
The Relative Complement Problem
for Higher-Order Patterns

Alberto Momigliano
Department of Philosophy

Frank Pfenning
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.
{mobile|fp}@cs.cmu.edu

Abstract
We address the problem of complementing higher-order patterns without
repetitions of free variables. Di�erently from the �rst-order case, the com-
plement of a pattern cannot, in general, be described by a pattern, or even by
a �nite set of patterns. We therefore generalize the simply-typed �-calculus
to include an internal notion of strict function so that we can directly ex-
press that a term must depend on a given variable. We show that, in this
more expressive calculus, �nite sets of patterns without repeated variables
are closed under complement and uni�cation. Our principal application is
the transformational approach to negation in higher-order logic programs.

1 Introduction

In most functional and logic programming languages the notion of a pat-
tern, together with the requisite algorithms for matching or uni�cation, play
an important role in the operational semantics. Besides uni�cation other
problems such as generalization or complement also arise frequently. In this
paper we are concerned with the problem of pattern complement in a set-
ting where patterns may contain binding operators, so-called higher-order
patterns [10, 12]. Higher-order patterns have found applications in logic
programming [10, 13], logical frameworks [13], rewriting [12], and functional
logic programming [5]. Higher-order patterns inherit many pleasant proper-
ties from the �rst-order case. In particular, most general uni�ers [10] and
least general generalizations [14] exist, even for complex type theories.

Unfortunately, the complement operation does not generalize as easily.
Lugiez [8] has studied the more general problem of higher-order disuni�cation
and had to go outside the language of patterns and terms to describe complex
constraints on sets of solutions. We can isolate one basic di�culty: a pattern
such as �x: E x for an existential variable E matches any term of appropriate
type, while �x: E matches precisely those terms �x: M where M does not
depend on x. The complement then consists of all terms �x: M such that
M does depend on x. However, this set cannot be described by a pattern,

or even a �nite set of patterns.
This formulation of the problem suggests that we should consider a �-

calculus with an internal notion of strictness so that we can directly express
that a term must depend on a given variable. For reasons of symmetry
and elegance we also add the dual concept of invariance expressing that a
given term does not depend on a given variable. As in the �rst-order case,
it is useful to single out the case of linear patterns, namely those where no
existential variable occurs more than once.1 We show that patterns in our
calculus have the following properties:

1. The complement of a linear pattern is a �nite set of linear patterns.

2. Uni�cation of two patterns is decidable and leads to a �nite set of most
general uni�ers.

Consequently, �nite sets of linear patterns in the strict �-calculus are closed
under complement and uni�cation. If we think of �nite sets of linear patterns
as representing the set of all their ground instances, then they form a boolean
algebra under simple union, intersection (implemented via uni�cation) and
the complement operation.

The paper is organized as follows: Section 2 brie
y reviews related work,
while Section 3 introduces some preliminary de�nitions. In Section 4 we
introduce a strict �-calculus and note some basic properties such as the ex-
istence of canonical forms. Section 5 introduces a restriction of the language
for which complementation is possible. The algorithm for negation is pre-
sented in Section 6. In Section 7 we give a uni�cation algorithm for our
fragment. We conclude in Section 8 with some applications and speculation
on future research. For reasons of space, a number of lemmas and proofs are
omitted here and can be found in [11].

2 Related Work

Complement problems have a number of applications in theoretical com-
puter science (see [4] for a list of references). For example, they are used
in functional programming to produce non-ambiguous function de�nitions
by patterns and to improve their compilation, and in rewriting systems to
check whether an algebraic speci�cation is su�ciently complete. They can
also be employed to analyze communicating processes expressed by in�nite
transition systems. Other applications lie in the areas of machine learning
and inductive theorem proving. In logic programming, Kunen [6] used term
complement to represent in�nite sets of answers to negative queries. Our
main motivation has been the explicit synthesis of the negation of higher-
order logic programs, as discussed in Section 8.

1This notion of linearity should not be confused with the eponymous concept in linear

logic and �-calculus.

Lassez and Marriot [7] proposed the seminal uncover algorithm for com-
puting relative complements and introduced the now familiar restriction to
linear terms. We quote the de�nition of the \Not" algorithm for the (single-
ton) complement problem given in [1] which we generalize in De�nition 9.
Given a �nite signature � and a linear term t we de�ne:

Not�(x) = ;
Not�(f(tn)) = fg(~x) j for all g 2 � distinct from fg

[ff(z1; : : : ; zi�1; s; zi+1; : : : ; zn) j s 2 Not�(ti); i 2 [1; n]g

An alternative solution to the relative complement problem is disuni-
�cation (see [4] for a survey and [8] for an extension to the simply-typed
�-calculus): here operations on sets of terms are translated into conjunc-
tions or disjunctions of equations and disequation under explicit quanti�ers.
Non-deterministic application of a few dozen rules eventually turns a given
problem into a solved form. Though a reduction to a signi�cant subset of
the disuni�cation rules is likely to be attainable for complement problems,
control is a major problem. We argue that using disuni�cation for this
purpose is unnecessarily general. Moreover the higher-order case results in
additional complications, such as restrictions on the occurrences of bound
variables, which fall outside an otherwise clean framework. As we show in
this paper, this must not necessarily be the case. We believe that our tech-
niques can also be applied to analyze disuni�cation, although we have not
investigated this possibility at present.

3 Preliminaries

In this section we introduce some preliminary de�nitions and examples which
guide our development. We write P for atomic types, c for term-level con-
stants, and x for term-level variables.

Simple Types A ::= P j A1 ! A2

Terms M ::= c j x j �x:A: M jM1 M2

Signatures � ::= � j �; P :type j �; c:A
Contexts � ::= � j �; x:A

We require that signatures and contexts declare each constant or variable
at most once. Furthermore, we identify contexts which di�er only in their
order and promote \," to denote disjoint set union. As usual we identify
terms which di�er only in the names of their bound variables. We restrict
attention to well-typed terms, omitting the standard typing rules. We gen-
erally �x a signature � so it does not have to be repeatedly mentioned in
the typing rules and statements of theorems.

In applications such as logic programming or logical frameworks, �-
abstraction is used to represent binding operators in some object language.
In such a situation the most useful notion of normal form are long ��-normal

forms (which we call canonical forms), since the canonical forms are almost
always the terms in bijective correspondence with the objects we are trying
to represent. Every well-typed term in the simply-typed �-calculus has a
unique canonical form|a property which persists in the strict �-calculus
introduced in Section 4.

We denote existential variables of type A (also called logical variables,
meta-variables, or pattern variables) by EA, although we mostly omit the
type A when it is clear from the context. We think of existential variables
as syntactically distinct from bound variables or free variables declared in
a context. A term possibly containing some existential variables is called a
pattern if each occurrence of an existential variable appears in a subterm of
the form E x1 : : : xn, where the arguments xi are distinct occurrences of free
or bound variables (but not existential variables).

Semantically, a variable EA stands for all canonical terms M of type A
in the empty context with respect to a given signature. We extend this to
arbitrary well-typed terms in the usual way, and write � ` M 2 kNk : A
when a termM is a ground instance of a pattern N at type A. In this setting,
uni�cation of two patterns without shared existential variables corresponds
to an intersection of the set of terms they denote [10, 14]. This set is always
either empty, or can be expressed again as the set of instances of a single
pattern. That is, patterns admit most general uni�ers.

The class of higher-order patterns inherits many properties from �rst-
order terms. However, as we will see, it is not closed under complement, but
a special subclass is. We call a canonical pattern � ` M : A fully applied
if each occurrence of an existential variable E under binders y1; : : : ; ym is
applied to some permutation of the variables in � and y1; : : : ; ym. Fully
applied patterns play an important role in functional logic programming and
rewriting [5] because any fully applied existential variable � ` E x1 : : : xn
denotes all canonical terms with free variables from �. It is this property
which makes complementation particularly simple.

Example 1 Consider the untyped �-calculus.

e ::= x j �x : e j e1 e2

We encode these expressions using the usual techniques of higher-order ab-
stract syntax (see, for example, [9]) as canonical forms over the following
signature.

� = exp : type; lam : (exp! exp)! exp; app : exp! exp! exp

The representation function is given by.

pxq = x

p�x : eq = lam (�x :exp: peq)

pe1 e2q = app pe1q pe2q

The representation of an object-language �-redex then has the form

p(�x : e) fq = app (lam (�x :exp: peq)) pfq

where peq my have free occurrences of x. When written as a pattern with
variables Eexp!exp and Fexp ranging over closed terms, this is expressed
as app (lam (�x : exp:E x)) F . The complement of the right-hand side
considered as a pattern with respect to the empty context contains every top-
level �-abstraction plus every application where the �rst argument is not an
abstraction:

Not(app (lam (�x :exp:E x)) F) =
flam (�x :exp:H x); app (app H1 H2) H3g

For patterns which are not fully applied, the complement cannot be ex-
pressed as a �nite set of patterns, as the following example illustrates.

Example 2 The encoding of an �-redex takes the form

p�x : e xq = lam(�x :exp: app peq x)

where peq may contain no free occurrence of x. The side condition is ex-
pressed in a pattern by introducing an existential variable Eexp which does
not depend on x. Hence, its complement with respect to the empty context
should contain, among others, also all terms lam (�x : exp: app (Ex) x)
where E does depend on x.

Note that there is no �nite set of patterns which has as its ground in-
stances exactly those termsM which depend on a given variable x. Following
standard terminology, we call such terms strict in x and the corresponding
function �x:A:M a strict function. As the example above shows, the comple-
ment of patterns which are not fully applied can therefore not be represented
as a �nite set of patterns. This failure of closure under complementation can-
not be avoided similarly to the way in which left-linearization bypasses the
limitation to linear patterns and it needs to be addressed directly.

One approach is taken by Lugiez [8]: he modi�es the language of terms
to permit occurrence constraints. For example �xyz: Mf1; 3g would denote
a function which depends on its �rst and third argument. The technical
handling of those objects then becomes awkward as they require specialized
rules which are foreign to the issues of complementation.

Since our underlying �-calculus is typed, we use typing to express that a
function must or must not depend on its argument. In the next section we
develop such a �-calculus and generalize the complement algorithm to work
on such terms.

4 A Strict �-Calculus

As we have seen in the preceding section, the complement of some patterns
in the simply-typed �-calculus cannot be expressed in a �nitary manner
within the same calculus. We thus generalize our language to include strict
functions of type A

1

! B (which are guaranteed to depend on their argu-

ment) and invariant functions of type A
0

! B (which are guaranteed not to
depend on their argument). Of course, any concretely given function either
will or will not depend on its argument, but in the presence of existential
variables we still need the ability to remain uncommitted. Therefore our cal-
culus also contains the full function space A

u

! B. A similar calculus have
been independently investigated in [16] where the Curry-Howard connection
with relevant logic is explained.

Labels k ::= 1 j 0 j u

Types A ::= P j A1

k

! A2

Terms M ::= c j x j �xk:A: M jM1 M2
k

Contexts � ::= � j �; x:A

Note that there are three di�erent forms of abstractions and applications,
where the latter are distinguished by di�erent labels on the argument. It is
not really necessary to distinguish three forms of application syntactically,
since the type of function determines the status of the application, but it is
convenient for our purposes. A label u it is called undetermined.

We use a formulation of the typing judgment with three zones, containing
the undetermined, irrelevant and strict hypotheses, denoted by �,
, and �,
respectively. We implicitly assume a �xed signature � which would otherwise
clutter the presentation.

Our system is biased towards a bottom-up reading of the rules in that
variables never disappear, i.e., they are always propagated from the conclu-
sion to the premises, although their status might be changed.

Let us go through the typing rules in detail. The requirement for the
strict context � to be empty in the Idu and Id1 rules expresses that strict
variables must be used, while undetermined variables in � or irrelevant vari-
ables in
 can be ignored. Note that there is no rule for irrelevant variables,
which expresses that they cannot be used.

The introduction rules for undetermined, invariant, and strict functions
simply add a variable to the appropriate context and check the body of the
function.

The di�cult rules are the three elimination rules. First, the undeter-
mined context � is always propagated to both premises. This re
ects that
we place no restriction on the use of these variables.

Next we consider the strict context �. Recall that this contains the
variables which should occur strictly in a term. An undetermined function
M : A

u

! B may or may not use its argument. An occurrence of a variable
in the argument to such a function can therefore not be guaranteed to be

c:A 2 �
Con

�;
; � ` c : A

Idu
(�; x:A);
; � ` x : A no Id0 rule

Id1
�;
;x:A ` x : A

(�; x:A);
;� `M : B
u

! I
�;
;� ` �xu:A: M : A

u

! B

�; (
; x:A);� `M : B
0

! I
�;
;� ` �x0:A: M : A

0

! B

�;
; (�; x:A) `M : B
1

! I
�;
;� ` �x1:A: M : A

1

! B

�;
;� `M : A
u

! B (�;�);
; � ` N : A
u

! E
�;
;� `M Nu : B

�;
;� `M : A
0

! B (�;
;�); �; � ` N : A
0

! E
�;
;� `M N0 : B

(�;�N);
;�M `M : A
1

! B (�;�M);
;�N ` N : A
1

! E
�;
; (�M ;�N) `M N1 : B

Figure 1: Typing rules for �
l
!

used. Hence we must require in the rule
u

! E for an application M Nu that
all variables in � occur strictly inM . No further restrictions on occurrences
of strict variables in the argument are necessary, which is re
ected in the
rule by adding � to the undetermined context while checking the argument
N . The treatment of the strict variables in the vacuous application M N0

is similar.
In the case of a strict applicationM N1 each strict variable should occur

strictly in either M or N . We therefore split the context into �M and �N

guaranteeing that each variable has at least one strict occurrence inM or N ,
respectively. However, strict variables can occur more than once, so variables
from �N can be used freely inM , and variables from �M can occur freely in
N . As before, we re
ect this by adding these variables to the undetermined
context.

Finally we consider the irrelevant context
. Variables declared in

cannot be used except in the argument to an irrelevant function (which is
guaranteed to ignore its argument). We therefore add the irrelevant context

 to the undetermined context when checking the argument of a vacuous
application M N0.

Our strict �-calculus satis�es the expected properties, including unique-
ness of typing and the existence of canonical forms, which is critical for the
intended applications. A full account can be found in [11].

Let us examine the structural properties of contexts. Exchange is directly
built into the formulation. Weakening is allowed in the undetermined and
in the irrelevant contexts. Contraction holds anywhere.

The notions of reduction and expansion derive directly from the ordinary
� and � rules.

(�xk:A: M)Nk �
�! [N=x]M

M : A
k

! B
��
�! �xk:A: M xk

The subject reduction and expansion theorems are an immediate con-
sequence of the structural and substitution properties generalized to this
three-zoned calculus. The substitution properties again follow by straight-
forward structural inductions.

The above results culminate in the canonical form theorem: for every
term M such that �;
;� `M : A, there exists a unique N in canonical (=
�-normal �-long) form, denoted �;
;� ` N * A, such that M is convertible
to N . The proof employs the standard method of logical relations, adapted
to the speci�c �-calculus we consider.

The following lemma establishes a consistency property of the type sys-
tem relevant to complementation.

Lemma 3 (Exclusivity) It is not the case that both �;
; (�; x:A) `M : C
and �; (
; x:A);� `M : C.

5 Embedding the Simply-Typed �-Calculus

Now that we have developed a calculus which is potentially strong enough to
represent the negation of linear patterns, we need to answer two questions:
how do we embed the original �-calculus, and is the calculus now closed
under complement?

In this paper, we do not answer the second question conclusively. How-
ever, our algorithm is sound and complete for the fragment which results
from the natural embedding of the original simply-typed �-calculus which is
su�cient for all applications we have presently considered (see Section 8).

Recall that we introduced strictness to capture occurrence conditions on
variables in canonical forms. This means that constants (and by extension
bound variables) should be considered strict functions of their argument,
since these arguments will indeed occur in the canonical form. On the other
hand, if we have a second order constant, we cannot restrict the argument
function to be either strict or vacuous, since this would render our represen-
tations inadequate.

Example 4 Continuing Example 1, we see

p�x: �y: xq = lam (�x :exp: lam (�y :exp: x))

so the argument to the �rst occurrence of `lam' is a strict function, while
the argument to the second occurrence is an invariant function. If we can
give only one type to `lam' it must therefore be (exp

u

! exp)
1

! exp.

Generalizing this observation means that positive occurrences of function
types are translated to strict functions, while negative occurrences become
undetermined functions. We can formalize this as an embedding of simply-
typed �-terms into a fragment of strict terms via two mutually recursive
translations ()� and ()+. First, the de�nition on types.

(A! B)� = A+ u

! B�

(A! B)+ = A�
1

! B+

P� = P+ = P

We extend it to canonical terms (including existential variables), signatures,
and contexts as follows:

M� = M+ for M : P (�x :A:M)� = �xu :A+:M�

x+ = x (�; P :type)+ = �+; P :type
c+ = c (�; c:A)+ = �+; c:A+

(EA x1 : : : xn)
+ = FA� xu1 : : : x

u
n (�)+ = �

(M N)+ = M+ (N�)1 (�; x:A)+ = �+; x:A+

The image of the embedding of the canonical forms of the simply-typed
�-calculus gives rise to the following fragment, which we call simple terms.

Simple Terms M ::= �xu:A+: M j h M1
1 : : :Mn

1 j EA xl11 : : : xlnn

We sometimes abbreviate h M1
1 : : :Mn

1 as h M1
n. Note that by the restric-

tion to long normal forms such terms and applications of pattern variables
must be of base type. For every judgment J on simple terms, we will shorten
�; �; � ` J into � ` J .

The correctness of the embedding is easily established by induction over
the structure of canonical forms.

Theorem 5 If � `M * A then �+ `M� * A�.

From now on we drop the � embedding annotations from terms, types
and contexts. We may also hide the ()1 decoration from strict application
of constants in examples.

Simple terms enjoy the tightening property which is related to exclusivity
(Theorem 3) and is crucial for the correctness proof of our complement
algorithm. It expresses that every closed simple term is either strict or
vacuous in a given undetermined variable. After appropriate generalization,
the result follows by induction on the given derivation.

Theorem 6 (Tightening) Let M be a simple term without existential vari-
ables such that (�; x:C);
;� ` M * A. Then �;
; (�; x:C) ` M * A or
�; (
; x:C);� `M * A.

It simpli�es the presentation of the algorithms for complement and later
uni�cation if we extend every existentially quanti�ed variable to be applied
to all bound variables in their declaration order. This is possible for simple
linear patterns without changing the set of its ground instances. We just
insert vacuous applications, which guarantees that the extra variables are
not used. We furthermore permute the argument to the standard order,
which also does not a�ect the set of ground instances of linear patterns. In
slight abuse of notation we call the resulting terms fully applied.

Example 7 The term from Example 2, lam (�xu :exp: app E x), has fully
applied form lam (�xu :exp: app (Z x0) x) for a fresh existential variable Z

of type exp
0

! exp.

Theorem 8 Let N be a simple term and Q its fully applied translation.
Then � `M 2 kNk : A i� � `M 2 kQk : A.

From now on we tacitly assume that all simple terms are fully applied.
We call a term E xl11 : : : xlnn (of base type) a generalized variable.

6 The Complement Algorithm

The idea of complementation for applications and abstractions is quite simple
and similar to the �rst-order case. For generalized variables we consider
each argument in turn. If an argument variable is undetermined it does
not contribute to the negation. If an argument variable is strict then any
term where this variable does not occur contributes to the negation. We
therefore complement the corresponding label from 0 to 1 while all other
arguments are undetermined. For vacuous argument variables we proceed
dually. In preparation for the rules we de�ne Not(1) = 0 and Not(0) = 1. If
� = x1:A1; : : : ; xn:An, we write E �u for the application of E xu1 : : : x

u
n. Such

an application represents the set of all terms without existential variables
and free variables from �.

De�nition 9 (Higher-Order Pattern Complement) For a linear sim-
ple term M such that � ` M : A, de�ne � ` Not(M)) N : A with the
meaning that N is in the complement of M of type A in context � by the
following rules.

1 � i � n k 2 f1; 0g

� ` Not(E xl11 : : : x
li�1
i�1 xki x

li+1
i+1 : : : x

ln
n)) H xu1 : : : x

u
i�1 x

Not(k)
i xui+1 : : : x

u
n : P

�; x:A ` Not(M)) N : B

� ` Not(�xu :A:M)) �xu :A:N : A
u

! B

g 2 � [�; g : A1
1

! : : :
1

! Am
1

! P;m � 0; h 6= g

� ` Not(h Mn
1
)) g (H1�

u)1 : : : (Hm�
u)1 : P

� ` Not(Mi)) N : Ai 1 � i � n

� ` Not(h Mn
1
)) h (H1�

u)1 : : : (Hi�1�
u)1 N1 (Hi+1�

u)1 : : : (Hn�
u)1 : P

where the H's are new variables, h 2 �[�, and � ` h : A1
1

! : : :
1

! An
1

! P .
Finally we de�ne � ` Not(M) = N : A if N = fN j � ` Not(M)) N : Ag.

Note that if EA is a generalized variable considered in the empty context,
it has the canonical form �xun : E xun. Hence � ` Not(EA) = ; : A as expected.

We remark that the members of a complement set are not mutually
disjoint, due to the indeterminacy of u. We can achieve a representation by
exclusive patterns if we resolve this indeterminacy, that is, by considering
for every argument xu the two possibilities x1 and x0. It is clear that in
the worst case scenario the number of terms in a complement set is bound
by 2n; hence the usefulness of this further step needs to be pragmatically
determined.

We can now revisit Example 2:

Not(lam(�xu :exp: app (E x0) x)) =

flam(�xu :exp: app (H x1) (H 0 xu));

lam(�xu :exp: app (H xu) (app (H 0 xu) (H 00xu)));

lam(�xu :exp: app (H xu) (lam(�yu :exp:H 0 xu yu)));

lam(�xu :exp: lam(�yu :exp:H xu yu));

lam(�xu :exp: x);

app H H 0g

We can show that simple terms are closed under complementation by
induction over the construction of the complement.

Theorem 10 If M is simple, so are all N such that � ` Not(M)) N : A.

We address the soundness and completeness of the complement algorithm
in the following theorem. Termination is obvious as the algorithm is syntax-
directed and only �nitely branching. We write � ` M 2 kNot(N)k : A if
� ` Not(N)) Q : A and � `M 2 kQk : A.

Theorem 11 (Partition) Let � ` N : A be a simple linear term.

1. (Exclusivity) It is not the case that both
� `M 2 kNk : A and � `M 2 kNot(N)k : A.

2. (Exhaustivity) If � `M : A then
either � `M 2 kNk : A or � `M 2 kNot(N)k : A.

Note that exclusivity is based on Theorem 3, which holds for any strict
term. In contrast, exhaustivity requires tightening (Theorem 6) which holds
only for simple terms.

7 Uni�cation of Simple Terms

We now address the issue of uni�cation, i.e., intersection of simple linear
higher-order patterns. We start by determining when two labels are compat-
ible and de�ne their intersection as the idempotent and symmetric extension
of u\1 = 1 and u\0 = 0. The remaining cases 1\0 and 0\1 are unde�ned
since no variable can be both strict and vacuous in a given term.

We use � for sequences of labeled bound variables and write �(x) = k if
xk 2 �. We also extend the intersection operations to these such sequences
in the obvious way. Following standard terminology we call atomic terms
whose head is a free or bound variable rigid, while terms whose head is an
existential variable are called
exible.

De�nition 12 (Higher-Order Pattern Intersection) For simple linear
terms M and N without shared variables such that � `M : A and � ` N : A,
we de�ne � `M \N) Q : A by the following rules.

\ FF
� ` E �1 \ F �2) H (�1 \ �2) : P

c 2 � � ` H1 �1 \M1) N1 : A1 � � �� ` Hn �n \Mn) Nn : An
\ FRc

� ` E � \ c M1
n) c N1

n : P

y 2 � � ` H1 �1 \M1) N1 : A1 � � �� ` Hn �n \Mn) Nn : An
\ FRy

� ` E � \ y M1
n) y N1

n : P

h 2 � [� � `M1 \N1) Q1 : A1 � � �� `Mn \Nn) Qn : An
\ App

� ` h M1
n \ h N1

n) h Q1
n : P

�; x:A `M \N) Q : B
\ Lam

� ` �xu :A:M \ �xu :A:N) �xu :A:Q : A! B

where the H's are fresh variables of correct typing and n � 0.
We have omitted two rules \ RF c and \ RF y which are symmetric to

\ FRc and \ FRy. The rules \ FRc and \ RF c have the following proviso:

for all x 2 � and 1 � i � n:

8x:�(x) = 0! 8i :�i(x) = 0

8x:�(x) = u! 8i :�i(x) = u

8x:�(x) = 1! 9i :�i(x) = 1 ^ 8j; j 6= i:�j(x) = u

The rules \ FRy and \ RF y are subject to the proviso

8x:�(x) = 0! 8i :�i(x) = 0

8x:�(x) = u! 8i :�i(x) = u

8x:x 6= y ^ �(x) = 1! 9i :�i(x) = 1 ^ 8j; j 6= i:�j(x) = u

�(y) = u _ (�(y) = 1 ^ 8i:�i(y) = u)

Finally we de�ne � `M \N : A = Q if Q = fQ j � `M \N) Q : Ag.

In rule \ FF we can assume that the same list of variables, though
possibly with di�erent labeling, is the argument of E;F and H, since simple
terms are fully applied and due to linearity we can always reorder the context
to the same list. Since patterns are linear and M and N share no pattern
variables, the
ex-
ex case arises only with distinct variables. This also
means we do not have to apply substitutions or perform the customary
occurs-check. In the
ex/rigid and rigid/
ex rules, the proviso enforces
the typing discipline since each strict variable x must be strict in some
premise. The modi�ed condition on y takes into account that the head of
an application constitutes a strict occurrence.

The following example illustrates how the Flex-Rigid rules, in this case
\ FRc, make uni�cation on simple terms �nitary:

x:A ` E x1 \ c (F xu)1 (F 0 xu)1 =

fc (H x1)1 (H 0 xu)1; c (H xu)1 (H 0 x1)1g

Note that, similarly to complementation, intersection returns a solution
with possible overlaps between the patterns. Again it is possible, in a post-
processing phase, to transform the results into disjoint form.

As for complement, the termination of the algorithm is straightforward
since the judgment is term-directed with �nite branching. The adequacy
proof for the uni�cation algorithm on linear simple terms requires two im-
plications which follow inductively, at the heart relying on properties of strict
typing derivations.

Theorem 13 (Correctness of Pattern Intersection) For simple linear
terms N1 and N2 without shared existential variables such that � ` N1 : A
and � ` N2 : A, we have � ` M 2 kN1k : A and � ` M 2 kN2k : A i�
� `M 2 kN1 \N2k : A.

8 Conclusion

We have shown that the complement of linear higher-order patterns cannot
be expressed as a �nite union of such patterns. To close the language un-
der complement we generalized to a �-calculus in which strict and vacuous
functions can be expressed in the type system. The original language can
be embedded compositionally into simple patterns. On this language, both
complement and intersection (that is, uni�cation) can be expressed as a �-
nite union of simple linear patterns. From this it is easy to see that �nite sets
of simple linear patterns form a boolean algebra. Indeed, we can trivially
de�ne the relative complement of two terms via complement and intersec-
tion; namely, extending as expected the latter operation to operate on sets
of terms, we have M�N =M\N c.

Our main application lies in higher-order logic programming, where pat-
tern complement is a necessary component in any algorithm to synthesize the
negation of a given program. This synthesis includes two basic operations:
negation to compute the complements of heads of clauses in the de�nition of
a predicate, and intersection to combine results of negating individual clause
heads. In this paper we have provided algorithms to compute both.

While this approach has been investigated for �rst-order Horn clauses
[1] and CLP programs [2], the �eld has been little explored with respect
to higher-order logics and logical frameworks. This is the most important
future work we are considering; the algorithms presented here provide the
central foundation.

We also plan to extend the results to dependent types to endow intention-
ally weak frameworks such as Twelf [15] with a logically meaningful notion
of negation along the lines of [1]. Finally, we hope to address the general case
of complementation and uni�cation in the strict �-calculus which is likely to
be useful in linear logical frameworks as LLF [3].

Acknowledgments

We are grateful to Iliano Cervesato, Carsten Sch�urmann and Roberto Virga
for useful comments on previous versions of this paper. This work has been
partially supported by NSF Grant CCR-9619584.

References

[1] R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. A transformational
approach to negation in logic programming. Journal of Logic Programming,
8:201{228, 1990.

[2] P. Bruscoli, F. Levi, G. Levi, and M. C. Meo. Compilative constructive nega-
tion in constraint logic programs. In S. Tiso, editor, Proceedings of the 19th
International Colloquium on Trees in Algebra and Programming (CAAP'94),
pages 52{76. Springer-Verlag LNCS 787, 1994.

[3] I. Cervesato and F. Pfenning. A linear logical framework. In E. Clarke, editor,
Proceedings of the Eleventh Annual Symposium on Logic in Computer Science,
pages 264{275, New Brunswick, New Jersey, July 1996. IEEE Computer Soci-
ety Press.

[4] H. Comon. Disuni�cation: A survey. In J.-L. Lassez and G.Plotkin, editors,
Computational Logic. MIT Press, Cambridge,MA, 1991.

[5] M. Hanus and C. Prehofer. Higher-order narrowing with de�nitional trees. In
Proc. Seventh International Conference on Rewriting Techniques and Applica-
tions (RTA'96), pages 138{152. Springer LNCS 1103, 1996.

[6] K. Kunen. Answer sets and negation-as-failure. In J.-L. Lassez, editor, Pro-
ceedings of the Fourth International Conference on Logic Programming (ICLP
'87), pages 219{228, Melbourne, Australia, May 1987. MIT Press.

[7] J.-L. Lassez and K. Marriot. Explicit representation of terms de�ned by counter
examples. Journal of Automated Reasoning, 3(3):301{318, Sept. 1987.

[8] D. Lugiez. Positive and negative results for higher-order disuni�cation. Journal
of Symbolic Computation, 20(4):431{470, Oct. 1995.

[9] S. Michaylov and F. Pfenning. Natural semantics and some of its meta-theory
in Elf. In L.-H. Eriksson, L. Halln�as, and P. Schroeder-Heister, editors, Proceed-
ings of the Second International Workshop on Extensions of Logic Program-
ming, pages 299{344, Stockholm, Sweden, Jan. 1991. Springer-Verlag LNAI
596.

[10] D. Miller. A logic programming language with lambda-abstraction, function
variables, and simple uni�cation. Journal of Logic and Computation, 1(4):497{
536, 1991.

[11] A. Momigliano. Elimination of negation in a logical framework. PhD thesis,
Carnegie Mellon University, Forthcoming.

[12] T. Nipkow. Higher-order critical pairs. In G. Kahn, editor, Sixth Annual IEEE
Symposium on Logic in Computer Science, pages 342{349, Amsterdam, The
Netherlands, July 1991.

[13] F. Pfenning. Logic programming in the LF logical framework. In G. Huet and
G. Plotkin, editors, Logical Frameworks, pages 149{181. Cambridge University
Press, 1991.

[14] F. Pfenning. Uni�cation and anti-uni�cation in the Calculus of Constructions.
In Sixth Annual IEEE Symposium on Logic in Computer Science, pages 74{85,
Amsterdam, The Netherlands, July 1991.

[15] C. Sch�urmann and F. Pfenning. Automated theorem proving in a simple meta-
logic for LF. In C. Kirchner and H. Kirchner, editors, Proceedings of the 15th
International Conference on Automated Deduction (CADE-15), pages 286{300,
Lindau, Germany, July 1998. Springer-Verlag LNCS 1421.

[16] D. A. Wright. Reduction types and intensionality in the lambda-calculus. PhD
thesis, University of Tasmania, Sept. 1992.

