
Automated Black-box Detection of Side-Channel Vulnerabilities in Web Applications

Peter Chapman
University of Virginia

pchapman@cs.virginia.edu

David Evans
University of Virginia
evans@cs.virginia.edu

Abstract—Web applications divide their state between the
client and the server. The frequent and highly dynamic client-
server communication characteristic of modern web appli-
cations leaves them vulnerable to side-channel leaks, even
over encrypted connections. We propose a side-channel leak
detection system that monitors network traffic over repeated
crawls of a web application. Preliminary results have shown
our prototype can effectively detect side-channel vulnerabilities
in popular websites.

Keywords-security; web applications; side-channel leaks.

I. INTRODUCTION

As web applications increasingly replace traditional desk-
top ones, developers must adapt to and protect against the
security problems unique to connected computing. Web ap-
plications divide their state between the server and the client.
Communication between the separated states is necessary
for meaningful and efficient operation, but without care,
can leak substantial information through a variety of side-
channels.

Our threat model includes two scenarios. In one, an
adversary wants to accumulate as much private information
about a single target as possible by eavesdropping on the
encrypted network traffic. The target could be a high profile
individual in a government or cooperation whose search
terms or personal health is valuable information. Our second
scenario includes a government organization monitoring
encrypted Internet traffic. Government agencies may want
to track encrypted searches for topics that are censored or
deemed critical to national security.

Network transfer statistics of encrypted traffic have been
shown to distinguish individual pages on the World Wide
Web [1]. Chen et al. demonstrated the prevalence of in-
formation leaks based on dynamic transfer sequences and
sizes in high-profile web applications [2]. Their existence
is unsurprising considering the nature of web applications
and the lack of available tools to automate the discovery
and mitigation of such attacks. Our goal is to create a
tool that searches for unique and predictable correlations
between network traffic and application state, indicating the
possibility of an information leak.

II. APPROACH

We are building a completely dynamic, black-box side-
channel vulnerability detection system. A black-box ap-

proach allows developers to use our tool without special
customization to a particular development stack. Addition-
ally, tracking the application network traffic negates the risk
of missing side-channels hidden in unchecked components
of the source code or web server.

Conceptually, the goal of the attacker is to identify the
current state of the application using only network informa-
tion leaked during transitions. Transitions that emit unique
traffic patterns are the most useful to a potential attacker.
Our prototype explores a web site and logs network traffic
between state transitions. A post-crawl analysis applies a
variety of heuristics to extract network traffic patterns that
uniquely identify application state. The output of our tool
identifies these leaks and shows developers where to apply
mitigation efforts. In future work, we plan to investigate
techniques for automatically mitigating discovered leaks.

A. Crawling Web Applications

Crawling Web 2.0 sites and services has long been identi-
fied as a difficult task due to their highly dynamic nature and
emphasis on client-side technologies that conflict with the
traditional concept of a web page [3]. The Crawljax project
attempts to create finite state machines for web applications
even in the presence of JavaScript and AJAX [4]. Crawljax
drives an instance of the Selenium [5] testing framework
for black-box manipulation and state inference of the ap-
plication. In particular, Crawljax interacts with developer-
specified elements and forms while monitoring the browser
DOM to construct a corresponding state machine.

We have extended the functionality of Crawljax to record
the network traffic generated by state transitions. This was
accomplished using the existing plugin architecture built into
Crawljax. The network monitoring plugins were written us-
ing the Jpcap Java library for network packet monitoring [6].
For our experiments, we log packet source, destination, and
length; however, simple modifications would allow us to
track inter-packet timings and any other attributes available
in an IP packet header. To improve robustness, our network
plugins are also aware of basic TCP features such as
sequence numbering and retransmission. Importantly, our
tools do not use any knowledge unavailable to a potential
adversary intercepting SSL-encrypted traffic.

Ideally, we would like to visit every possible state of a web
application. For any meaningfully complex utility, such as



a search suggestion box, state explosion makes such a goal
infeasible. For intelligent navigation the developer creates a
crawling specification using a number of XML files. At a
minimum, the developer must specify which elements on a
site to click, using the W3C XML Path Language (XPath)
syntax [7]. The crawler populates form fields using random
values, but for many situations, developer input is key
to discovering side-channels. Many real-world applications
require existing user-accounts to function. So we have added
login functionality to Crawljax that allows the developer to
enumerate a number of previously created accounts.

We consider an adversary who searches for network flows
that illustrate specific state transitions and are predictable
between users and over time. This is important because the
adversary may have limited information about the user and
the user’s status within the web application. To find the
vulnerable network flows, we crawl the application with a
number of trials, each using different user accounts. We then
apply a set of heuristics to find network flows corresponding
to a certain state transition that are predictable across the
trials.

B. Traffic Analysis

The crawling stage outputs a series of HTML files
for each identified state with accompanying logs detailing
the captured network packets during each transition. Basic
heuristics check for exact and exclusive transition matches
across trials. These are flows that cannot be found in any
other transition and therefore can be used to identify web
application state by an adversary. We have also implemented
heuristics that allow for a threshold of error in matching
flows based on the observation that many transfers can vary
by a few bytes, often due to different hashes appended to
the end of responses and requests.

More advanced heuristics check for exclusive substrings
of network traffic. One situation where such a heuristic
can be illuminating is a confirmation screen in a financial
web application. The confirmation screen may load only for
users within a certain income bracket. The contents of the
screen may vary with text for the user’s name, address, and
additional information. This variation may make it difficult
for an adversary to identify that page based on the total
transfer, but if the page loads a specific image (e.g. a check
mark), the separate request and transfer for the image reveals
the state of the application and the user’s private information.
In order for effective identification of such leaks, the state
identification algorithm included in Crawljax was modified
to consider combining states with a matching stripped-DOM,
since the variation occurs within tags.

The post-crawl analysis outputs a HTML-formatted report
listing discovered network flows with links to the identified
DOM states before and after the transition. The developer
can use this report to decide if the leaked information is
sensitive and where to apply mitigation efforts.

Web Application Tested Actions Uniquely Identifiable
Actions

Bing 26 24
Google 26 18
Yahoo 17, 576 1, 265

Google Health 98 79

Figure 1: Our prototype can identify side-channel leaks in real-
world web applications.

Web Application Expected Entropy Reduced Entropy
Bing 4.7 0.08

Google 4.7 0.67
Yahoo 14.1 6.23

Google Health 6.61 0.21

Figure 2: Reduced entropy values (in bits) are much lower than
desired.

III. PRELIMINARY RESULTS

With our entirely black-box approach, we can test our
prototype tool on real-world web applications. We focused
initially on the previously identified side-channel leaks de-
scribed in Chen et al. [2].

A. Search Engine Suggestion Fields

The Google (http://encrypted.google.com), Bing (http://
bing.com), and Yahoo (http://search.yahoo.com) search en-
gines have been discovered to leak queries through the
network traffic generated by search suggestions [2]. Sug-
gestion fields are particularly vulnerable to side-channel
attacks because they update with every keystroke and are
rarely personalized to a particular user. We tested the search
engine suggestion fields by scripting the typing of a single
letter and measuring the accompanying network traffic. Our
preliminary results are shown in Figure 1 and Figure 2. We
found that for Bing and Google most letters are uniquely
identifiable, and letters whose network characteristics are not
unique can be identified using the same technique applied
to the second letter of a query with the search space limited
by the possibilities of the first letter.

In our experiment Yahoo Search did not generate sugges-
tions until three letters were typed. We collected traffic from
every combination of three letters, a total of 263 = 17, 576
states. While less than 8% of the three letter strings gen-
erated unique network traffic, the entropy of a query was
still greatly reduced. Although many results were in groups
small enough that they could likely be distinguished with a
fourth letter, 65% of the strings were in groups of over 100,
with the largest being 240 matching flows. We calculated
the traffic of adding a fourth letter to a group of 222, a
total of 222 × 26 = 5, 772 states. Adding a fourth letter to
this group, one of the most difficult cases for the attacker,



reduces the entropy from 12.49 bits to 1.53 bits with 40%
of the recorded flows being uniquely identifiable.

Manual analysis of the Yahoo Search data revealed that
network flows matching a large number of four letter combi-
nations returned little to no suggestions. An adversary would
likely never encounter a four letter combination that was not
unique or in a small group. Discarding the strings that return
no suggestions, the entropy in our four letter test decreases
to 0.97 bits with 48% of the remaining flows now uniquely
identifiable. Based on these results we believe that Yahoo
Search is also vulnerable to the same side-channel attack
as Google and Bing despite not sending search suggestions
until the third letter.

B. Google Health

We also tested our prototype on the Google Health
(http://health.google.com) Find A Doctor functionality. The
Find A Doctor tool has been shown to leak the type of
doctor a user searches and by extension a user’s medical
condition [2]. To find a doctor the user inputs an area of
medicine and a location. It is assumed that an adversary
would be able to accurately determine the location and there
are a total of 98 disciplines, leaving 98 possible states. Using
the size of the returned search results, our prototype can
uniquely distinguish 79 of the states. Of the remaining 19
states, 16 conflicted with one other result, and 3 conflicted
with two others. A determined adversary may still be able
to determine the condition using other side-channels leaks
within Google Health and other web applications.

IV. CONCLUSION

Side-channel leaks of private data have been found in
popular web applications and without the proper tools to
identify the leaks developers cannot create proper defenses.
Our detection system infers a web application state ma-
chine only using network traffic and the browser DOM.
Our dynamic, black-box approach allows us to experiment
and identify side-channel vulnerabilities in real-world web
applications without access to source code. However, it
remains an open question if effective automated mitigation
techniques can be developed and if this approach can work
on very large and complex websites where traffic flows are
harder to distinguish.

REFERENCES
[1] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padman-

abhan, and L. Qiu, “Statistical identification of encrypted web
browsing traffic,” in IEEE Symposium on Security and Privacy.
Society Press, 2002.

[2] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-
Channel Leaks in Web Applications: a Reality Today,
a Challenge Tomorrow,” The 31st IEEE Symposium on
Security and Privacy, 05/2010 2010. [Online]. Available:
http://www.informatics.indiana.edu/xw7/

[3] G. Cormode and E. Krishnamurthy, “Key Differences
between Web1.0 and Web2.0,” 2008. [Online]. Available:
http://www2.research.att.com/∼bala/papers/web1v2.pdf

[4] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling AJAX
by Inferring User Interface State Changes,” Web Engineering,
International Conference, pp. 122–134, 2008.

[5] (2010) Selenium. [Online]. Available: http://seleniumhq.org/
[6] (2010) Jpcap. [Online]. Available: http://netresearch.ics.uci.

edu/kfujii/jpcap/doc/index.html
[7] (1999) XML Path Language (XPath). [Online]. Available:

http://www.w3.org/TR/xpath/


