Analyzing Plans with Conditional Effects

Elly Winner and Manuela Veloso
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
{elly,veloso}@cs.cmu.edu
fax: (412) 268-4801

Abstract
In this paper, we introduce SPRAWL, an algorithm to find a minimal annotated partially ordered structure in an observed totally ordered plan with conditional effects. The algorithm proceeds in a two-phased approach, first preprocessing the given plan using a novel needs analysis technique, which builds a needs tree to identify the causal dependencies in the totally ordered plan; and then constructing the partial ordering using the needs tree. We introduce the concept and details of needs analysis, present the complete algorithm, and provide illustrative examples. We carefully discuss the challenges that we faced.

Introduction
Much of the work on plan reuse, plan recognition and agent modeling has been founded on the analysis of example plans and executions. One of the most common approaches to plan analysis has been to create an annotated ordering of the example plan (Fikes, Hart, & Nilsson 1972; Regnier & Fade 1991; Kambhampati & Hendler 1992; Kambhampati & Kedar 1994; Veloso 1994). Annotated orderings allow systems not only to more flexibly reuse portions of the plans they have observed, but also to reuse the reasoning that created those plans in order to solve new problems.

Despite a shift in the planning and agent modeling community from STRIPS (Fikes & Nilsson 1971) towards richer domain-specification languages which allow conditional effects (Pednault 1986; ?), and despite the success in learning systems of the annotated ordering approach, it has not been applied to domains with conditional effects. In this paper, we introduce the SPRAWL algorithm for finding minimal annotated consistent partial orderings of observed totally ordered plans.

We chose to find partial orderings for several reasons. Partial orderings help to isolate independent subplans so they can be reused or recognized separately from the whole. DO WE NEED TO SAY MORE ABOUT WHY THEY DO THIS OR IS THIS OBVIOUS TO EVERYONE? They also provide parallelism for those applications that can take advantage of it. For generality’s sake, we assume that observed example plans are totally ordered. The annotations on the ordering constraints explain the rationale behind the plans and allow portions of them to be easily matched, removed, and used independently.

Conditional effects make our task much more difficult because they cause the effects of a given step to change depending on what steps come before it, thus making step behavior difficult to predict. In fact, any ordering must treat each conditional effect in the plan in one of three ways:

- **Use**: make sure the effect occurs;
- **Prevent**: make sure the effect does not occur;
- **Ignore**: don’t care whether the effect occurs or not.

Figure 1 shows totally ordered plans which demonstrate these three cases, and Figures 2 and 3 show the partial orders representing the use and ignore cases, respectively. Although the totally ordered plans for these two cases are composed of the same steps in the same order, the partial orderings are very different. Treating any conditional effect in a different way will result in a different partial ordering. One
Figure 1: Three totally ordered plans which represent the three possible ways of treating a conditional effect in an ordering: using it to achieve a goal, preventing it in order to achieve a goal, or ignoring its effect.

way to deal with this is to insist that exactly the same conditional effects must be active in the partial ordering as are active in the totally ordered plan, but this will result in an overly restrictive partial ordering in which some ordering constraints may not contribute to goal achievement. Instead, we perform needs analysis on the totally ordered plan to discover which conditional effects are relevant. Needs analysis allows us to ignore incidental conditional effects in the totally ordered plan.

Instead of looking for the optimal (according to some metric) partially ordered plan to solve a problem, we chose to focus on finding partial orderings consistent with the given totally ordered plan. There are two reasons for this. The first is that the total order contains a wealth of valuable information about how to solve the problem, including which operators to use and which conditional effects are relevant. The second is that for many applications, including plan modification and reuse and agent modelling, it is important to be able to analyze an observed or previously generated plan, for example, to find characteristic patterns of behavior or to identify unnecessary steps.

There are cases in which a different total ordering of the same plan steps would produce a different partial ordering, but these are cases in which the relevant effects differ. Consider the two totally ordered plans shown in Figures 4 and 5. Although they consist of exactly the same steps, in the first totally ordered plan, the sequence of relevant effects that produces the goal term z is different than the sequence that produces z in the second totally ordered plan. We consider these two plans to be non-equivalent, though they solve the same problem. SPRAWL would never produce the same partial ordering for both of them; the partial orderings would each preserve the same relevant effects as are active in the respective totally ordered plans.

However, since our purpose is to reveal underlying structure, we do have some requirements on the form of the resulting partial ordering; we allow only ordering constraints which affect the fulfillment of the goal terms—those which provide for or prevent relevant effects.

The remainder of this paper is organized as follows. We first discuss related work in plan analysis. Then we introduce the needs analysis technique, illustrate its behavior and discuss its complexity. Next, we explain how the SPRAWL algorithm uses needs analysis to find a partial ordering and discuss the complexity of the entire algorithm. We then discuss the limitations and capabilities of the algorithm, present formal definitions for the concepts we use and introduce, and finally present our conclusions.

Related Work

Triangle tables: (Fikes, Hart, & Nilsson 1972; Regnier & Fade 1991) store generalized plans in a table that shows which add-effects of each op remain after each subsequent op—helps to know how to use subplans—use some other bit of saved knowledge (what?) to identify which ops are irrelevant in partial reuse. They mention the need to be able to “identify the role of each operator in the overall plan: what its important effects are (as opposed to side effects) and why these effects are needed in the plan.”

reg & fade use triangle table to build po with no “artificial” ordering constraints.

Validation structures: (Kambhampati & Hendler 1992; Kambhampati & Kedar 1994) given a p.o., constructs list of validations: 4-tuple (provided effect, providing op, relying condition, relying op). no ces. no validations for threats, but some computation over validations finds threats for you.
Annotated “decision-making” rationale: (Veloso 1994) analogical reasoning—stores cases supplemented with “decision-making rationale” in order to be able to reuse rationale, not just old plan.

Operator graphs & their various-&-sundry uses: (Smith & Peot 1993; 1996) capture interaction between ops by chaining back from goal in very needs-analysis-y sort of way. one node for each operator. used for threat analysis, threat postponing, analyze/identify/avoid “recursions” (a, a-1, a-2...).

Goal agendas: (Koehler & Hoffmann 2000) use various methods (including planning graphs) to find “goal agendas”—an ordering for in which order to attack goals. still exponential time, since it doesn’t remember the plans, but less exponential, since fewer threat difficulties.

previous partial ordering work: (Veloso, P´erez, & Carbonell 1990) found a po from a non-ce to; no annotations (B¨ackstr¨om 1993) found that it’s np-complete to find a best po, given a to. (Kambhampati 1996) delay threat resolution by using disjunctive orderings—we use disjunctions, too! is this too tenuous a link??

various po-ish planning methods: (Weld 1994) given problem, finds PO. can handle CEs, but does not annotate.

One of the most popular and efficient partial-order planners, Graphplan (Blum & Furst 1997), produces overconstrained partial orderings, which does not suit our purpose. Consider the plan in which the steps \(\text{op}_a, \text{op}_b, \ldots, \text{op}_m \) may run in parallel with the steps \(\text{op}_n, \text{op}_p, \ldots, \text{op}_q \). Graphplan would find the partial ordering shown in Figure 6, which forces \(\text{op}_p \) to be one of the first two steps of the plan. The ordering constraint between \(\text{op}_p \) and \(\text{op}_q \) does not help achieve the goal, so it would not have been included in a partial ordering created by SPRAWL. SPRAWL would find the partial ordering shown in Figure 7, which allows \(\text{op}_p \) to run in parallel with any of the other steps. POINT OUT IRRELEVANT LINKS IN GRAPHPLAN VERSION. NO POSSIBLE REASON FOR THEM.

Need Tree Structure
In this section, we will discuss the needs that compose the needs tree as well as the structure of the tree.

There are three kinds of needs in the needs tree:

1. **Precondition Needs** the preconditions of a step are called *precondition needs* of the step—they must be true for the step to be executable;

2. **Creation Needs** terms which must be true before step \(n \) in order for step \(n \) to create a particular term (or maintain

Needs Analysis

Our first step in finding a partial ordering is to do needs analysis on the totally ordered plan. Needs analysis begins by creating a goal step called **FINISH**, as in (Smith & Peot 1993), with the terms of the goal state as preconditions. Then it calculates which terms need to be true before the last step in the plan in order for the preconditions of **FINISH** to be true afterwards, and which need to be true before the second-to-last plan step in order for those terms to be true. We continue this calculation all the way backwards to the initial state, building up a tree of “needs.” This needs tree allows us to identify easily the relevant effects of a given step and most of the dependencies in the plan. However, threats not active in the totally ordered plan are not identified by needs analysis, and must be found afterwards.

Figure 4: One possible totally ordered plan. The preconditions are shown on the left of each plan step and the effects on the right, as a list of condition and add-effect pairs. If there were delete effects, they would be shown as adds of negated terms.

Figure 5: Another possible totally ordered plan achieving the same goals.

Figure 6: The partial ordering found by Graphplan.

Figure 7: The partial ordering found by SPRAWL.
a previously existing term) are called *creation needs* of the term;

3. **Protection Needs** terms which must be true before step n in order for step n not to delete a particular term are called *protection needs* of the term.

We will use the plan step shown in Figure 8 to illustrate the three kinds of needs. The term *on sprinkler* is a *precondition need* of the step *sprinkle front-yard*. To illustrate *creation needs*, let us assume that, after executing the step *sprinkle front-yard*, *wet shoe* must be true. This could be accomplished by ensuring that *at shoe front-yard* was true before *sprinkle front-yard* was executed or by ensuring that *wet shoe* was already true before *sprinkle front-yard* executed, as shown in Figure 9. These two terms are called *creation needs* of *wet shoe* at the step *sprinkle front-yard*, since they provide ways for the term *wet shoe* to be true after the step *sprinkle front-yard* executes. To illustrate *protection needs*, assume that, after executing the step *sprinkle front-yard*, the term *NOT wet shoe* must be true. In order to protect the term *NOT wet shoe*, we must ensure that *NOT at shoe front-yard* is true before *sprinkle front-yard* executes. This is called a *protection need* because it protects the term from being deleted.

We must also make a distinction between *maintain creation needs* and *add creation needs*. As mentioned above, there are two ways to ensure that *wet shoe* is true after the execution of the step *sprinkle front-yard*, both illustrated in Figure 9. One way is for *wet shoe* to have been true previously. We call this a *maintain creation need* since the step does not generate the term, but simply maintains a term that was previously true. However, the step *sprinkle front-yard* could generate the term *wet shoe* if *at shoe front-yard* were true before the step executed. We call this an *add creation need*, since we have introduced a new need in order to satisfy another.

It is not always necessary to generate new needs to satisfy a need term; it may also be satisfied if a non-conditional effect of the step satisfies it, as illustrated in Figure 10. We call such needs *accomplished*.

The description of needs must include logical operators. In the example shown in Figure 9, the needs of *wet shoe* are *wet shoe OR at shoe front-yard*. Only one of the two needs to be true to satisfy *wet shoe*. ANDs and NOTs are also necessary.

1Precondition needs and protection needs are always *add needs*.
Needs Analysis Algorithm

The needs analysis algorithm is shown in Table 1, and Figure 11 illustrates in detail how it generates the needs of an individual term. The complexity of needs analysis is \(O(mP(EC)^n)\), where \(m\) is the number of steps without conditional effects, \(n\) is the number of steps with conditional effects, \(P\) is the bound on the number of preconditions, \(E\) is the bound on the number of conditional effects in each step, and \(C\) is the bound on the number of conditions per conditional effect. Note that the complexity of needs analysis on a plan with no conditional effects is linear: \(O(mP)\).

Table 1: Needs Analysis algorithm.

We will use the totally ordered plan from the sprinkler domain shown in Figure 12 to illustrate the behavior of the needs analysis algorithm. First, the algorithm will create the \textbf{FINISH} step that has, as its precondition needs, the goal terms. Then it will move to the last plan step (\textbf{sprinkle front-yard}), which has one precondition need, to determine how to satisfy the needs of the subsequent step (\textbf{FINISH}). As previously discussed, there are two ways for the step \textbf{sprinkle front-yard} to satisfy \textbf{wet shoe}: either \textbf{wet shoe} could be true before this step executes, or \textbf{at shoe front-yard} must be true before this step executes. So the needs of the term \textbf{wet shoe} are \textbf{maintain wet shoe OR add at shoe front-yard}. As for \textbf{add wet front-yard}, the other precond...
Figure 11: The creation needs of a need at a particular step are calculated by finding all possible ways it can be generated in the previous step and ensuring that at least one of these occurs. The protection needs are calculated by finding all possible ways it can be deleted in the previous step and ensuring that none of these occurs.

Figure 12: A totally ordered plan in the sprinkler domain and its complete needs tree.
Input: A totally ordered plan \(T = S_1, S_2, \ldots, S_n \),
the START operator \(S_0 \) with add effects set to the
initial state, and the FINISH operator \(S_n + 1 \) with
preconditions set to the goal state.
Output: A partially ordered plan shown as a directed graph \(P \).

procedure Find_Partial_Order(\(T, S_0, S_n + 1 \)):
1. \(\text{tree} \leftarrow \text{Needs_Analysis}(T, S_0, S_n + 1) \)
2. \(\text{tree} \leftarrow \text{Trim_Unaccomplished_Need_Tree_Banches}(\text{tree}) \)
3. for \(c \leftarrow n-1 \) down-to 1 do
4. for each precondition of \(S_c \) do
5. \(\text{Recurse}(\text{tree}, P) \)
6. \(\text{Handle_Threats}(\text{tree}, P) \)
7. \(\text{Remove_Transitive_Edges}(P) \)

procedure Recurse_Need(\(c, \text{term}, P \)):
8. \(\text{Add_Causal_Link}(\text{choose one way to create term}, S_c, P) \)
9. \(\text{Recurse_Need}(c-1, \text{term}, P) \)
10. \(\text{Recurse_Need}(c-1, \text{term}, \text{protect}, P) \)

procedure Handle_Threats(\(\text{tree}, P \)):
11. for each causal link \(S_i \rightarrow S_j \) do
12. for \(c \leftarrow 1 \) up-to \(i - 1 \) do
13. if Threatens(\(S_c, S_i \rightarrow S_j \)) then
14. DEMOTE: \(\text{Add_Causal_Link}(S_c, S_i, P) \)
15. for \(c \leftarrow j + 1 \) up-to \(n \) do
16. if Threatens(\(S_c, S_i \rightarrow S_j \)) then
17. PROMOTE: \(\text{Add_Causal_Link}(S_j, S_c, P) \)

Table 2: The SPRAWL algorithm.

resulting partial ordering would not be consistent with the
totally ordered plan.

If, in the totally ordered plan, the threatening operator oc-
curs before the threatened operators, then promotion should be
used to resolve the threat in the partial ordering. Sim-
ilarly, if it occurs after the threatened operators, demotion
should be used to resolve the threat in the partial ordering.
If the threatening operator occurs between the threatened op-
erators in the totally ordered plan, then we know that con-
frontation must have been used in the totally ordered plan to
prevent the threatening conditional effect from occurring.
Needs analysis takes care of confrontation with protection
needs, shown in Figure 11 which ensure that steps that oc-
cur between a needed term’s creation and use in the totally
ordered plan do not delete the term.

Discussion

The SPRAWL algorithm does not create a partially ordered
plan from scratch; its purpose is to partially order the steps
of a given totally ordered plan to aid in our understanding of
the structure of the plan. Because of this, SPRAWL is
restricted to partial orderings consistent with the totally or-
dered plan.

However, frequently there are many partial orderings con-
sistent with the totally ordered plan. Here, we discuss the
space of possibilities explored by SPRAWL as we have de-
scribed it, and how that space can be extended to include all
possible partial orderings consistent with the totally ordered
plan.

Active Conditional Effects May Differ from Those
in Totally Ordered Plan

Though SPRAWL is restricted to partial orderings consistent
with the totally ordered plan it is given, this does not mean
that all conditional effects active in the totally ordered plan
must be active in the partial ordering, or vice versa. There
are sometimes irrelevant conditional effects in the totally or-
dered plan or in the partial ordering, and SPRAWL does not
seek to maintain or prevent these irrelevant effects. The ig-
nore case shown as a totally ordered plan in Figure 1 dem-
strates this. In this problem, one of the active effects in the
totally ordered plan is wet shoe. However, this effect does
not affect the fulfillment of the goal state, and so is not a rel-
levant effect. In fact, as is shown in Figure 3, SPRAWL would
enforce no ordering constraints between the two steps in its
partial ordering. Though the different orderings produce dif-
ferent final states, the goal terms are true in each of these
final states, so it doesn’t matter which occurs.

Partial Ordering May Not Include All Relevant
Effects in Total Ordering

Although, as we discussed, SPRAWL is restricted to partial
orderings with no relevant effects not active in the given to-
tally ordered plan, this does not mean that all relevant effects
in the totally ordered plan must be relevant effects in the
partial ordering. Sometimes, there are several relevant ef-
teffects in the totally ordered plan which achieve the same aim.
Bäckström presented an example that neatly illustrates this.
The totally ordered plan is shown with its needs tree in Fig-
ure 13. In this plan, two different relevant effects provide the
term q to step c—both step a and step b generate q. Choos-
ing a different relevant effect to generate q creates a different
partial order. The two partial orders representing each of the
two relevant effect choices are shown in Figures 14 and 15.

Figure 14: The only partial ordering of Bäckström’s exam-
ple plan permitted by the presented version of the needs
analysis algorithm.

Finding Multiple Partial Orderings

In the interest of speed, SPRAWL finds exactly one partial
ordering and does not search through different partial order-
ings to find a “better” one according to any measure. The
needs analysis algorithm shown in Table 1 produces a needs
tree that encompasses all possible partial orderings consist-
tent with the totally ordered plan, but the version of SPRAWL
shown in Table 2 arbitrarily chooses one possible partial or-
dering from those represented by the needs tree. SPRAWL
can be modified to search through more possible partial or-
derings, however, finding the best partial ordering according
to any measure is NP-complete (Bäckström 1993).

\[
\text{a} \rightarrow \text{p} \rightarrow \text{b} \rightarrow \text{q} \rightarrow \text{c}
\]
When an OR logical operator is encountered in the needs tree, SPRAWL arbitrarily chooses which of its branches to follow and ignores the others (Table 2, step 8). Instead, we could search through the possibilities to find the branch that contributes to the best partial ordering.

If we modify the needs analysis algorithm as discussed above, there is sometimes more than one way to accomplish a need, as with the need \textbf{q} in Figure 13. SPRAWL arbitrarily chooses one of these ways to be the need’s creator in the partial ordering (Table 2, step 8). Again, we could search through all possibilities instead, and choose the one that contributes to the best partial ordering.

SPRAWL resolves threats in the same way they were resolved in the totally ordered plan. It is possible instead to search over all three ways (promotion, demotion and confrontation) to resolve each. However, the partial ordering will only be consistent with the totally ordered plan if threats are resolved in the same way.

Definitions

Totally ordered plan \mathcal{T} consists of an initial state, \mathcal{I}, which is a list of terms that are true before the plan begins; a goal state, \mathcal{G}, which is a list of terms that must be accomplished by the plan; and a list of steps, $S_1 \ldots S_n$. Each step has a list of preconditions, or terms that must be true before the step is executable; and a list of conditional effects, which describe the effects of the step. Each conditional effect has a list of conditions and a list of effects, which become true after the plan step executes if the conditions of the effect were satisfied before the plan step executed. The preconditions of the first step in the plan, S_1, must be true in the initial state \mathcal{I}; the preconditions of each subsequent step S_i must be true after steps $S_1 \ldots S_{i-1}$ execute in order; and the terms of the goal state \mathcal{G} must be true after steps $S_1 \ldots S_n$ execute in order.

Partial ordering \mathcal{P} A partial ordering \mathcal{P} of the totally ordered plan \mathcal{T} also includes a list of ordering constraints. Each ordering constraint specifies that a given step S_i must come before another step S_j. The preconditions of the first step in the plan, S_1, must still be true in the initial state \mathcal{I}. However, we now demand that the preconditions of each subsequent step S_i must be true after any possible ordering of the plan steps that ends at S_i that is consistent with the ordering constraints; and that the terms of the goal state \mathcal{G} must be true after steps $S_1 \ldots S_n$ execute in any order consistent with the ordering constraints.

Figure 13: Bäckström’s example plan, and the needs tree created if the algorithm does not terminate branches when they are accomplished. Note that the term q is accomplished by two different steps: a and b. This means that two partial orderings are possible: one in which step a provides q to step c, and one in which b does. If branches are terminated as they are accomplished, the accomplished need marked q^*, which represents step a providing q to step c, would not be found.

Figure 15: Another partial ordering of Bäckström’s example plan. If we make the discussed modifications to the needs analysis algorithm, both this partial ordering and the one shown in Figure 14 would be represented in the needs tree, as shown in Figure 13.
Annotated Ordering an ordering of plan steps supplemented with a rationale for (some of) the ordering constraints.

Relevant Effect an effect which affects the fulfillment of a goal term.

Incidental Effect an effect which does not affect the fulfillment of a goal term.

Consistent a partial ordering P is consistent with the totally ordered plan T if all relevant effects active in P are also active in T.

Minimal Annotated Consistent Partial Ordering a partial ordering consistent with the totally ordered plan in which each ordering constraint either provides a term which a relevant effect depends upon or prevents a threat to such a term, and in which each ordering constraint is annotated with which term it provides or protects.

Conclusions

THIS WAS GARBAGE AND NEEDS TO BE REWRITTEN. BASIC MESSAGE, WE HAVE PRESENTED, YAP YAP YAP, AND WE HOPE IT OPENS THE FIELD FOR PLAN REUSE/ADAPTATION/RECOGNITION AND AGENT MODELLING TO RICHER DOMAIN LANGUAGES WITH CEs.

References

