
Inductive Inference of Integer Sequences

Sam Tetruashvili
Advisor: Manuel Blum

samt@cmu.edu, mblum@cs.cmu.edu

May 9, 2010

mailto:samt@cmu.edu
mailto:mblum@cs.cmu.edu

ii 0.0

ii

Contents

1 Introduction 5
1.1 Previous Work . 5
1.2 Our Results . 6

2 The Evolutionary Inference Model 7
2.1 The Model . 7
2.2 Inference Algorithms . 8

2.2.1 Polynomials . 8
2.2.2 Linear Recurrences . 10
2.2.3 Decimal Expansions of Rational Numbers 12
2.2.4 Decimal Expansions of Superpositions 13
2.2.5 Automatic Sequences . 16
2.2.6 Turing Machines . 19

2.3 Confidence Functions . 21

3 The On-Line Encyclopedia of Integer Sequences 25
3.1 Inferring OEIS . 25
3.2 Our Web Service . 26

4 Future Work 27
4.1 Inference Algorithms . 27
4.2 Confidence Functions . 28
4.3 Applications . 29

4.3.1 Finding Exact Roots of a Function 29
4.3.2 A Novel Spreadsheet Programming Interface 29

References 31

iii

iv CONTENTS 0.0

iv

List of Figures

2.1 The Evolutionary Inference Model 8
2.2 Polynomial Inference Algorithm 10
2.3 Linear Recurrence Inference Algorithm 12
2.4 Rational Sequences Inference Algorithm [BBS82] 13
2.5 LLL Inference Algorithm . 15
2.6 Thue-Morse Sequence . 16
2.7 Lower Bound PDFAs . 19
2.8 Automatic Sequence Inference Algorithm 20
2.9 Summary of Inference Bounds . 22

3.1 Inference Statistics . 26
3.2 Screenshot of our Integer Sequence Website 26

4.1 Spreadsheet Application Example 30

v

vi LIST OF FIGURES 0.0

vi

Acknowledgements

1

2 LIST OF FIGURES 0.0

2

Abstract

Inductive inference denotes hypothesizing a general rule from examples. [AS83]
In this senior thesis, we give a model for inductively inferring integer sequences.
Within this model we give algorithms that can (inductively) infer integer se-
quences with high confidence, under the assumption that all the terms of the
sequence are accessible. We provide tight bounds on the number of sequence
terms an inference algorithm needs to see before it can make an inference it
is confident in. We also explore scenarios when we can confidently say that a
sequence cannot be inferred by some inference algorithm.

We use The On-Line Encyclopedia of Integer Sequences [Slo] to evaluate
our model. We are currently able to infer about 18.9% of the OEIS using the
methods given in this thesis. We also implement a website for inferring sequences
that is meant to complement the OEIS. This site can be publicly accessed at
atemi.cdm.cs.cmu.edu/∼samt/sequences.html.

3

http://atemi.cdm.cs.cmu.edu/~samt/sequences.html

4 LIST OF FIGURES 0.0

4

Chapter 1

Introduction

Inductive inferences denotes hypothesizing a general rule from examples [AS83].
In this senior thesis we will exploring the inductive inference of integer sequences.
For example, consider the first few terms of the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

We say that an algorithm has inferred this sequence if when given the first
few terms of the sequence the algorithm can output a general description of
the entire (infinite) sequence. In this case, if an algorithm were to output the
second order linear recurrence

f0 = 0
f1 = 1

fn+2 = fn+1 + fn

we would say that it has inferred the Fibonacci sequence.

1.1 Previous Work

The problem of inductively inferring integer sequence has been attacked from
a variety of perspectives. In [Ang74], Dana Angluin studied sequences that
humans could easily infer. In her work she would give a subject the first few
terms of an infinite integer sequence and ask them to continue the sequence. She
then provides a taxonomy of integer sequences that humans are able to infer.
We hope to be able infer all of the sequence classes Angluin presents in her work.
From a more practical point of view, N.J.A. Sloane’s Superseeker program [Slo]
and the FindSequenceFunction procedure in Mathematica 7 have been capable
of inferring various elaborate classes of integer sequences for some time now. It
should be noted that these programs do not give the user any measure of how
confident they should be in their results.

The problem of the inductive inference of functions (as opposed to sequences)
has been studied since the mid-1960s. In [Gol67], Mark Gold gives a general
model for inferring languages in the limit. The model that we present in this
work is deeply inspired by the model given by Gold. Dana Angluin and Carl
Smith give a very good survey of the current state of inductive inference in
[AS83].

5

6 INTRODUCTION 1.2

1.2 Our Results

In this senior thesis we provide a general model for inductively inferring inte-
ger sequences. We then explore the space of algorithmically generated integer
sequences to find algorithms for inferring certain concept classes of sequences.
We then give inference algorithms for the following concept classes

• Polynomials

• Linear Recurrences

• Decimal Expansion of Rational Numbers

• Decimal Expansions of Superpositions

• Automatic Sequences

We also give tight upper and lower bounds on how many sequence terms these
inference algorithms need to see before they can correctly infer some (k-degree)
sequence in the concepts class. We then explore the entire class of all algorith-
mically generated integer sequences and give strong evidence that we should not
be able to infer this class in general. We then begin to scratch the surface of the
study of confidence functions. At a high level these functions try to let us know
how confident we are that we have seen enough sequence terms to justify some
hypothesis of degree k. We give two simple properties that these confidence
functions should intuitively have. We then pose a number of interesting open
problems associated with confidence functions.

To evaluate the performance of our model we use the sequences generously
catalogued in The On-Line Encyclopedia of Integer Sequences (OEIS) of N.J.A.
Sloane. So far we have been able to use the methods developed in this thesis
to infer about 18.9% of the sequences in this database. Much in the same spirit
as the OEIS, we have built a website that uses our methods to try to infer any
sequence that a user inputs. This website can be publicly accessed at

atemi.cdm.cs.cmu.edu/∼samt/sequences.html.

We encourage the reader to use this website to get an intuitive feel for this work.
Finally, we conclude by suggesting some future directions for this research.

Among these are designing new algorithms to infer interesting concept classes of
integer sequences that we have come across so far, searching for new (and more
general) concept classes, open problems associated with confidence functions,
and a number of applications of the inductive inference of integer sequences.

6

http://atemi.cdm.cs.cmu.edu/~samt/sequences.html

Chapter 2

The Evolutionary Inference
Model

The scientific method has been one of civilization’s most successful tools for
gathering knowledge about the world we live in. The method begins with the
creation of a new scientific theory. Once a scientific theory is posed, it is then
barraged with an array of intricate experiments meant to push the theory to
its limits. The tests continue until one of them manages to find a flaw in the
theory. When this happens the scientists must go back to the drawing board
and come up with another theory that accounts for the failures of the debunked
theory.

The methods we propose in this chapter for inferring integer sequences are
heavily inspired by the scientific method. At a very high level our model makes
and tests hypotheses. When it finds that its hypothesis disagrees with the input
sequence, it simply makes a new hypothesis using all of the data it has seen so
far. It is important to note that these hypotheses must be fully consistent with
the sequence terms that have been seen so far.

As you have no doubt already noticed, it is very unlikely that the scientific
method will ever halt; even if it has converged to the right theory. Thankfully,
the methods we propose let us put bounds on how long it will take for us to
converge to the correct answer, provided it exists.

2.1 The Model

Definition 1. We say that an integer sequence, {an}n≥0, is algorithmically
generated if there is a Turing Machine, M , that on input t ∈ N halts with
output at for all t ≥ 0. For the remainder of this thesis we will use the terms
sequence and algorithmically generated integer sequence interchangeably. We
will refer to subsets of the set of all algorithmically generated integer sequences
as concept classes.

Definition 2. The Evolutionary Inference Model for inferring integer sequences
has three main components:

1. The algorithmically generated integer sequence, {an}n≥0, that is to be
inferred. We require this sequence to be represented such that at time t

7

8 THE EVOLUTIONARY INFERENCE MODEL 2.2

of our algorithm we can efficiently retrieve at.

2. The inference algorithm, A, that we are trying to use to infer {at}t≥0.
This inference algorithm generates hypotheses, {ht}t≥0, that come from
some well defined concept class. For example, we present an inference
algorithm that tries to infer the input sequence as a linear recurrence.
It should be noted that any hypothesis output by an inference algorithm
should be fully consistent with all the (finite amount of) data that has
been input.

3. The confidence function, C, that tells us how confident we are in the
current hypothesis, {ht}t≥0, given that we are currently at time t of our
algorithm. The range of these confidence functions is the interval [0, 1],
where 0 indicates no confidence and 1 indicates total confidence. It should
be noted that C is allowed to depend on the concept class that A (our
inference algorithm) is designed to infer.

Given these components, the model will then proceed to try to use the inference
algorithm to find a hypothesis that it is 1− ε confident in, for some input ε > 0,
as shown in Figure 2.1.

1: EvolutionaryInference({at}t≥0, A, C, ε)
2: {ht}t≥0 = {0}t≥0

3:
4: for t = 0, 1, 2, . . . do
5: if ht 6= at then
6: {ht}t≥0 = A([a0, a1, . . . , at])
7: else if C({ht}t≥0 , t) ≥ 1− ε then
8: break
9:

10: return {ht}t≥0

Figure 2.1: The Evolutionary Inference Model simply keeps making new hy-
potheses until it finds one that it is sufficiently confident in.

In the remainder of this work we strive to design inference algorithms and
confidence functions that allow us to make sure that the model does not become
too confident in an incorrect hypothesis.

2.2 Inference Algorithms

2.2.1 Polynomials

This simplest class of sequences that we study are those generated by a poly-
nomial with rational coefficients.

Definition 3. Let {at}t≥0 be an integer sequence and let k be a nonnegative
integer. We say that {at}t≥0 is generated by a polynomial of degree k if there

8

2.2 INFERENCE ALGORITHMS 9

are rational numbers c0, c1, . . . , ck such that for all t ≥ 0

at =
k∑
i=0

cit
i (2.1)

To make the above equation well defined, we take 00 = 1.

Let’s say there is some sequence, {at}t≥0, that is generated by a polynomial
of degree k. The task for our inference algorithm would be to somehow find k
and the coefficients c0, c1, . . . , ck given some finite initial portion of the sequence.
The following theorem will show that this is possible given sufficiently many
sequence terms.

Theorem 1. “Let {at}t≥0 be generated by a polynomial of degree k. We can
infer {at}t≥0 given at least the first k + 1 terms of the sequence. Furthermore
this bound is tight.”

Proof. Say we are given exactly the first n = k + 1 terms of the sequence:
a0, a1, . . . , ak. Since we know that {at}t≥0 is generated by a polynomial of
degree k we know that for each t ∈ {0, 1, . . . , k}

at =
k∑
i=0

cit
i (2.2)

This gives us a system of k+1 equations with k+1 unknowns. We then rewrite
this system of equations as the following matrix equation.

1 0 0 · · · 0
1 1 12 · · · 1n

1 2 22 · · · 2n

1 3 32 · · · 3n
...

...
...

. . .
...

1 n n2 · · · nn

c0
c1
c2
c3
...
cn

=

a0

a1

a2

a3

...
an

(2.3)

This equation always has a unique solution since the matrix is a Vander-
monde matrix, and thus invertible. We can find this solution using Gaussian
Elimination. If we are given more than the first k+1 terms (n > k+1), then we
can still solve the matrix. By equation (2.2) we know that if i > k then ci = 0
thus we will still be able to find the correct ci’s. Given the ci’s, we can set k to
be the index of the largest non-zero ci.

To see that this bound is tight, consider the following polynomial of degree
k

px =
k−1∏
i=0

(x− i) (2.4)

The roots of this polynomial clearly occur at n ∈ {0, 1, . . . , k − 1}. Thus, when
given fewer then the first k + 1 terms of {px}x≥0 we are unable to distinguish
it from the zero polynomial. �

We can use the algorithm given in the proof of Theorem 1 as our inference
algorithm for polynomials. We state the algorithm slightly more formally in
Figure 2.2.

9

10 THE EVOLUTIONARY INFERENCE MODEL 2.2

1 : InferPolynomial([a0, a1, . . . , an−1])
2 : [c0, c1, . . . , cn−1] = MatrixSolve(Mn−1, [a0, a1, . . . , an−1])
3 : k = max {0,max {0 ≤ i < n | ci 6= 0}}
4 :
5 : return (k, [c0, c1, . . . , ck])

Figure 2.2: The polynomial inference algorithm. Note that Mi is the matrix
given in equation 2.3 with n = i.

2.2.2 Linear Recurrences

The next simplest class of sequences we study are those generated by a linear
recurrence with rational coefficients.

Definition 4. Let {at}t≥0 be an integer sequence and let k be a positive integer.
We say that {at}t≥0 is generated by a linear recurrence of degree k if there are
rational numbers c0, c1, . . . , ck−1 and integers b0, b1, . . . , bk−1 such that

at = bt for 0 ≤ t < k (2.5)

at+k =
k−1∑
i=0

ciat+i otherwise (2.6)

Say there is some sequence, {at}t≥0, that is generated by a linear recurrence
of degree k. The task for our inference algorithm would be to somehow infer
k, the base cases b0, b1, . . . , bk−1, and coefficients c0, c1, . . . , ck−1 given some
finite initial portion of the sequence. Much like for polynomials we now prove
a theorem that states this type of inference is possible given sufficiently many
sequence terms.

Theorem 2. “Let {at}t≥0 be generated by a linear recurrence of degree k. We
can infer {at}t≥0 given at least the first 2k terms of the sequence. Furthermore
this bound is tight.”

Proof. Say we are given exactly the first 2k terms of the sequence: a0, a1, . . . , a2k−1.
Since we know that {at}t≥0 is generated by a linear recurrence of degree k we
know that for t ∈ {0, 1, . . . , k − 1}

at+k =
k−1∑
i=0

ciat+i (2.7)

This gives us a system of k equations with k unknowns. We can rewrite this
system as the following matrix equation.

a0 a1 · · · ak−1

a1 a2 · · · ak
...

...
. . .

...
ak−1 ak · · · a2k−2

c0
c1
...

ck−1

 =

ak
ak+1

...
a2k−1

 (2.8)

Since {at}t≥0 is generated by a linear recurrence this matrix must be invertible;
otherwise the coefficient vector of the linear recurrence would be undefined.

10

2.2 INFERENCE ALGORITHMS 11

Thus we can solve this matrix equation for the ci’s. We can now take the base
cases to be bt = at for 0 ≤ t < k. Thus in this special case we can make the
correct inference.

We now reduce the case of being given the first n > 2k terms of the sequence
to the case of being given exactly the first 2k terms of the sequence. Let j =

⌊
n
2

⌋
and consider only the first 2j terms of the sequence in question. Using those
first 2j terms we make the following matrix.

M([a0, . . . , a2j−2]) =

a0 a1 · · · aj−1

a1 a2 · · · aj
...

...
. . .

...
aj−1 aj · · · a2j−2

 (2.9)

Since j ≥ k we can guarantee that the rank of this matrix is exactly k. To see
why this is the case note that the last j−k rows of the matrix can be represented
as a linear combination of the first k rows of the matrix our sequence is linear
recurrent. For example, row k + 1 is equal to

k∑
i=1

ci−1 · row i

Where the ci’s are the coefficients of the underlying linear recurrence of the
sequence in question.

Once we have k we can simply take the k×k sub-matrix of the matrix given
in equation (2.9) and apply the algorithm that we gave for the case of being
given exactly the first 2k terms of the sequence in question. Thus we can infer
k, the base cases b0, b1, . . . , bk−1, and the coefficients c0, c1, . . . , ck−1 as required
when we are given at least the first 2k terms of the sequence in question.

To see that this bound is tight, let k be a positive integer. Consider the
following two linear recurrences of degree k

ft =
{

0 , if t < k − 1;
1 , if t = k − 1 gt =

{
0 , if t < k − 1;
1 , if t = k − 1

fn+k = 0 gn+k = gn

We need at least 2k sequence terms in order to distinguish these two linear
recurrences from one another, since their first 2k−1 terms are identical. �

We can use the algorithm given in the proof of theorem 2 as our inference
algorithm for linear recurrences. We state this algorithm a bit more formally in
Figure 2.3

11

12 THE EVOLUTIONARY INFERENCE MODEL 2.2

1 : InferLinearRecurrence([a0, a1, . . . , an−1])
2 : if (n ≡ 1 mod 2) then
3 : n = n− 1
4 :
5 : k = MatrixRank(M([a0, . . . , an−2]))
6 : [c0, c1, . . . , ck−1] = MatrixSolve(M([a0, . . . , a2k−2]), [ak, ak+1, . . . , a2k−1])
7 : [b0, b1, . . . , bk−1] = [a0, a1, . . . , ak−1]
8 :
9 : return (k, [b0, b1, . . . , bk−1], [c0, c1, . . . , ck−1])

Figure 2.3: The linear recurrence inference algorithm. Note that the matrix
M([a0, a1, . . . , an−1]) is the matrix defined as in equation (2.9).

2.2.3 Decimal Expansions of Rational Numbers

The next class of sequences we study is the class of decimal expansions of ra-
tional numbers. As you probably already know, all sequences in this class are
eventually periodic and are thus linear recurrent. So why is it worth studying
this class of sequences? Consider the decimal expansion of 1

503

1
503

= 0.00198807157057654075546719681908548707753 · · · (2.10)

Since 503 is prime we know that this decimal expansion has a period of 502.
Thus this sequence can be represented as a linear recurrence of degree 502;
meaning that we will need at least 1004 sequence terms before we can infer it
using the technique outlined in the previous section. In this section we present
a technique, given in [BBS82], to predict(infer) the terms of the 1/P pseudo-
random number generator. This technique can be used to infer the 1

503 sequence
using only 7 sequence terms! This algorithm will allow us to infer certain se-
quences with exponentially fewer terms than required by our linear recurrence
inference algorithm.

Definition 5. Let {at}t≥0 be an integer sequence, let b be a positive integer,
and let r, n be integers such that n 6= 0, gcd (r, n) = 1, and 0 ≤ r < n. We say
that {at}t≥0 is generated by a rational of degree k in base b if at is the (t+ 1)st

digit in the base b expansion of r
n , i.e.

at =
⌊
r · bt

n

⌋
mod b (2.11)

and k = dlogb ne (i.e. the number of digits required to represent n in base b).

Let’s say there is some sequence, {at}t≥0, that is generated by a rational
of degree k in base b. Furthermore, say that we are told b. The task for our
inference algorithm would be to somehow find r and n such that at is the (t+1)st

term in the base b expansion of r
n . It should be noted that our algorithms are

not required to infer the base! Given this we will generally take b to be 10, since
we’re mainly interested in decimal expansions.

Theorem 3. “Let {at}t≥0 be generated by a rational of degree k in base b.
We can infer {at}t≥0 given at least the first 2k + 1 terms of the sequence.
Furthermore this bound is tight.”

12

2.2 INFERENCE ALGORITHMS 13

Proof. Given in [BBS82] in Theorem 2: Problem 4. �

Since we are mainly interested in decimal expansions of rational numbers,
we will let b = 10 for the remainder of this thesis. It should be noted that the
inference algorithm we provide is applicable to all bases.

The proof of Theorem 3 gives the following algorithm for inferring rational
sequences:

1 : InferRational([a0, a1, . . . , an−1], b)
2 : f = b−(k+1)

∑n
i=1 an−ib

i−1

3 : [c1, c2, . . . , cl] = ContinuedFractionExpansion(f)
4 : for i = 1, 2, . . . , l do
5 : r

n = Convergent([c1, . . . , ci])
6 : if

(
f · bk+1 =

⌊
bk+1 · rn

⌋)
then

7 : return (r, n)
8 :
9 : return FAIL

Figure 2.4: The rational inference algorithm.

2.2.4 Decimal Expansions of Superpositions

We now study a slightly more general class of decimal expansions. This class is
defined by a certain (basis) set of numbers whose decimal expansions are known.
Given a basis, the class will consist of all rational combinations of the elements
in the basis. For example, say we know the decimal expansions of the following
numbers

B =
{
π, e, φ, γ,

√
2
}

(2.12)

our class of sequence will consist of the decimal expansions of all real numbers
of the form

x = c1π + c2e+ c3φ+ c4γ + c5
√

2 (2.13)

where the ci’s are rational.

Definition 6. Let n be a positive integer and let B = {b1, . . . , bn} be an n-
elements subset of Rn. The lattice spanned by B is

L(B) =

{
n∑
i=1

ci · bi | (c1, . . . , cn) ∈ Zn
}

(2.14)

Theorem 4. “Let L ⊆ Rn be a lattice with reduced basis {b1, . . . , bn}. For
every x ∈ L− {~0} we have |b1|2 ≤ 2n−1|x|2.”

Proof. Given in [LLL82] Proposition 1.11. �

[LLL82] also gives an efficient algorithm for transforming a basis into a
reduced basis. We will refer to this algorithm as LLL. For the remainder of this
thesis, we will only need to know that LLL outputs a basis set, {b1, . . . , bn},
such that b1 has the property given in Theorem 4.

13

14 THE EVOLUTIONARY INFERENCE MODEL 2.2

Definition 7. Let B be an independent subset of real numbers and let {at}t≥0

be an integer sequence. We say that {at}t≥0 is generated by B if there are
rationals c1, . . . , cn such that

x =
n∑
i=0

ci · bi =
∞∑
i=1

ai10−i (2.15)

In other words, our sequence is the decimal expansion of x.

Theorem 5. “Let B ⊆ R and let {at}t≥0 be a sequence generated by B. We
can eventually infer {at}t≥0.”

Proof. Since {at}t≥0 is generated by B we know there are integers p1, . . . , pn
and q1, . . . , qn such that

x =
n∑
i=1

pi
qi
· bi (2.16)

If we let M = lcm (q1, . . . , qn) and let ci = M pi

qi
∈ Z then

−M · x+
n∑
i=1

ci · bi = 0 (2.17)

Now say we are given the first t terms of {at}t≥0. We can try to infer our
sequence by using LLL on the following two matrices

Ut =

bb1 · 10tc 1 0 · · · 0
bb2 · 10tc 0 1 · · · 0

...
...

...
. . .

...
bbn · 10tc 0 0 · · · 1

 (2.18)

Vt =

bb1 · 10tc 1 0 · · · 0 0
bb2 · 10tc 0 1 · · · 0 0

...
...

...
. . .

...
...

bbn · 10tc 0 0 · · · 1 0
bxt · 10tc 0 0 · · · 0 1

 (2.19)

Ideally almost all of the vectors in the lattice spanned by the rows of Ut are large.
This should intuitively be true as the bi’s were chosen to be an independent set
of real numbers. On the other hand, the lattice spanned by the rows of Vt should
contain a small vector of the following form that is independent of t.

(∼ 0, c1, c2, . . . , cn,M) (2.20)

If we can find this vector (or some constant multiple of it) we will have success-
fully made an inference. We can get close by using the LLL lattice reduction
algorithm twice. We first run LLL on the rows of Ut giving us the reduced
basis u1, . . . , un. If we let u = u1 and u∗ be the smallest non-zero vector in
L(rows of Ut), then by Theorem 4 we have

|u∗|2 ≤ |u|2 ≤ 2n−1 · |u∗|2 (2.21)

14

2.2 INFERENCE ALGORITHMS 15

We can now run LLL on the rows of Vt to get the reduced basis v1, . . . , vn. If
we now let v = v1 and v∗ be the smallest non-zero vector in L(rows of Vt), then
by Theorem 4 we have

|v∗|2 ≤ |v|2 ≤ 2n · |v∗|2 (2.22)

Now note that every vector in L(rows of Ut) can be made into a vector in the
L(rows of Vt) by appending a 0 to the vector. Also since the bi’s were chosen
to be independent we know that as we get more and more sequence terms (i.e.
as t increases) the size of the vector u∗ will also increase. Empirical results
indicate that this growth is actually very fast, i.e. |u∗| ≈ 2t. Thus if we are
given sufficiently many sequence terms, i.e. t > O(n), we will have

|v∗|2 ≤ |v|2 ≤ 2n · |v∗|2 < |u∗|2 ≤ |u|2 ≤ 2n−1 · |u∗|2 (2.23)

and by transitivity
|v|2 ≤ 2n · |v∗|2 < |u|2 (2.24)

Ideally we would like v = v∗ or at least we would like it to be some constant
multiple of v∗, so we can comfortably make an inference when

2n|v|2 < |u|2 (2.25)

This will eventually happen as u will continue to grow at an exponential rate
while v will not change by much. Once we have a vector v, we can just check that
its last coordinate is non-zero. If this is the case we have successfully inferred
{at}t≥0. �

We state the algorithm given in the proof of Theorem 5 more formally in
Figure 2.5

1 : InferLLLSequence([a0, a1, . . . , an−1], [b1, . . . , bk])
2 : x =

∑n−1
i=0 ai · 10−(i+1)

3 : {u1, . . . , un} = LLLLaticeReduce(Ut)
4 : {v1, . . . , vn} = LLLLaticeReduce(Vt)
5 : if (|v1|2 · 2k < |v1|2) ∧ (v1[n+ 1] 6= 0) then
6 : return v1
7 : else
8 : return FAIL

Figure 2.5: The LLL Inference Algorithm. Note that the matrices Ut and Vt
are defined as in equations 2.18 and 2.19 respectively

We also note that the LLL Inference Algorithm given in Figure 2.5 can be
used to infer sequences other than rational combinations of the elements in our
basis B. We can apply a number of transformation to any sequence we are
given. For example, we can take the logarithm of any any sequence. Thus we
can use this algorithm to also infer decimal expansions of x ∈ R such that

ln(x) =
n∑
i=1

ci · bi (2.26)

for rational ci’s. We can do the same for ex, ln(ln(x)), etc. This property makes
this algorithm very useful in practice.

15

16 THE EVOLUTIONARY INFERENCE MODEL 2.2

2.2.5 Automatic Sequences

We now study the class of automatic sequences.

Definition 8. A partitioned deterministic finite automaton (PDFA) is given by
a six tuple

M = (Q,Σ, δ, q0,∆,F) (2.27)

where Q is a finite set of states, Σ is the input alphabet, ∆ is the output
alphabet, q0 ∈ Q is the start state, δ : Q× Σ→ Q is a transition function, and
F = (Fa ⊆ Q | a ∈ ∆) is a partition of Q with |∆| parts.

Definition 9. LetM = (Q,Σ, δ, q0,∆,F) be a PDFA. For convenience we define
δ∗ : Q× Σ∗ → Q as follows

δ∗(q, ε) = q (2.28)
δ∗(q, σ1) = δ(q, σ1) (2.29)

δ∗(q, σ1σ2 · · ·σn) = δ∗(δ(q, σ1), σ2 · · ·σn) (2.30)

Definition 10. Let M = (Q,Σ, δ, q0,∆,F) be a PDFA. We say M outputs
a ∈ ∆ when run on input s ∈ Σ∗ if and only if δ∗(q0, s) ∈ Fa.

Example. A simple PDFA is given in Figure 2.6. For that PDFA we have
Q = {p, q}, Σ = {0, 1}, δ is defined as shown in the transition diagram in Figure
2.6, q0 = p, ∆ = {0, 1}, and F = (F0 = {p} , F1 = {q}).

?>=<89:;p0
((1

++?>=<89:;q
1

kk 0
vv

Figure 2.6: This is the PDFA that generates the famous Thue-Morse sequence.
The first few terms of the sequence generated by this machine are 0, 1, 1, 0, 1,
0, 0, 1, 1, 0, 0, 1.

Definition 11. Let M = (Q,Σ, δ, q0,∆,F) be a PDFA and let p ∈ Q. We
say the k-behavior of p, denoted JpK, is the sequence generated by the PDFA
M ′ = (Q,Σ, δ, p,∆,F).

Definition 12. Let {at}t≥0 be an integer sequence and let k be a positive
integer. We say that {at}t≥0 is k-automatic if and only if there is a PDFA

M = (Q,Σ, δ, q0,∆,F)

such that Σ = Σk = {0, 1, . . . , k − 1} and for all t ≥ 0

at = δ∗(q0, w) (2.31)

if w ∈ Σ∗ is the reverse base k representation of t.

Definition 13. Let {at}t≥0 be an integer sequence. We define the k-kernel of
{at}t≥0 the set of subsequences

K =
{{
at·ki+j

}
t≥0
| i ≥ 0 and 0 ≤ j < ki

}
(2.32)

For convenience we define Ki,j ∈ K to be
{
at·ki+j

}
t≥0

.

16

2.2 INFERENCE ALGORITHMS 17

Theorem 6. “A sequence is k-automatic if and only if its k-kernel is finite.”

Proof. Given in [AS03] on page 185 Theorem 6.6.2. We present an independent
proof.

Let {at}t≥0 be a k-automatic sequence, as such there is a minimal PDFA
that generates it. Let M = (Q,Σk, δ, q0,∆,F) be this PDFA. The state set of
this PDFA corresponds to the k-kernel of {at}t≥0. To see this remember that
these PDFA take input in reverse base k notation (i.e. least significant digit
first). Thus you can view a transition from a state p to a state q on i ∈ Σk as
subtracting by i and then dividing by k.

?>=<89:;p i
**?>=<89:;q (2.33)

In other words, the jth term in the sequence generated by M with the start state
changed to q, is just going to be the (kj + i)th term in the sequence generated
by M with the start state changed to p. Thus given M we can simply do a
breadth first search on the transition diagram to generated the k-kernel. Since
the k-kernel corresponds naturally to Q we know that it is finite.

To see that the converse is true, let {at}t≥0 be an integer sequence with a
finite k-kernel, K. We now want to build a PDFA that computes the sequence.
First make the k-kernel the state set of our machine, i.e.

Q = K (2.34)

and pick Σk and ∆ =
⋃
t≥0 {at} to be our input and output alphabets respec-

tively. The first thing to note is that {at}t≥0 must be an element of the k kernel.
Choose this to be start state of the machine we are creating, i.e.

q0 = {at}t≥0 (2.35)

Define the transition relation as follows

δ(Ki,j , `) = Ki+1,`·ki+j (2.36)

We finally define our output partition by the first term in the sequence defined
by each element of the k-kernel, i.e. for σ ∈ ∆

Ki,j ∈ Fσ ⇐⇒ aj = σ (2.37)

By construction the k-behavior of each Ki,j ∈ Q will be exactly
{
aki·t+j

}
t≥0

.
Specifically the k-behavior of q0 will be {at}t≥0, which means the given sequence
is k-automatic. �

We can use Theorem 6 to design an algorithm for inferring automatic se-
quences. At a high level the algorithm will simply use the finite initial portion
of a sequence to build an approximation to its k-kernel. We can then use this
approximate k-kernel to build a PDFA. But first let us define let us define our
complexity measure for automatic sequences.

Definition 14. Let {at}t≥0 be an integer sequence and let k, d,m be positive
integers. We say that {at}t≥0 is generated by a PDFA of degree (k, d,m) if
{at}t≥0 is k-automatic and the smallest PDFA that computes it has m states
and an output alphabet of size d.

17

18 THE EVOLUTIONARY INFERENCE MODEL 2.2

Let say some sequence,{at}t≥0, is generated by a PDFA of degree (k, d,m).
Furthermore say that we are given k and d. The task for our inference algorithm
would be to somehow find m along with a m-state PDFA that generates our
sequence. Once we have such a procedure, we can pick d to be the number
of distinct sequence terms seen so far and then we can enumerate all plausible
values of k based on the number of sequence terms we have available at our
disposal.

Lemma 7. “Let M = (Q,Σ, δ, q0,∆,F) be a minimal PDFA. If each σ ∈ ∆
is output by some state, then for any two states the length of the shortest word
that distinguishes them is bounded above by |Q| − |∆|.”

Proof. Disrciminating words for a given machine can be generated by a standard
minimization algorithm based on refining partitions. One can show that any
such algorithm can take at most m− d rounds. Thus our bound follows. �

Theorem 8. “Let {at}t≥0 be generated by a PDFA of degree (k, d,m). We can
infer {at}t≥0 given at least the first k2m−d terms of the sequence. Furthermore,
this bound is tight.”

Proof. We will use the algorithm given in Theorem 6 (stated more formally in
Figure 2.8) to infer {at}t≥0.

Let M be the smallest PDFA that generates {at}t≥0 (it should be noted
that this machine exists and is unique; this can be seen via a simple extension
of the quotient minimization algorithm for DFAs). In the proof of Theorem 6,
we characterized the states of a PDFA to be elements of the k-kernel of the
sequence that the PDFA generated. Thus we will represent the states of the
PDFA we are generating as subsequences of the elements in the k-kernel of
{at}t≥0. In order to discover a state Ki,j we need to have seen at least the jth

term of the sequence.
Now consider a state in M , say qr, that is furthest from the start state, say

it is r transitions away. Since this state is r transitions away, it is going to
correspond to Kr,j in the k-kernel for some j. In general this j can be as large
as kr − 1. This means that in the worst case we will have to see at least the
first kr terms of the sequence to even have a chance of finding all of the states.

Now given that we have enough terms to have potentially discovered every
state, we will need to have seen enough terms to be able to distinguish any two
states (k-kernel elements) from one another. So we will need to see enough terms
of each k-kernel element to be able to tell them apart from one another. This
corresponds exactly to differentiating states by their k-behavior. By Lemma 7
we know that the length of the longest differentiating word is bounded above by
m−d. Since qr could be the state that requires this longest differentiating word
we might need to see a string of length m − d + r; thus requiring at least the
first krkm−d sequence terms. Since we define the transition function by taking
decimations, we will want to be able to have enough terms to distinguish all
decimations of qr. To do this we’re going to need k times as many sequence
terms as we currently have for the k-kernel element corresponding to qr. This
can be achieved by just giving k times as many terms of the original sequence.
Now we can distinguish all the states from one another and soundly check if a
decimated state is a new state by looking at prefixes.

18

2.2 INFERENCE ALGORITHMS 19

•
k−1

))

<k−1

��
•

k−1
))

<k−1

��
•

k−1
))

<k−1

��
•

k−1
))

<k−1

��
•

k−1
))

<k−1

��
•

k−1
))

<k−1

��
•

0,1,...,k−1

��

•
k−1

))

<k−1

��
•

k−1
))

<k−1

��
•

k−1
))

<k−1

��
•

k−1
))

<k−1

��
•

k−1
))

<k−1

��
•

k−1
))

<k−1

��
•

<k−1

��

k−1

ll

Figure 2.7: Lower Bound PDFAs: with m = 7 and d = 4. These two PDFAs
agree for the first k2m−d − 1 = k10 − 1 sequence terms. Note the colors of the
states (red, blue, green, and yellow) indicate the output of a computation that
halts in that state. Also note that the start state in each machine is the state
furthest to the left.

Thus, we finally can conclude that in the worst case we will need to see at
least krkm−dk sequence terms before the correct PDFA can be found. Since r
is bounded above by m− 1 we know that {at}t≥0 can be inferred given at least
the first k2m−d sequence terms.

To see that this bound is tight, consider the two PDFAs in Figure 2.7 as
an example. This example can easily be generalized to show that we always
need at least k2m−d sequence terms to infer a PDFA of degree (k, d,m). Both
machines have Q = {1, . . . ,m} , q0 = 1,∆ = {1, . . . , d} ,Σ = {0, . . . , k − 1}, and
output partition defined by

i ∈ Fd, for 1 ≤ i ≤ m− d (2.38)
(m− d) + i ∈ Fi, for 1 ≤ i ≤ d (2.39)

The transition functions for these machines will be very similar.

δ1(q, i) =
{
q + 1 , if i = k − 1 and q < m
q , otherwise (2.40)

δ2(q, i) =

 q + 1 , if i = k − 1 and q < m
1 , if i = k − 1 and q = m
q , otherwise

(2.41)

One can easily verify that these two machines will agree for the first k2d−m − 1
sequence terms (i.e. all 0 ≤ t < k2d−m − 1). Thus we will need at least k2d−m

sequence terms in order to tell them apart. �

We can use the algorithm given in Theorem 8, stated more formally in Figure
2.8, as our inference algorithm for automatic sequences.

2.2.6 Turing Machines

The most general class we study is the class of algorithmically generated integer
sequences.

19

20 THE EVOLUTIONARY INFERENCE MODEL 2.2

1 : InferAutomaticSequence([a0, a1, . . . , an−1], k)
2 : Σ = {0, 1, . . . , k − 1}
3 : ∆ =

⋃n−1
i=0 {ai}

4 : F = (Fa = {} | a ∈ ∆)
5 : A = [a0, a1, . . . , an−1]
6 : Q = K = {A}
7 : while (Q is not empty) do
8 : pick some X ∈ Q
9 : FX[0] = FX[0] ∪ {X}

10 : Q = Q− {X}
11 : for i = 0, 1, . . . , k − 1 do
12 : D = Decimate(X, k, i)
13 : δ(X, i) = D
14 : if D 6∈ K then
15 : K = K ∪ {D}
16 : Q = Q ∪ {D}
17 :
18 : return (K,Σ, A, δ,∆,F)
19 :
20 : Decimate([a0, a1, . . . , an−1], k, i)
21 : return [ai, ak+i, a2k+i, . . .]

Figure 2.8: The automatic sequence inference algorithm.

Definition 15. We say that a sequence, {at}t≥0, is generated by a Turing
Machine of degree k, if there is a k-state Turning Machine that on input t ∈ N
halts and outputs at for all t ≥ 0.

We now give an impossibility result that suggests that this class of sequences
cannot be inferred in general. In other words, even if we are told a particular
sequence is in this class has a certain degree we can never be sure of any hy-
pothesis we infer regardless of how many sequence terms were used to make the
hypothesis.

Definition 16. They Busy-Beaver function, β : N→ N, is defined such that for
every positive integer n, β(n) is equal to the maximum unary output a Turning
Machine on n states can print given that it halts.

Fact 9. For any increasing computable function f : N → N there is an n ∈ N
such that f(n) ≤ β(n).

Definition 17. Let F : N→ N be the function on input k outputs the minimum
number of sequence terms any inference algorithm needs to see before it can infer
any sequence generated by a Turing Machine of degree k.

Theorem 10. “F is not computable.”

Proof. For sake of contradiction assume that F is computable and let n be a
positive integer . Now let Bn be a n-state busy beaver champion, i.e. let Bn be
a n state Turing Machine that outputs β(n) in unary when run on the empty

20

2.3 CONFIDENCE FUNCTIONS 21

tape. Consider the following Turing Machine sequence with Bn hard coded as
follows:

1 : A(t)
2 : m = Bn() + 1
3 : if t ≤ m then
4 : return 0
5 : else
6 : return 1

This sequence can be implemented in the Turing Machine model using n + c
states for some positive integer c (we need n states for hard-coding Bn and
the remaining c states are needed for the rest of the procedure). We now note
that this sequence cannot be distinguished from the zero sequence, {0}t≥0, until
we have seen more than the first β(n) + 1 sequence terms. Specifically we can
conclude that

F (n+ c) > β(n) (2.42)

Since we assumed F is computable we know that g : N→ N given by

g(n) = F (n+ c) (2.43)

is also computable. As n was arbitrary we can conclude that for any positive
integer n

g(n) > β(n) (2.44)

which is of course a contradiction to Fact 9 (since F is clearly an increasing
function). Thus F is not computable. �

This result suggests that even if an inference algorithm exists for this class,
its output cannot be trusted since we couldn’t even compute how many sequence
terms we would have needed to give the algorithm for it to have been able to
successful make an inference of degree k.

2.3 Confidence Functions

The Evolutionary Inference Model uses confidence functions to decide when to
output a particular hypothesis. Confidence functions are meant to answer the
following fundamental question:

How confident am I that I have seen enough sequence terms?

In the previous section, we gave many inference algorithms with bounds on the
number of sequence terms they need to see before they are guaranteed to con-
verge to the correct inference. What’s hiding behind each of these guarantees is
the assumption that the particular sequence you are looking at is in your con-
cept class and you can bound its degree. This assumption is very fundamental
to the nature of inference algorithms since we have good evidence to suggest
that it is very unlikely for there to be an efficient inference algorithm for in-
ferring an arbitrary algorithmically generated integer sequence (Theorem 10).
This should intuitively be the case given the theory pseudo-randomness. For
example, sequences generated by the x2 mod N generator are a proper subset
of the all algorithmically generated integer sequences, but as shown in [BBS82],

21

22 THE EVOLUTIONARY INFERENCE MODEL 2.3

this class of sequences should not be inferable under standard cryptographic
assumptions. We use confidence functions in our model to pay for the fact that
inference algorithms need to make this computational assumption.

Definition 18. Let S be a concept class and let C : S×N→ [0, 1]. We say that
C is a confidence function for class S provided C has the following properties:

Property 1 (Monotonicity). Say we make some hypothesis, {ht}t≥0 ∈ S, at
some time t and we’ve kept this hypothesis until some time t′ > t, then

C({ht}t≥0 , t
′) ≥ C({ht}t≥0 , t)

In other words, our confidence in a hypothesis cannot decrease until we’ve found
a counterexample to the hypothesis.

Property 2 (Convergence). Say we make some hypothesis, {ht}t≥0 ∈ S, at
some time t0 and this hypothesis actually does generate the input sequence.
Then our confidence in this hypothesis should tend to 1 as t tends to infinity.
More formally

lim
t→∞

C({ht}t≥0 , t0 + t) = 1

A simple confidence function with these properties is the fraction of sequence
terms that have been used to check our current hypothesis. We can define this
simple confidence function for all of our inference classes, since we can always
keep track of when we made our current hypothesis in the EvolutionaryInfer-
ence procedure. Furthermore we have have theorems for each of our inference
classes (besides superpositions) that tells us how many sequence terms we need
to have seen to have any confidence in our current hypothesis given that it is of
a certain degree. These theorems let us define a function, fS(k), that tells us the
minimum number of sequence terms we need to see before we can successfully
infer any {at}t≥0 ∈ S of degree k. We summarize this information in the Figure
2.9 for the inference algorithms given in the previous section.

Concept Class (S) Degree Measure fS
Polynomials k k + 1

Linear Recurrences k 2k
Rationals k 2k + 1

Automatic Sequences (k, d,m) k2m−d

Figure 2.9: Summary of the bounds proven in the previous section for the
number of sequence terms each of our algorithms needs to see before it can
successfully infer any sequence in the concept class of a certain degree.

We can uses these functions to define the following confidence function

CS({ht}t≥0 , t) =
(t+ 1)− fS(k)

t+ 1
(2.45)

where {ht}t≥0 ∈ S and has degree k. This family of confidence functions clearly
has both of the properties that we wanted. It is monotonic since if {ht}t≥0

doesn’t change, neither does it’s degree. So as t increases so will CS({ht}t≥0).

22

2.3 CONFIDENCE FUNCTIONS 23

It converges to 1 when the correct hypothesis has been found since the degree
stops increasing while t continues to grow.

If we would like to have a confidence of 1 − ε in some hypothesis of degree
k, then we will need to run EvolutionaryInference for

t >
1
ε
· fS(k)− 1 (2.46)

time steps. This family of confidence function seems to work well in practice,
but it is by no means resistant to an adversary. Consider polynomial sequences.
For any ε > 0 that we pick an adversary can give us the sequence defined by
the following polynomial

p(x) =
m∏
i=0

(x− i) (2.47)

where m =
⌈

1
ε (k + 1) + 1

⌉
. This sequence will be indistinguishable from the

zero sequence until we have at least its first m+ 1 terms, but before t can reach
m we will have already become sufficiently confident in our hypothesis that this
is the zero sequence. Similar adversarial sequences can be found for our other
concept classes. Two very compelling open problems that have come out of this
research in confidence functions:

Open Problem 1. What additional properties do we want confidence functions
to have?

Open Problem 2. Are there confidence functions that can perform better
against an adversary?

Good answers to these question could improve the performance of our model
but a huge factor.

23

24 THE EVOLUTIONARY INFERENCE MODEL 2.3

24

Chapter 3

The On-Line Encyclopedia
of Integer Sequences

We evaluate the quality of our model by using the data in Sloane’s On-Line
Encyclopedia of Integer Sequences [Slo]. This is a truly wonderful resource that
contains sequences that have come up in the course of academic research. You
can think of this database as containing the set of “interesting sequences.” For
example, there is an entry for the Busy-Beaver sequence, the sequence of stops
the A train makes in New York City, the Collatz sequence, etc.

As you may have already guessed most of the sequences in this database
should be fairly difficult, if not impossible, to infer using the techniques we have
outlined in this work. In fact the task of inferring these sequences is sometimes
isomorphic to some of the most difficult open problem in modern mathematics:
for example consider sequence A001359 which is the sequence whose tth term is
the smaller prime in the tth twin prime pair. Successfully inferring this sequence
would solve the Twin Prime Conjecture.

3.1 Inferring OEIS

The task of inferring the sequences catalogued in the On-Line Encyclopedia of
Integer Sequences is a bit different than the inference tasks discussed in Chapter
2. For obvious reasons, we are only given access to about the first 100-200 terms
of each sequence catalogued in the OEIS. Given this restriction we never return
from EvolutionaryInference until we have seen all of the sequence terms we
are given. We output a hypothesis only if it is consistient with all of the sequence
terms we are given and if we have checked the hypothesis on at least a couple
of sequence terms.

So far our methods have been able to infer about 18.934 % of the sequence
cataloged in the On-Line Encyclopedia of Integer Sequences. A vast majority of
these inferences are made with confidence far exceeding 50 %, i.e. they’ve been
checked on at least half of the sequence terms available to us. A brief summary
of our results is given in Figure 3.1.

25

26 THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES 3.2

Concept Class Number Inferred Percent Inferred
Polynomial 4908 2.803 %

Linear Recurrence 29366 16.769 %
Decimal Expansions (Rationals) 1871 1.068 %

Decimal Expansions (LLL) 2352 1.343 %
Automatic Sequences 1828 1.043 %

Total 33157 18.934 %

Figure 3.1: Inference statistics as of April 30, 2010 when the database had
175117 integer sequences. An overwhelming majority of these inferences are
made with confidence far exceeding 50%.

3.2 Our Web Service

In the same spirit as the OEIS, we have published our own service for inferring
integer sequences on the web. It can be viewed at

atemi.cdm.cs.cmu.edu/∼samt/sequences.html.

At this website you can input a sequence and see how well each of our inference
algorithms does trying to infer it. It is our hope that this service can be a good
complement to Sloane’s OEIS.

Figure 3.2: Our integer sequence inference service inferring the all 1s sequence.

26

http://atemi.cdm.cs.cmu.edu/~samt/sequences.html

Chapter 4

Future Work

4.1 Inference Algorithms

There is much more work to be done when it comes to finding more inference
algorithms. We think that we have just begun to scratch the surface in this
thesis. The following concept classes would be good candidates for new inference
algorithms:

• k-Regular Sequences: See [AS03] chapter 16.

• Algebraic Numbers: We have an inference algorithm for these using LLL
lattice reduction, but the problem is that it gives hypotheses that are
polynomials. So we have no way of checking these hypothesis on future
terms as required by line 5 of EvolutionaryInference, see Figure 2.1. Is
there a way around this?

• Piecewise Linear Recurrences: such as the sequence

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . . (4.1)

Most humans can infer this sequence (as shown in [Ang74]) though the
methods given in Chapter 2 are unsuccessful here. We do have a method
for inferring these types of sequence; though this method needs far too
many sequence terms. Thus it is not pratical. This method involves
trying to break the sequence into parts, such as

|1|1, 2|1, 2, 3|1, 2, 3, 4|1, 2, 3, 4, 5| . . . (4.2)

and then trying to infer a general for for making each of the parts. Here
the rule is the ith part will just contain the first i terms of the identity
function.

Another interesting problem is trying to characterize the set of sequences that
can be efficiently inferred. One may be able to make some progress on this prob-
lem by exploring primitive recursive functions or LOOP programs. In general
these concept classes should not be efficiently inferable, though some interesting
subsets of them may be. For example, consider LOOP programs in which nested
loops are disallowed.

27

28 FUTURE WORK 4.2

4.2 Confidence Functions

Confidence functions present many compelling open problems. We would first
like to come up with more properties that these functions should have. So
far as I can tell one should be able to do much better than simply asking for
monotonicity and convergence. We would then like to come up with confidence
functions that are more resistant to adversarial attack. By comparison, the
confidence functions we gave in Chapter 2 perform very poorly in this regard.

In our research we have come up with a couple of approaches to these two
problems. Our approaches have generally involved making confidence functions
much more dependent on the properties of the concept class they are associated
with. For example, let us consider the linear recurrence concept class. The
inference algorithm given for this class in Figure 2.3 requires solving a matrix
equation. The matrix used in this equation is

a0 a1 · · · ak−1

a1 a2 · · · ak
...

...
. . .

...
ak−1 ak · · · a2k−2

 (4.3)

Intuitively, unless we’re given an adversarial sequence, the first 2k−1 terms of a
linear recurrence of degree k should look fairly chaotic. If we make the assump-
tion that these terms are “random,” then we could use the tools of probability to
determine that the matrix above will have full rank with high probability. Thus
a very high degree inference will be make, and in all likelihood this inference
will fail to predict the next sequence term since it too is “random.” For the
class of linear recurrences, this intuition suggests that the marginal confidence
gained by checking our inference on a single sequence term should adhere to the
diminishing returns property. In other words, checking the hypothesis on just
one sequence term should give us a lot of confidence since if the sequence was
not linear recurrent we would most likely get a nonsensical high degree hypoth-
esis. Furthermore, any additional check terms to give us less and less additional
confidence.

Of course the downside of the diminishing returns property is that an adver-
sary can take much more advantage of us now since we will become confident
in hypothesis faster. One can try to get a handle on this problem by only in-
creasing our confidence at certain times. For example, say the sequence of times
that our previous hypotheses have failed is pretty regular. Say each hypothesis
we’ve made so far has worked for four time steps and then failed on the fifth.
In this case we would not start increasing our confidence in any hypothesis we
get in the future until we see our hypothesis validated on five check terms. This
can be generalized by trying to infer the sequence of times that our hypothesis
have failed, and then not increasing confidence until the time we predict our
hypothesis will fail. If we have a very high confidence in our inference of the
failure sequence, then this technique could yield the result we desire since it
would slow down the rate at which we increase our confidence. Combining this
with the diminishing returns property outlined above, we could have a very use-
ful confidence function for linear recurrence. Unfortunately, we have not been
able to make the notion of inferring the failure sequence percise so there is still
some work left to be done. If we can get past this hurdle we would have a very

28

4.3 APPLICATIONS 29

useful confidence function for linear recurrences.

4.3 Applications

Inductive Inference has a wide array of applications. Good applications should
have two fundamental properties. The first property is that there cannot be any
error in the sequence that is fed to our inference algorithm. So a good application
should only feed our model error-free data. The second property is that the
application should need some sort of an exact answer, i.e. approximations are
not good enough for these applications. We will now briefly touch on two such
application to give you a flavor of the problems that inductive inference can be
used to solve.

4.3.1 Finding Exact Roots of a Function

Our first application falls in the realm of Numerical Analysis. Say we are given
some function f : R→ R and we are asked to find a root of f , i.e. some x ∈ R
such that f(x) = 0. There are currently many well known methods for find-
ing successively better approximations to a root of f . Newton’s Method is one
of the most widely used such algorithms. But what if approximations are not
good enough? What if we need an exact root. We can use EvolutionaryIn-
ference along with our decimal expansion inference algorithm to try to find
an exact root. At a high level we will use Newton’s Method to get better and
better approximations to a root, i.e. Newton’s method can always be used to
to get another digit of the decimal expansion of an exact root. We can then
feed the sequence defined by the approximate decimal expansion of the root to
EvolutionaryInference. If the exact root happens to be in our concept class
of decimal expansions, we will eventually be able to infer it given a sufficiently
many terms of its decimal expansion. Once we have made an inference we can
always plug it back into the given function to confirm if it is indeed an exact
root (though this computation might have to be symbolic rather numerical).

We believe similar methods can be used to make an attempt at getting an
exact answers to problems that we can get successively better approximations to.
As such we believe that there are many other similar applications of inductive
inference.

4.3.2 A Novel Spreadsheet Programming Interface

Our second application falls in the realm of Human-Computer Interaction. In
current spreadsheet applications, such as Microsoft Excel, the user is forced to
do a lot of cumbersome and repetitive work. Spreadsheets are much better than
they used to be, but we think they can be improved with the use of inductive
inference; especially for users who are less familiar with computer programming.

Consider the problem of trying to multiply two matrices that are given in a
spreadsheet, see Figure 4.1. Say a user is using the standard matrix multipli-
cation algorithm in a spreadsheet. For example, as seen in Figure 4.1, the user
computes entry (1, J) in the product matrix by inputting the following formula
into row (1 ,J)

= (A1 ∗ E1) + (B1 ∗ E2) + (C1 ∗ E3) (4.4)

29

30 FUTURE WORK 4.3

Say the user does this for the first row and a bit of the second row of the
product matrix. An overseer program can look at the user’s input and turn it
into a sequence that indicates the users actions. Then our inference procedure
can be used to predict the users future actions, i.e. how the user would have
computed the remaining terms of the product matrix. Given this inference the
overseer program can prompt the user for permission to finish off the rest of his
computation for him. If the user gives their consent, then the overseer program
will fill in the rest of the product matrix. Furthermore, the overseer program
can remember the procedure it inferred and then let the user use it in the future.
A properly implemented system like this could make the experience of using a
spreadsheet more efficient and enjoyable for the user. In this manner, a user that
is not very familiar with computer programming can “program” a spreadsheet
to compute some simple procedure for them.

A B C D E F G H I J K L M
1 1 0 0 3 2 1 1 3 2 1 1
2 0 0 1 4 0 1 2 = 7 2 8 1
3 - - - 7 2 8 1

Figure 4.1: An example of matrix multiplication. If the user has shown us how
to get the first row of the product matrix an overseeing inference algorithm
should be able to learn the procedure that the user is using to multiply two
matrices and then store this procedure. In the future the user should be able
to ask the spreadsheet to multiply any two matrices.

30

References

[Ang74] Dana Angluin. Easily Inferred Sequences. Technical report, University
of California at Berkeley, Department of EECS, 1974.

[AS83] Dana Angluin and Carl H. Smith. Inductive Inference: Theory and
Methods. ACM Computing Surveys, 1983.

[AS03] Jean-Paul Allouche and Jeffrey Shallit. Automatic Sequences: The-
ory, Applications, Generalizations. Cambridge University Press, first
edition, 2003.

[BBS82] Lenore Blum, Manuel Blum, and Michael Shub. Comparison of
Two Pseudo-Random Number Generators. Advances in Cryptology-
Proceedings of Crypto ’82, 1982.

[Gol67] Mark E. Gold. Language Identification in the Limit. Information and
Control, 1967.

[Knu97] Donald E. Knuth. Art of Computer Programming, Volume 2: Seminu-
merical Algorithms. Addison-Wesley Professional, third edition, 1997.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring Polynomials
with Rational Coefficients. Mathematische Annalen, 1982.

[Slo] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences.
http://www.research.att.com/njas/sequences/.

[Wil94] Herbert S. Wilf. generatingfunctionology. Academic Press, second
edition, 1994.

31

	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 The Evolutionary Inference Model
	2.1 The Model
	2.2 Inference Algorithms
	2.2.1 Polynomials
	2.2.2 Linear Recurrences
	2.2.3 Decimal Expansions of Rational Numbers
	2.2.4 Decimal Expansions of Superpositions
	2.2.5 Automatic Sequences
	2.2.6 Turing Machines

	2.3 Confidence Functions

	3 The On-Line Encyclopedia of Integer Sequences
	3.1 Inferring OEIS
	3.2 Our Web Service

	4 Future Work
	4.1 Inference Algorithms
	4.2 Confidence Functions
	4.3 Applications
	4.3.1 Finding Exact Roots of a Function
	4.3.2 A Novel Spreadsheet Programming Interface

	References

