
David Evans
University of Virginia

evans@cs.virginia.edu

Peter Chapman
University of Virginia

pchapman@cs.virginia.edu

Automated Black-box Detection of Side-Channel
Vulnerabilities in Web Applications

`

Encryption Does Not
Guarantee Privacy

Web applications divide their state between
the server and the client. Communication
between the separated states is necessary, but
without care, can leak substantial information
through a variety of side-channels. Building on
the work of Chen et al. [Oakland 2010] our
goal is to create a tool that searches for unique
and predictable correlations between network
traffic and application state, indicating the
presence of an information leak.

Thread Model. Our threat model includes two
scenarios. In one, an adversary wants to accumulate
as much private information about a single target as
possible by eavesdropping on the encrypted network
traffic. Our second scenario includes a government
organization monitoring encrypted Internet traffic.

Approach. The attacker wants to identify the cur-
rent state of the application using only network in-
formation leaked during transitions. Our prototype
explores a web site and logs network traffic between
state transitions. A post-crawl analysis applies heur-
istics to extract network traffic patterns that uniquely
identify application state. Our dynamic, black-box
approach allows us to experiment and identify side-
channel vulnerabilities in real-world web applications
without access to source code. We hope to find ways
to use these results to automate mitigation tech-
niques and verify if this approach can work on very
large and complex websites where traffic flows are
harder to distinguish.

Crawling Web 2.0 sites is a difficult task due to their highly dynamic
nature and emphasis on client-side technologies. The Crawljax project
[Mesbah et al., ICSE 2009] attempts to create finite state machines
for web applications even in the presence of JavaScript and AJAX.
Crawljax drives an instance of the Selenium testing framework for
black-box manipulation and state inference of the application. In par-
ticular, Crawljax interacts with developer-specified elements and
forms while monitoring the browser DOM to construct a correspond-
ing state machine.

We consider an adversary who searches for network flows that illus-
trate specific state transitions and are predictable between users and
over time. This is important because the adversary may have limited
information about the user and the user's status within the web ap-
plication. To find the vulnerable network flows, we crawl the applica-
tion with a number of trials. We then apply a set of heuristics to find
network flows corresponding to a certain state transition that are pre-
dictable across the trials.

Analysis. The crawling stage outputs a series of files for each identi-
fied state with accompanying logs detailing the captured network
packets during each transition. Basic heuristics check for exact and
exclusive transition matches across trials. These are flows that are not
found in any other transition and therefore could be used to identify
web application state by an adversary.

The post-crawl analysis outputs a HTML-formatted report listing dis-
covered network flows with links to the identified DOM states before
and after the transition. The developer can use this report to decide if
the leaked information is sensitive and where to apply mitigation ef-
forts.

Yahoo Search. Yahoo Search did not generate
suggestions until three letters were typed. We collec-
ted traffic from every combination of three letters, a
total of 263 = 17,576 states. Although many results
were in groups small enough that they could likely be
distinguished with a fourth letter, 65% of the strings
were in groups of over 100, with the largest being
240 matching flows.

We collected the traffic of adding a fourth letter to
the largest group, a total of 240 ∙ 26 = 6,240 states.
Adding a fourth letter to this group, the most difficult
case for the attacker, reduces the entropy from 12.61
bits to 2.65 bits with 33% of the recorded flows being
uniquely identifiable. Discarding the strings that re-
turn no suggestions, which are unlikely to be the
searched term, the entropy in our four letter test de-
creases to 1.62 bits with 38% of the remaining flows
now uniquely identifiable. Based on these results,
Yahoo Search is also vulnerable to the same side-
channel attack as Google and Bing despite not send-
ing search suggestions until the third letter.

Web
Application

Tested
Actions

Uniquely
Identifiable

Actions

Expected
Entropy

Reduced
Entropy

Google
Health 98 79 6.61 0.21

Google Health can leak a user's condition.

We also tested our prototype on the Google
Health Find A Doctor functionality. The Find A
Doctor tool has been shown to leak the type of
doctor a user searches for and by extension a
user's medical condition.

This work is supported by the National Science Foundation.

Search engines leak queries through the network traffic
generated by auto-complete suggestions.

Client Google
748B

674B

d

755B
681B

da

Client Google
762B

679B

dan

775B
672B

dang

Exploring Web Applications

The detection system uses Crawljax to run an instance
of Selenium that explores the web application.

Web ApplicationCrawljax

Selenium

Firefox

Side-Channel Leak
Detector

Jpcap

XML Configuration

Search Engine Suggestions
The Google, Bing, and Yahoo search engines have
been discovered to leak queries through the network
traffic generated by search suggestions. Suggestion
fields are particularly vulnerable to side-channel at-
tacks because they update with every keystroke and
are rarely personalized to a particular user. We tested
the search engine suggestion fields by scripting the
typing of a single letter and measuring the accompa-
nying network traffic.

Web
Application

Tested
Actions

Uniquely
Identifiable

Actions
Expected
Entropy

Reduced
Entropy

Bing 26 24 4.7 0.08
Google 26 18 4.7 0.67
Yahoo 17,576 1,265 14.1 6.23

Our prototype can identify side-channel leaks in
real world web applications.

Google Health

The majority of 4 letter strings from the most difficult Yahoo Search case that return suggestions create flows similar to 10 or fewer other strings.

Size of Groups

Number of Groups
294

2

109

3

58

4

35

5

24

6 7

18 12

8

13

9

13

10

9

11

4

12

10

13 14

7 8

15

18

16-20

22

21-28

1

41

1

48

260

487

No Suggestions

2,079

1

To find a doctor the user enters an area of medi-
cine and a location. We assume an adversary
would be able to accurately determine the loca-
tion. There are a total of 98 disciplines, leaving
98 possible states. Using the size of the returned
search results for Charlottesville, our prototype
can uniquely distinguish 79 of the states. Of the
remaining 19 states, 16 conflicted with one other
result, and 3 conflicted with two others. A de-
termined adversary may still be able to determine
the condition using other side-channels leaks
within Google Health and other web applications.

The Google Health Find A Doctor tool.

	Slide 1

