting tasks can be a problem. In the case
of executives, however, this arbitration is typically either
programmed in explicitly (e.g., a rule that says what to
do in cases where the robot’s attempt to avoid obstacles
takes it off the preferred route) or handled using priorities
(e.g., recharging is more important than mail delivery).

The final two important executive capabilities are
execution monitoring and error recovery. One may
wonder why these capabilities are needed if the un-
derlying behaviors are reliable. There are two reasons.
First, as described in Sect. 8.3.2, the behaviors are
situated, and the situation may change unexpectedly.
For instance, a behavior may be implemented assum-
ing that a person is available to pick up the mail,
but that may not always be the case. Second, in try-
ing to achieve some goal, the behavior may move
the robot into a state that is unexpected by the ex-
ecutive. For instance, people may take advantage of
the robot’s obstacle avoidance behavior to herd it into
a closet. While the behavior layer may, in fact, keep
the robot safe in such situations, the executive needs to
detect the situation in order to get the robot back on
track.
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Typically, execution monitoring is implemented as
a concurrent task that either analyzes sensor data directly
or activates a behavior that sends a signal to the executive
when the monitored situation arises. These correspond
to polling and interrupt-driven monitors, respectively.

Executives support various responses to monitors be-
ing triggered. A monitor may spawn subtasks that handle
the situation, it may terminate already spawned sub-
tasks, it may cause the parent task to fail, or it may raise
an exception. The latter two responses involve the er-
ror recovery (also called exception handling) capability.
Many executives have tasks return status values (success
or failure) and allow parent tasks to execute condition-
ally based on the return values. Other executives use
a hierarchical exception mechanism that throws named
exceptions to ancestor nodes in the task tree. The clos-
est task that has registered a handler for that exception
tries to handle it; if it cannot, it rethrows the exception
up the tree. This mechanism, which is inspired by the
exception handling mechanisms of C++, Java, and Lisp,
is strictly more expressive than the return-value mecha-
nism, but it is also much more difficult to design systems
using that approach, due to the nonlocal nature of the
control flow.

Implementation Constraints
The underlying formalism for most executives is a hier-
archical finite-state controller. Petri nets [8.71] are
a popular choice for representing executive functions.
In addition, various languages have been developed
specifically to assist programmers in implementing
executive-level capabilities. We briefly discuss as-
pects of several of these languages: reactive action
packages (RAPs) [8.4, 30], the procedural reasoning
system (PRS) [8.42, 43], the execution support lan-
guage (ESL) [8.12], the task description language
(TDL) [8.55], and the plan execution interchange lan-
guage (PLEXIL) [8.13].

These languages all share features and exhibit dif-
ferences. One distinction is whether the language is
stand-alone (RAPs, PRS, PLEXIL) or an extension of an
existing language (ESL is an extension of Common Lisp;
TDL is an extension of C++). Stand-alone languages are
typically easier to analyze and verify, but extensions are
more flexible, especially with respect to integration with
legacy software. While stand-alone executive languages
all support interfaces to user-defined functions. These
interfaces are usually limited in capability (such as what
types of data structures can be passed around).

All of these executive languages provide support for
hierarchical decomposition of tasks into subtasks. All

except PLEXIL allow for recursive invocation of tasks.
RAPs, TDL, and PLEXIL have syntax that distinguishes
leaf nodes of the task tree/graph from interior nodes.

All these languages provide capabilities for express-
ing conditionals and iteration, although with RAPs and
PLEXIL these are not core-language constructs, but
must be expressed as combinations of other constructs.
Except for TDL, the languages all provide explicit sup-
port for encoding pre- and post-conditions of the tasks
and for specifying success criteria. With TDL, these
concepts must be programmed in, using more primi-
tive constructs. The stand-alone languages all enable
local variables to be defined within a task description,
but provide for only limited computation with those
variables. Obviously, with extension languages the full
capability of the base language is available for defining
tasks.

All the languages support the simple serial (se-
quential) and concurrent (parallel) temporal constraints
between tasks, as well as timeouts that can be specified
to trigger after waiting a specified amount of time. In ad-
dition, TDL directly supports a wide range of temporal
constraints – one can specify constraints between the
start and end times of tasks (e.g., task B starts after task
A starts or task C ends after task D starts) as well as met-
ric constraints (e.g., task B starts 10 seconds after task
A ends or task C starts at 1pm). ESL and PLEXIL sup-
port the signaling of events (e.g., when tasks transition
to new states) that can be used to implement similarly
expressive types of constraints. In addition, ESL and
TDL support task termination based on the occurrence
of events (e.g., task B terminates when task A starts).

The languages presented differ considerably in how
they deal with execution monitoring and exception han-
dling. ESL and TDL both provide explicit execution
monitoring constructs and support exceptions that are
thrown and then caught by registered handlers in a hier-
archical fashion. This type of exception handling is
similar to that used in C++, Java, and Lisp. ESL and
TDL also support clean-up procedures that can be in-
voked when tasks are terminated. RAPs and PLEXIL use
return values to signal failure, and do not have hierarch-
ical exception handling. PLEXIL, though, does support
clean up procedures that are run when tasks fail. PRS has
support for execution monitoring, but not exception han-
dling. ESL and PRS support the notion of resources that
can be shared. Both provide support for automatically
preventing contention amongst tasks for the resources.
In the other executive languages, this must be imple-
mented separately (although there are plans to extend
PLEXIL in this area).
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Finally, RAPs, PRS and ESL all include a symbolic
database (world model) that connects either directly to
sensors or to the behavior layer to maintain synchrony
with the real world. Queries to the database are used to
determine the truth of preconditions, to determine which
methods are applicable, etc. PLEXIL has the concept of
a lookup that performs a similar function, although it
is transparent to the task how this is implemented (e.g.,
by a database lookup or by invoking a behavior-level
function). TDL leaves it up to the programmer to specify
how the tasks connect to the world.

8.3.4 Planning

The planning component of our prototype layered archi-
tecture is responsible for determining the long-range
activities of the robot based on high-level goals. Where
the behavioral control component is concerned with the
here-and-now and the executive is concerned with what
has just happened and what should happen next, the
planning component looks towards the future. In our
running example of an office delivery robot, the plan-
ning component would look at the day’s deliveries, the
resources of the robot, and a map, and determine the op-
timal delivery routes and schedule, including when the
robot should recharge. The planning component is also
responsible for replanning when the situation changes.
For example, if an office is locked, the planning compo-
nent would determine a new delivery schedule that puts
that office’s delivery later in the day.

Types of Planning
Chapter 9 describes approaches to robot planning in de-
tail. Here, we summarize issues with respect to different
types of planners as they relate to layered architectures.

The two most common approaches used are
hierarchical task net (HTN) planners and plan-
ner/schedulers. HTN planners [8.72, 73] decompose
tasks into subtasks, in a manner similar to what many
executives do. The main differences are that HTN plan-
ners typically operate at higher levels of abstraction, take
resource utilization into account, and have methods for
dealing with conflicts between tasks (e.g., tasks needing
the same resources, or one task negating a precondi-
tion needed by another task). The knowledge needed by
HTN planners is typically fairly easy to specify, since
one indicates directly how tasks are to be achieved.

Planner/schedulers [8.74, 75] are useful in domains
where time and resources are limited. They create high-
level plans that schedule when tasks should occur, but
typically leave it to the executive to determine exactly

how to achieve the tasks. Planner/schedulers typically
work by laying out tasks on time lines, with separate
time lines for the various resources that are available
on the robot (motors, power, communication, etc.). The
knowledge needed by planner/schedulers includes the
goals that tasks achieve, the resources they need, their
duration, and any constraints between tasks.

Many architectures provide for specialized planning
experts that are capable of solving particular problems
efficiently. In particular, these include motion planners,
such as path planners and trajectory planners. Some-
times, the planning layer of the architecture invokes
these specialized planners directly; in other architectural
styles, the motion planners are part of the lower levels
of the architecture (the executive, or even the behavioral
layer). Where to put these specialized planners is often
a question of style and performance (see Sect. 8.5).

Additionally, some architectures provide for mul-
tiple planning layers [8.39, 44, 76]. Often, there is
a mission planning layer at the very top that plans at
a very abstract level, over relatively long periods of time.
This layer is responsible mainly for selecting which
high-level goals are to be achieved over the next pe-
riod of time (and, in some cases, determining in which
order to achieve them) in order to maximize some objec-
tive function (e.g., net reward). The lower task planning
layer is then responsible for determining exactly how
and when to achieve each goal. This breakdown is usu-
ally done for efficiency reasons, since it is difficult to
plan simultaneously at both a detailed level and over
a long time horizon.

Integrating Planning and Execution
There are two main approaches to the integration of the
planning and execution components in robotic architec-
tures. The first approach is that the planning component
is invoked as needed by the executive and returns a plan.
The planning component is then dormant until called
again. Architectures such as ATLANTIS [8.70] and Re-
mote Agent [8.44] use this approach, which requires that
the executive either leave enough time for planning to
complete or that it safes the system until planning is
complete. In the Remote Agent, for instance, a special
planning task is explicitly scheduled.

The second approach is that the planning compo-
nent sends high-level tasks down to the executive as
required and monitors the progress of those tasks. If
tasks fail, replanning is done immediately. In this ap-
proach, the planning component is always running and
always planning and replanning. Signals must pass in
real time between the planner and the executive to keep
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them synchronized. Architectures such as 3T [8.36] use
this second approach. The first approach is useful when
the system is relatively static, so that planning can occur
infrequently, at relatively predictable times. The sec-
ond approach is more suited to dynamic environments,
where replanning is more frequent and less predictable.

Other decisions that need to be made when inte-
grating planning and execution are when to stop task
decomposition, where to monitor plan execution, and
how to handle exceptions. By planning all the way down
to primitive actions/behaviors, the planner has a very
good notion of what will happen during execution, but at
a price of much more computation. Also, some task de-
compositions are easier to describe procedurally (using
an executive language) rather than declaratively (using
a planning language). Similarly, monitoring at the execu-

tive level tends to be more efficient, since the monitoring
happens closer to the robot sensors, but the planner may
be able to use its more global knowledge to detect excep-
tions earlier and/or more accurately. With respect to han-
dling exceptions, executives can handle many on their
own, at the price of breaking the expectations used by
the planner in scheduling tasks. On the other hand, hav-
ing exceptions handled by the planner typically involves
replanning, which can be computationally expensive.

For all these integration issues, however, a middle
ground usually exists. For instance, one can choose to
decompose some tasks more deeply than others, or han-
dle certain exceptions in the executive and others in
the planner. In general, the right approach usually in-
volves a compromise and is determined by analyzing
the domain in detail (see Sect. 8.5).

8.4 Case Study – GRACE

In this section, we present the architecture of a fairly
complex autonomous mobile robot. Graduate robot at-
tending conference (GRACE) resulted from the efforts
of five research institutions (Carnegie Mellon, Naval
Research Laboratory, Northwestern University, Met-
rica, and Swarthmore College) to tackle the American
Association for Artificial Intelligence (AAAI) Robot
Challenge. The Challenge was for a robot to attend the
AAAI National Conference on Artificial Intelligence
as a participant – the robot must find the registration
desk (without knowing the layout of the convention
center beforehand), register for the conference, and
then, after being provided with a map, find its way to
a given location in time to give a technical talk about
itself.

The architectural design of the robot was particularly
important given the complexity of the task and the need
to integrate techniques that had been previously devel-
oped by the five institutions. These techniques included
localization in a dynamic environment, safe naviga-
tion in the presence of moving people, path planning,
dynamic replanning, visual tracking of people, signs
and landmarks, gesture and face recognition, speech
recognition and natural language understanding, speech
generation, knowledge representation, and social inter-
action with people.

GRACE is built on top of an real world interface
(RWI) B21 base and has an expressive computer-
animated face projected on a flat-panel liquid-crystal
display (LCD) screen (Fig. 8.9). Sensors that come
with the B21 include touch, infrared, and sonar sen-

sors. Near the base is a SICK scanning laser range
finder that provides a 180◦ field of view. In addition,
GRACE has several cameras, including a stereo cam-
era head on a pan–tilt unit (PTU) built by Metrica
TRACLabs and a single-color camera with pan–tilt–
zoom capability, built by Canon. GRACE can speak
using a high-quality speech-generation software (Fes-
tival), and receive speech responses using a wireless
microphone headset (a Shure TC computer wireless
transmitter/receiver pair).

The behavioral layer of the architecture consisted of
individual processes that controlled particular pieces of
hardware. These programs provided abstract interfaces
to either control the hardware or return information from

Fig. 8.9 The robot GRACE
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Fig. 8.10 GRACE’s architectural structure

sensors. To accommodate the different coding styles of
the various groups involved, both synchronous, block-
ing and asynchronous, nonblocking calls were supported
by most of the interfaces (for the nonblocking calls, the
interfaces allowed programmers to specify a callback
function to be invoked when data was returned). In-
terfaces at the behavioral level included robot motion
and localization (this interface also provided laser infor-
mation), speech recognition, speech generation, facial
animation, color vision, and stereo vision (Fig. 8.10).

The architecture used individual processes for each
of the behavioral capabilities, mainly because the
underlying code had been developed by different or-
ganizations. While having a large number of processes
run concurrently is somewhat inefficient, trying to inte-
grate everything into a monolithic process was thought
to be too difficult. In addition, the use of separate pro-
cesses facilitated development and debugging, since one
needed to run only those aspects of the system that were
being tested.

The executive layer consisted of separate programs
for achieving each subtask of the challenge – finding
the registration desk, riding the elevator, standing in
line, interacting with the person at the desk, navigating
to the talk, and giving the talk (Fig. 8.10). As is com-
mon in many implemented robotic systems, the GRACE
architecture did not have a planning layer – since the
high-level plan was fixed and relatively straightforward,

it was coded explicitly. Several of the executive-layer
programs were written using TDL (see Sect. 8.3.3),
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Fig. 8.11 Finite-state machine for GRACE’s task for following di-
rections to the registration booth
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which facilitated concurrent control and monitoring of
the various tasks.

One particularly involved task was finding the regis-
tration desk (recall that GRACE had no idea where the
booth was, or even what the convention center looked
like). TDL was used to create a finite-state machine
that allowed GRACE to maintain multiple goals, such
as using an elevator to get to a particular floor and fol-
lowing directions to find the elevator (Fig. 8.11). The
top-level goal was to find the registration desk. Inter-
mediate subgoals were created as GRACE interacted
with people to determine the directions to the desk. If
there were no directions to follow, GRACE performed
a random walk until a person was detected using its
laser scanner. GRACE then engaged in conversation
with the person to obtain directions. GRACE could han-
dle simple commands, such as turn left and go forward
five meters, as well as higher-level instructions, such
as take the elevator and turn left at the next intersec-
tion. In addition, GRACE could ask questions, such
as am I at the registration desk? and is this the ele-
vator? The TDL-based finite-state machine was used
to determine which interactions were appropriate at
various times and to prevent the robot from getting
confused.

Communication between processes used the inter-
process communication (IPC) messaging package [8.9,
77]. IPC supports both publish–subscribe and client–

server messaging, and enables complex data structures
to be passed transparently between processes. One side
benefit of using IPC to communicate between processes
was the ability to log all message traffic (both message
name and data content). This proved invaluable, at times,
in determining why the system failed to act as expected –
did a process send out a message with invalid data? Did
it fail to send out a message in a timely fashion? Was the
receiving process blocked, for some reason? Was there
a timing issue? While wading through the message traf-
fic was often tedious, in some cases it was the only way
to catch intermittent bugs.

In July 2002, GRACE successfully completed the
challenge at the Shaw Convention Centre in Edmonton,
Canada. The processes at the behavioral level generally
worked as anticipated – this was largely attributed to
the fact that those modules were ported from previously
developed (and hence well-tested) systems. While gen-
erally functional, the executive-level processes had more
problems with off-nominal situations. This is largely at-
tributed to problems in sensor interpretation, as well as
mistaken assumptions about what the convention center
was going to look like (for instance, it turned out that
some of the barriers were made of glass, which is largely
invisible to the laser). Overall, however, the architecture
itself worked as expected, enabling a large body of com-
plex software to be integrated rather quickly and operate
together effectively.

8.5 The Art of Robot Architectures

Designing a robot architecture is much more of an art
than a science. The goal of an architecture is to make pro-
gramming a robot easier, safer, and more flexible. Thus,
the decisions made by a developer of a robot architecture
are influenced by their own prior experiences (e.g., what
programming languages they are familiar with), their
robot and its environment, and the tasks that need to
be performed. The choice of a robot architecture should
not be taken lightly, as it is the authors’ experiences
that early architectural decisions often persist for years.
Changing robot architectures is a difficult proposition
and can set back progress while a great deal of code is
reimplemented.

The art of designing a robotic architecture starts with
a set of questions that the designer needs to ask. These
questions include:

• What are the tasks the robot will be performing? Are
they long-term tasks? Short-term? User-initiated?

Robot-initiated? Are the tasks repetitive or different
across time?• What actions are necessary to perform the tasks?
How are those actions represented? How are those
actions coordinated? How fast do actions need to
be selected/changed? At what speed do each of
the actions need to run in order to keep the robot
safe?• What data is necessary to do the tasks? How will
the robot obtain that data from the environment or
from the users? What sensors will produce the data?
What representations will be used for the data? What
processes will abstract the sensory data into repre-
sentations internal to the architecture? How often
does the data need to be updated? How often can it
be updated?• What computational capabilities will the robot have?
What data will these computational capabilities pro-
duce? What data will they consume? How will
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the computational capabilities of a robot be di-
vided, structured, and interconnected? What is the
best decomposition/granularity of computational ca-
pabilities? How much does each computational
capability have to know about the other capabil-
ities? Are there legacy computational capabilities
(from other robots, other robot projects, etc.) that
will be used? Where will the different computational
capabilities reside (e.g., onboard or offboard)?• Who are the robot’s users? What will they com-
mand the robot to do? What information will they
want to see from the robot? What understanding do
they need of the robot’s computational capabilities?
How will the user know what the robot is doing? Is
the user interaction peer to peer, supervisory, or as
a bystander?• How will the robot be evaluated? What are the suc-
cess criteria? What are the failure modes? What is
the mitigation for those failure modes?• Will the robot architecture be used for more than one
set of tasks? For more than one kind of robot? By
more than one team of developers?

Once designers have answers to all (or most) of these
questions, they can then begin building some use cases
for the types of operations they want the robot to per-
form and how they want users to interact with it. These
use cases should specify the outward behavior of the
robot with respect to its environment and its users.
From the use cases, an initial partitioning of robot func-
tionality can be developed. This partitioning should be
accompanied by a sequence diagram that shows the
transfer of information and control over time amongst
the various components of the robot architecture [8.78].
After this, a more formal specification of the interfaces

between architectural components can be developed.
This may be done using a language such as the in-
terface definition language (IDL) of CORBA or by
defining the messages to be distributed in a publish–
subscribe protocol. This is an important step, as once
implementation begins it is very costly to change in-
terfaces. If an interface does change, all stakeholders
need to be notified and need to agree to the change.
The most common integration problems in robot ar-
chitectures are mismatches between what components
expect and what they are receiving in the way of
data.

An advantage of tiered architectures with clear
interface definitions is that the different layers can be
developed in parallel. The behavioral control layer can
be implemented and tested on the robot using a hu-
man as an executive. The executive can be implemented
and tested using state machine stubs for the expected
behaviors on the robot. The planning layer can be im-
plemented and tested using stubs for the tasks in the
executive. The stubs merely acknowledge that they
were called and report back appropriately. Then, the
tiers can be integrated to test timing and other runtime
issues. This parallel approach speeds up the develop-
ment of a robot architecture, but is possible only if
the roles and interfaces between components are clearly
defined and respected. There is still considerable real-
time debugging necessary during integration. In our
experiences, most of the development time in robot ar-
chitectures is still spent on the behavioral control layer
– that is, sensing and acting are still the hard parts
of robot control, as compared to execution and plan-
ning. Having a good, robust behavioral control layer
goes a long way towards having a competent robot
architecture.

8.6 Conclusions and Further Reading

Robot architectures are designed to facilitate the concur-
rent execution of task-achieving behaviors. They enable
systems to control actuators, interpret sensors, plan,
monitor execution, and deal with unexpected contin-
gencies and opportunities. They provide the conceptual
framework within which domain-dependent software
development can take place, and they often provide
programming tools that facilitate that development.

While no single architecture has proven to be best
for all applications, researchers have developed a va-
riety of approaches that can be applied in different

situations. While there is not yet a specific formula for
determining which architecture will be best suited for
a given application, this chapter provides some guide-
lines to help developers in selecting the right architecture
for the job. That being said, layered architectures have
proven to be increasingly popular, due to their flexibil-
ity and ability to operate at multiple levels of abstraction
simultaneously.

The book AI and Mobile Robots [8.79] has sev-
eral chapters on architectures that have influenced this
chapter. Most text books in robotics [8.19, 80, 81] have
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sections on robot architectures. For many years in the
mid 1990s, the AAAI Spring Symposia on Artificial
Intelligence had sessions devoted to robot architec-

tures, although proceedings from those symposia are
not widely available. More information on GRACE can
be found in [8.82–84].
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