
Jeffrey Shirley
University of Virginia

jshirley@cs.virginia.edu

Peter Chapman
University of Virginia
pmc8p@virginia.edu

Monitoring User Actions for Better
Malware Specifications

Objective: Harness
User Intuition

We propose incorporating user actions
to improve the precision of malware spe-
cifications and introduce a system to
create effective application security
policies based on the relationships
between user interaction, GUI events,
and run-time operations of both benign
and malicious applications.

Graphical malware such as Trojan:Win32/Fakeinit prevent
us from simply allowing all user initiated actions.

Malware often modifies system folders and registry
entries, but benign applications generally only per-
form such actions in conjunction with a graphical in-
staller combined with user input

In other situations, a trusted application can be hi-
jacked to perform undesired operations, but the rela-
tionship between the GUI and the underlying actions
signals suspicious behavior.

For example, PDFs can exploit Adobe Reader using a
JavaScript buffer-overflow (CVE-2009-0927) to gain
access to the target system. Adobe Reader can then
conduct malicious activities never associated with
viewing PDFs, such as registering new system ser-
vices, downloading and executing arbitrary files, and
deleting unassociated registry entries.

The tracing software was implemented using Microsoft Detours, a lib-
rary for intercepting Win32 API calls. Detours allows our tool to log
user-level function calls (file, network, GUI, and user interaction) on
each process running in the VM. Tracking the direct interaction of
samples with the operating system circumvents complications
brought by code obfuscation techniques.

AcroRd32.exe WM_KEYUP caption='fw4.pdf'

AcroRd32.exe GetOpenFileName('C:\...\fw4.pdf')

AcroRd32.exe CreateFile('C:\...\fw4.pdf' 'GENERIC_READ')

A sample from the Adobe Reader trace
illustrating the connection between the file open

dialog and the creation of a file handle.

We used a representative dataset of 3000 malicious samples includ-
ing a variety of viruses, spyware, adware, worms, and exploits (e.g.,
malformed PDF and HTML files). To collect execution traces, we built
a custom framework that runs samples in a virtual machine (VM),
logging all events of interest to the host.

We scripted automated testing of interactive programs using the
Java-based open source T-Plan Robot software and simulated typical
use cases of popular and representative applications to gather benign
data.

A screenshot from the automated
Adobe Reader benign test.

After creating the dependency graphs we generalize
them in order to create security policies that are not
limited to the specific applications tested. When a
behavior flow is checked against the generated secur-
ity policies, the abstract variables are bound to con-
crete ones.

We used the collected traces to build dependence
graphs for the malicious and benign applications.
Each node in the graph is a system call recorded in
the execution trace, and edges are constructed
between nodes that are data dependent (i.e., the out-
put of a system call depends on a previous call) or oc-
cur within a specified time period.

An example subgraph collected from Adobe Reader
containing the relation between the file chooser

dialog and read permission.

GetOpenFileName('C:\...\fw4.pdf')

CreateFile('C:\...\fw4.pdf' GENERIC_READ)

An abstracted version of the above subgraph.

GetOpenFileName(_e39402_v0_)

CreateFile(_e39402_v0_ GENERIC_READ)

A sequence of events that correspond to an in-
formation flow in the security policy can be
identified as benign. Sequences not found in
the graph are to be treated with suspicion. For
example, we hope to identify flows encapsu-
lating the user interaction and GUI events re-
lated to creating a system file-chooser dialog
followed by the creation of a file handle. Such
a sequence is evident of user intentions.

A generated security policy. When
the user selects a file through the file
chooser dialog, the program is able

to read that file.

GetOpenFileName(_e39402_v0_)

CreateFile(_e39402_v0_ GENERIC_READ)

=

We find the contrast subgraphs for informa-
tion flows present in the benign applications
but not in the malware.

This work is supported by the National Science Foundation through
awards CCF-051123 and CNS-0627527.

Preliminary Results

Application False
Positives

False
Negatives

MS Paint 1.52% 0%
GIMP 2.86% 0%

Internet
Explorer 37.30% 0%

Thunderbird 25% 0%

Currently we are focusing on file accesses, so
programs using the network have a dispropor-
tionately higher false positive rate.

file:///C:/Users/Peter/Documents/Research/GUI-Malware%20Project/Subversion/docs/

	Slide 1

