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On the Topology of Discrete Planning with Uncertainty

Michael Erdmann

Abstract. This chapter explores the topology of planning with uncertainty
in discrete spaces. The chapter defines the strategy complex of a finite discrete
graph as the collection of all plans for accomplishing all tasks specified by
goal states in the graph. Transitions in the graph may be nondeterministic or
stochastic. One key result is that a system can attain any state in its graph
despite control uncertainty if and only if its strategy complex is homotopic to
a sphere of dimension two less than the number of states in the graph.

1. Planning with Uncertainty in Robotics

The goal of Robotics is to animate the inanimate, so as to endow machines
with the ability to act purposefully in the world. Roboticists, working in the sub-
field of planning, create software by which robots reason about future outcomes of
potential actions. Using such planning software, robots combine individual actions
into collections that together accomplish particular tasks in the world [29, 30].

Two fundamental and intertwined issues confound this seemingly straightfor-
ward approach. One is world complexity, the other is uncertainty.

1.1. Discrete Modeling. Modeling a seemingly continuous world with finite
discrete symbols is a well-known problem at the heart of algorithmic computability
[32, 49]. Practical robotics largely avoids the uncomputability questions by focus-
ing on fixed levels of granularity deemed to be appropriate for the robot tasks at
hand. The ensuing models may take the form of a priori shape families for describ-
ing the objects that a robot might encounter [33, 16], commensurate geometric
representations of sensor data (e.g., visual, tactile, proprioceptive, auditory, laser)
[45, 34, 13, 38, 5, 31], and partitions of configuration or control space into re-
gions within which the dynamics of interaction are invariant [50, 9]. For instance,
in [12] two robot palms manipulate objects based on prior geometric models of
the objects and their frictional contact mechanics. A robot planner subdivides the
configuration space of the palms and the object being manipulated into volumes
within which the relative sliding motions at the contacts have invariant sign. These
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volumes form the states in a discrete graph whose edges represent connectivity as
a function of changing palm orientations. The planner constructs a strategy for
reorienting the object by searching this graph for a path leading from the object’s
initial configuration to some desired final configuration.

1.2. Uncertainty. Uncertainty arises in modeling, control, and sensing. Mod-
els are inaccurate, control is errorful, and sensors are noisy. Despite uncertainty,
roboticists seek to create planners that allow robots to operate purposefully and
successfully in the world. The preimage methodology of [35] describes a general ap-
proach for planning in the presence of control and sensing uncertainty, generalized
to model uncertainty in [11]. Specialized to physical systems, the planners often
take the form of discrete graph searches. The states in these graphs need not simply
be the configurations of the physical system. Instead, the graph states represent
the information available to the robot at any given instant during plan execution
[30, 6]. For instance, a common task in manufacturing systems is to reduce the
entropy of small parts. These parts arrive in large numbers, jumbled together. An
automatic system must orient and localize each part, so a robot can then, with
little or no sensing, pick up the part and assemble it onto some product. The
SONY SMART system [43] is a wonderful real world example. The robot systems
described in [15, 46, 24] show how to construct planners for similar tasks, using
the mechanics of the problem to reduce uncertainty. Each discrete state within
the graphs for these planners is in fact a collection of underlying contact states,
describing the extent to which the system has localized a part at runtime. Thus
sensing uncertainty contributes to the definition of state.

As the previous discussion suggests, uncertainty and granularity are inter-
twined. A coarse world model produces relative certainty at the expense of ex-
pressive power. A coarse controller reduces search branching factors at the expense
of local motion precision. A coarse sensor reduces hardware requirements at the
expense of instantaneous localization. Tradeoffs between different levels of granu-
larity and uncertainty are possible. Sequences of accurate motions may be traded
for careful sensing in orienting parts, for instance. An open question is fine-tuning
such tradeoffs so as to optimize system capabilities. It is a problem merely to
describe these tradeoffs precisely.

1.3. Planners. There are two basic modes by which planners generate plans.
In backchaining, a planner starts from a desired goal (possibly a set of configurations
in some state space). The planner determines one or more actions (e.g., robot
motions) that achieve the goal directly. The preconditions to those actions (e.g.,
the initial configurations of motions leading to the goal) combined with the original
goal, then define a new subgoal. The planner repeats this process until it produces a
subgoal that includes the current configuration of the system or until it determines
that no such subgoal exists. The set of actions produced by this process constitutes
a plan for attaining the original goal from the current configuration, and in fact,
from any configuration satisfying the preconditions of any of the actions.

In forward-chaining, the planner starts from the current configuration. The
planner determines the outcomes of all possible actions whose preconditions are
currently satisfied. Then the planner repeats this process starting from each of the
outcomes just determined, and so forth, until it produces a frontier of outcomes
that satisfies the goal conditions or determines that the goal cannot be attained.
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There exist numerous variations of these basic modes, for instance, simultaneously
forward-chaining and backchaining [4, 3, 30].

1.4. Collections of Plans. Whatever the precise planning process, the result
of planning is a plan for attaining some particular goal, perhaps from some par-
ticular initial configuration. Often when planning with robots, such unique plans
are all one needs. In manufacturing, for instance, one may only need to know how
to assemble, not disassemble. Yet, in principle, one could run the planner for all
possible goals that are describable, not just those one explicitly needs. Doing so
would reveal global system capabilities.

Plans fit together like jigsaw pieces. One can remove an action from a particular
plan and obtain a new plan, with perhaps a slightly different goal. Sometimes one
can add an action to a given plan, perhaps as a redundant backup, without changing
the plan’s outcomes. In other cases, adding an action might change the possible
outcomes, possibly creating an infinite loop. By studying this jigsaw puzzle one
gains insight into the dependence of a system’s capabilities on design choices.

Moving up a level, one may thus view any one system as a point in a larger
design space. If one understands the capabilities of a system and how those capa-
bilities change when one alters the underlying system model, available actions, or
sensing capabilities, one can begin to address the granularity tradeoffs mentioned
earlier. For instance, in a directed graph one can readily decide whether the graph
is strongly connected [1], modifying it accordingly if one desires different connec-
tivity. No such straightforward tools exist currently for describing the capabilities
of uncertain systems. This chapter proposes methods to help fill that deficit.

1.5. Topology of Plans. The aim of this chapter is to explore the topology
of the collection of all plans that exist for an uncertain system and in so doing to
characterize the system’s capabilities. The many robotics results Ghrist found via
algebraic topology [10, 22, 20, 21] motivate this exploration.

Our exploration focuses on systems that may be modeled as finite discrete
spaces. As discussed, the states in such discrete spaces may represent fairly compli-
cated system properties, so the tools presented here should have broad applicability.
The core of this work has appeared previously as a robotics paper [14]. This chapter
expands the topological perspective, generalizing several of the earlier results.

Beyond robotics applications, the research presented here is inspired topologi-
cally by the study of the collection of all partial orders on n items [8, 26, 27]. Two
types of uncertain actions appear in this chapter, nondeterministic and stochastic.
In the nondeterministic setting, as the earlier description of backchaining suggests,
one may view a single plan as a particular partial order on a system’s state space.
When executing the plan, the system will visit states in some order consistent with
this partial order. There will never be any cycling and the system will eventually
wind up at the goal.

The collection of all plans is therefore related to the collection of all partial
orders on the state space. A difference between our work and previous work is
that the primitive motions in our collection of plans are nondeterministic actions
rather than directed edges, producing slightly more complicated primitive partial
orders (called atoms in the language of partial orders) than the single comparators
{x > y} that directed edges produce. By allowing these additional types of atoms,
one can generate homotopy types of any finite simplicial complex, not just the
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spheres and points that are possible when atoms are single comparators [26]. From
that perspective, nondeterministic planning is a natural “physical” realization of
simplicial complexes, and, indeed, is forced upon us as soon as motions in a graph
become uncertain or adversarial. In the stochastic setting, one cannot necessarily
think of a plan as defining a partial order in the manner just described. The
system may cycle between states. However, as long as cycling is transient, one may
again view a plan as defining a stochastic ordering based on reachable states and
convergence times.

The connection between planning and simplicial complexes holds categorically
as well. The complexes defined in this chapter may be viewed, homeomorphically, as
the classifying spaces of various planning categories, related to the forward-chaining
and backchaining planners described earlier.

1.6. Chapter Outline. Section 2 introduces nondeterministic graphs and
their strategy complexes. Section 3 introduces loopback complexes, using these
to characterize goal attainability. Section 4 introduces stochastic graphs and their
strategy complexes. Section 5 characterizes full controllability by the existence of
a certain sphere, homotopically. Section 6 introduces source and dual complexes,
indicating how these are useful for design and in assessing adversarial capabilities.
Section 7 shows how a strategy complex factors into a part modeling full control-
lability on subgraphs and a part modeling obstructions to controllability. Section
8 examines the topology of links of actions. Section 9 develops a topological test
to decide whether a set of actions is essential for accomplishing a goal. Section 10
uses decision trees to reveal further structure in loopback complexes. Section 11
examines the categorical foundations of strategy complexes and source complexes.
Section 12 ends the chapter with a brief discussion.

2. Nondeterministic Graphs and Strategy Complexes

2.1. Nondeterministic Graphs. We model systems with uncertainty using
discrete states and discrete actions with multiple outcomes. As suggested by the
earlier robotics examples, a state may encapsulate not just the configuration of
the robot but also the information known to the robot at runtime, such as that
provided by sensors. Actions at a state represent the control choices available to
the robot. The outcomes of an action describe the various state changes possible
upon execution of that action. Following [14], we make the following definitions:

Definition 2.1. A nondeterministic graph G = (V,A) is a set of states V and
a collection of (nondeterministic) actions A. V is also known as G’s state space.
Each A ∈ A consists of a source state v and a nonempty set T of targets, with v ∈ V
and T ⊆ V . We may write action A as v→T . If T consists of a single state, A is
also said to be deterministic. In that case, with T = {u}, we may write A more
simply as v→u. All graphs in this chapter are finite.

Interpretation: Action A may be executed whenever the system is at state
v. When action A is executed, the system moves from state v to one of the target
states in T . If T contains multiple targets, the precise target attained is not known
to the system before executing A, but is known after. Different execution instances
of action A could attain different target states within T . (For instance, nature
might choose a different target.) In order to model worst-case behaviors, we may
imagine a potentially malevolent adversary who chooses the precise target attained.
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Figure 1. Three actions with source state 1. One action is a
deterministic transition, with target state 6. The other two actions
are both nondeterministic, one with targets {2, 3, 4}, the other with
targets {4, 5}.

Remarks 2.2. (1) Distinct actions may have the same source state and over-
lapping or identical target sets. (2) In particular, distinct actions may have the
same written representation v → T . (3) A nondeterministic graph in which each
action is deterministic and no two actions have the same written representation is
equivalent to a standard directed graph. (4) We allow the null graph, (∅, ∅).

Example 2.3. In figures, we will draw an action v→T as a possibly bifurcated
directed arrow from v to T . For example, Figure 1 shows three actions, each with
source state 1, with different target sets. The written representations of these
actions are 1→6, 1→{2, 3, 4}, and 1→{4, 5}.

2.2. Simplicial Complexes. Throughout this chapter we use the following
definition of simplicial complex:

Definition 2.4. An (abstract) simplicial complex Σ with underlying vertex set
X is a collection of finite subsets of X, such that if σ is in Σ then so is every
subset of σ (including the empty set ∅). The elements of Σ are simplices. We refer
both to the elements of a simplex and to singleton simplices as vertices. Although
traditionally many authors require that every element of X appear as a vertex in Σ,
we do not impose this requirement. This broader definition is useful for modeling
systems in which underlying states may or may not satisfy some monotone Boolean
property. The set of vertices that actually appear in Σ is denoted by Σ(0), called
the zero-skeleton of Σ. The dimension of a simplex is one less than its cardinality.
All simplicial complexes and underlying vertex sets in this chapter are finite.

Definition 2.5. The simplicial complex consisting solely of the empty simplex
is the empty complex. The simplicial complex consisting of no simplices is the void
complex [27].

Remark 2.6. Every nonvoid finite abstract simplicial complex has a geometric
realization in some finite-dimensional Euclidean space with relative topology the
same as its weak/polytope topology [37]. Thus we may view any such complex as
a topological space. The empty complex corresponds to the empty space. We also
think of it as S

−1, the sphere of dimension −1. The void complex does not seem
to have such a nice topological interpretation, but is nonetheless convenient com-
binatorially. Viewing simplicial complexes as monotone Boolean functions which
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are True for subsets of the underlying vertex set outside the complex, the void
complex represents the constant function True. The void complex is considered
to be contractible. This is consistent with viewing the void complex as a collapse
of any complex {∅, {v}} that represents a single point v.

Definition 2.7. Suppose Σ and Γ are simplicial complexes with disjoint un-
derlying vertex sets. The simplicial join [47] of Σ and Γ is the simplicial complex

Σ ∗ Γ = {σ ∪ γ | σ ∈ Σ and γ ∈ Γ}.
The underlying vertex set of Σ ∗ Γ is the union of the underlying (disjoint) vertex
sets of Σ and Γ.

2.3. Strategy Complexes Arising From Nondeterministic Graphs. We
will define a simplicial complex for modeling the space of all plans on a nondeter-
ministic graph. As the discussion of Section 1 suggests, we view a plan as a type
of control law, that specifies what action the system should execute when it finds
itself in a given state. Executing the plan should move the system from its current
state to some desired state or set of states. In a nondeterministic graph, the result
is a partial order on the system’s state space. For this reason, we draw many of
our techniques from [8, 26, 27].

We make one variation to the previous plan structure: We allow a plan to
specify multiple possible actions at a given state. One may view multiple actions
as additional permissible nondeterminism. At runtime, the system can execute any
of the actions available at its current state or even leave the choice to an adversary.
To emphasize this distinction from traditional plans and control laws, we generally
speak of strategies. We capture the essence of a strategy via the following definitions:

Definition 2.8. Suppose G = (V,A) is a nondeterministic graph and A ⊆ A is
some set of actions. We say A contains a circuit if A contains a sequence of actions
v1 → T1, . . . , vk → Tk, such that vi+1 ∈ Ti, for i = 1, . . . , k, with k ≥ 1 and k + 1
meaning 1. We say A converges or is convergent if A does not contain a circuit.

If A contains a circuit, then an adversary could select action transitions to keep
the system looping forever within the directed cycle {v1, . . . , vk}, so we would not
want to view A as a strategy. If A converges, then we may view A as a strategy.

Definition 2.9. Suppose G = (V,A) is a nondeterministic graph, with V 	= ∅.
The strategy complex of G, denoted ΔG, is the simplicial complex with underlying
vertex set A whose simplices are all the convergent subsets A of A. Every simplex
of ΔG is a (nondeterministic) strategy. If V = ∅, we let ΔG be the void complex.

Remarks 2.10. (1) If V is nonempty, then ΔG always contains the empty
simplex. Intuitively, the empty simplex represents the strategy “Do Not Move”.
(2) A nondeterministic action v→T with a self-loop, meaning v ∈ T , cannot appear
in any strategy/simplex. (3) As outlined earlier, we view each strategy as a type
of control law. In particular, to say that a system executes strategy σ means the
following: Suppose the current state of the system is v. Strategy σ may contain
zero, one, or several actions with source v. The system stops moving precisely when
σ contains no action with source v. Otherwise, the system must execute some action
v→T ∈ σ. If there are several such actions, the strategy leaves open the method
for choosing between those actions. From a worst-case perspective, an adversary
may make the choice. Upon execution of action v→T , the system finds itself at one
of the targets t ∈ T . The process repeats, with t the system’s new current state.
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Figure 2. A directed graph and its associated strategy complex.

Example 2.11. Figure 2 shows a standard directed graph along with its strat-
egy complex. There are four directed edges in the graph, each representing a deter-
ministic action. The strategy complex therefore could be as large as the complex
generated by a tetrahedron. However, the two actions 1→ 2 and 2→ 1 together
contain a circuit. Consequently, the strategy complex is actually generated by two
triangles touching at an edge.

We may interpret each of the simplices in the resulting strategy complex as
a strategy for accomplishing some goal, much like a traditional control law. For
instance, the edge {1→2, 2→3} represents the control law:

– When at state 1, execute the action 1→2.
– When at state 2, execute the action 2→3.
– Otherwise, stop moving.

Together, the two actions 1→ 2 and 2→ 3 constitute a strategy for attaining
state 3 from anywhere in the graph.

The triangle {1→ 2, 1→ 3, 2→ 3} represents another strategy for attaining
state 3 from anywhere in the graph. It happens to have two actions with source
1, indicating a purposeful disinterest: whichever of these two actions executes at
runtime, the system will ultimately converge to state 3.

The edge common to both triangles, {1→ 3, 2→ 3}, represents the strategy
one would obtain by traditional backchaining from state 3. This strategy moves to
state 3 as directly as possible.

The edge {1→2, 1→3} represents a strategy for attaining the goal set {2, 3}.
Effectively, this strategy says: “Move away from state 1; I do not care whereto.”

Example 2.12. In contrast, Figure 3 again shows three states, with the same
possible transitions as in Example 2.11. However, in this example there are actually
only two actions, 1→{2, 3} and 2→{1, 3}, each of which is nondeterministic with
two possible targets. Together, these actions contain a circuit; an adversary could
force the system into an infinite loop between states 1 and 2. Consequently, the
strategy complex consists of two isolated vertices, one for each action.

Notation 2.13. For any m ≥ −1, S
m denotes the sphere of dimension m.

Example 2.14. Figure 4 shows two strongly connected directed graphs on three
states, along with their strategy complexes. The graphs are not isomorphic, but
their strategy complexes are both homotopic to S

1, the circle.
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1 2

3
1         2,3{     } 2         1,3{     }

Figure 3. Left: A nondeterministic graph with two actions that
together could produce a directed cycle. Right: The graph’s strat-
egy complex; it consists of two isolated vertices, one for each action.

1 2 3
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3

1       2 2       3

3       1

3       2

1       2

2       1

2       3

Figure 4. The left column shows two different strongly connected
graphs on three states. The right column shows their respective
strategy complexes.

Indeed, by [26], the strategy complex of any directed graph is homotopic either
to a sphere or to a point. If the graph has n states and can be written as the disjoint
union of k strongly connected subgraphs, then the strategy complex is homotopic
to S

n−k−1. Otherwise, the strategy complex is homotopic to a point. This result
will re-appear in more general form for uncertain graphs, as Theorem 7.9.

Observe further that the graph in the lower left of Figure 4 may be viewed
as the overlapping union of two strongly connected graphs on two states (the two
graphs touch at state 2). Each of the subgraphs therefore has S

0 as a strategy
complex. One S

0 is formed from the two actions 1→ 2 and 2→ 1, the other from
the two actions 2→3 and 3→2. Mirroring this graph decomposition, observe that
the join S

0 ∗ S
0 is homotopic to S

1 in general and in fact isomorphic in this case to
the strategy complex of the overall graph.

Our research generalizes from directed graphs to nondeterministic (and sto-
chastic) graphs. Doing so leads to a much larger class of strategy complexes than
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Figure 5. Left panel: The loopback graph G←3 formed from the
graph of Figure 2 by adding loopback actions at state 3 (indicated
by thick arrows). Right panel: The associated loopback complex
ΔG←3

. It is a polygonal cylinder, homotopic to S
1.

just spheres and points, as the next theorem shows. One conclusion is that pre-
cise control is very much a special case in motion planning and that planning for
uncertain systems is both topologically interesting and physically natural.

There is another observation. Directed graphs represent locally certain connec-
tivity. Strongly connected directed graphs represent globally certain connectivity.
That global property is reflected by the spherical nature of the graph’s strategy
complex. The connection between spheres and globally certain connectivity turns
out to be significant as well for graphs in which local motions are uncertain. Much
of the remainder of this chapter explores that connection.

Notation 2.15. Let Γ and Σ be simplicial complexes. (a) We write Γ ∼= Σ to
mean that Γ and Σ are isomorphic, disregarding underlying vertex sets. (b) We let
sd(Σ) denote the first barycentric subdivision of Σ. See [44, 37, 42].

Theorem 2.16. For any finite simplicial complex Σ, there exists a nondeter-
ministic graph G such that sd(Σ) ∼= ΔG.

Proof. We give the basic construction and point to [14] for further details.
Let G = (V,A), with V consisting of (sd(Σ))(0) plus one additional state, and A

containing exactly one action v → Tv for each v ∈ (sd(Σ))(0). The target set Tv

consists of all states of V not adjacent to or equal to v in sd(Σ). �

3. Topological Characterization of Goal Attainability

The question of whether a nondeterministic graph contains a strategy for at-
taining some particular goal state may be rephrased as the problem of deciding
whether the strategy complex associated with a variation of the graph is homo-
topic to a sphere or to a point. We first illustrate this property with two examples,
then state the property as a theorem.

Consider again the graph of Figure 2. We seek to construct a topological space
whose homotopy type tells us whether the graph contains a strategy for attaining
state 3 from anywhere in the graph. (Of course, we know the graph contains such a
strategy, by inspection, but we want a topological characterization.) Imagine that
we add to the graph two deterministic actions at state 3, transitioning back to the
other two states. We call these actions loopback actions, we call the resulting graph
a loopback graph, and we call the associated strategy complex a loopback complex.
See Figure 5. Observe that the loopback complex is homotopic to S

1.
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1 2

3 3       2 3       1

1         2,3{     } 2         1,3{     }

Figure 6. Left panel: The loopback graph G←3 formed from the
graph of Figure 3 by adding loopback actions at state 3. Right
panel: The associated loopback complex ΔG←3

. It is contractible.

In contrast, suppose we ask whether the graph of Figure 3 contains a strategy
for attaining state 3 from anywhere in the graph. (Again, we know it does not,
by inspection, but again we seek a topological characterization.) As before, we
add loopback actions at state 3 and compute the associated loopback complex, as
shown in Figure 6. This time the loopback complex is homotopic to a point.

It turns out that loopback complexes are always homotopic either to a point or
to S

n−2, with n being the number of states in the graph. Moreover, the complex
is a sphere precisely when the graph contains a strategy for moving from anywhere
in the graph to the state at which we have added loopback actions. We now make
this statement precise with the following definitions and theorem.

Definition 3.1. Let G = (V,A) be a nondeterministic graph and s a desired
stop state in V . A complete strategy for attaining s in G is a convergent set σ ⊆ A,
such that σ contains at least one action with source v for every v in V \ {s}. If
such a σ exists, we also say G contains a complete strategy for attaining s. (Later,
we will use the same terminology for stochastic graphs.)

Remark 3.2. In the previous definition, σ cannot contain any action with
source s, as otherwise σ would not be convergent.

Definition 3.3. With notation as above, define G←s to be the nondetermin-
istic graph constructed from G by first removing all actions of G that have source
s, then adding all possible loopback actions at state s, that is, all deterministic
actions s→ v, with v ∈ V \ {s}. Call G←s the loopback graph formed from G and
s. Define ΔG←s

to be the strategy complex associated with G←s and call it the
loopback complex formed from G and s. (Later, we will use the same terminology
for stochastic graphs.)

Remark 3.4. In the previous definition, we could simply have added loop-
back actions at s, without first removing any existing actions. There would be
no difference in the homotopy type of the resulting complex, as Example 3.10 will
show.

Notation 3.5. The rest of this chapter employs the following notation:
• x ∈ R

n means the point (x1, . . . , xn) in n-dimensional Euclidean space.
• X � Y means that X and Y are homotopic as topological spaces (this is

the same as saying that X and Y have the same homotopy type). The
notation makes sense for simplicial complexes by Remark 2.6. Later, by
Section 8.2, the notation will make sense for partially ordered sets.
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• ↗n
= denotes the diagonal in R

n and
⊙n
�= denotes its complement. So

↗n
= = {x ∈ R

n | x1 = · · · = xn},
⊙n
�= = {x ∈ R

n | xi 	= xj , for some i, j}.

Theorem 3.6. Let G be a nondeterministic graph with state space V , s ∈ V , and
n = |V |. If G contains a complete strategy for attaining s, then ΔG←s

� S
n−2.

Otherwise, ΔG←s
is contractible.

Proof. This proof is motivated by the techniques in [8, 26]. The proof given
here appears in similar though not quite identical form in [14].

If n = 1, then ΔG←s
is necessarily the empty complex, which we view as S

−1.
The empty simplex is a complete strategy for attaining the only state there is in
the graph. This shows the theorem holds for n = 1. So we may assume that
V = {1, . . . , n}, with s = n > 1.

I. Suppose σ is a complete strategy for attaining s in G. Let A be the actions of
G←s. For each action A ∈ A, with A = i→T , define the following open polyhedral
cone, which we refer to as a nondeterministic covering set:

UA =
{
x ∈ R

n

∣∣∣∣ xi > max
j∈T

xj

}
.

(Looking ahead, nondeterministic covering sets constitute a special case of the
covering sets to appear in Def. 5.2.)

The nerve of the cover {UA}A∈A conveys information. In particular, a set of
actions {A1, . . . , Ak} is convergent if and only if UA1∩· · ·∩ UAk

is not empty. When
nonempty, the intersection is contractible. By the Nerve Lemma [7, 25], ΔG←s

therefore has the homotopy type of
⋃

A∈A UA. We will show that
⋃

A∈A UA =
⊙n
�=.

Consequently, ΔG←s
is homotopic to S

n−2.
If x is a point on the diagonal ↗n

= , then x cannot lie in any nondeterministic
covering set UA, by construction. If x ∈ R

n with xn > xi for some index i, then x
lies in the nondeterministic covering set associated with the loopback action n→ i.

Otherwise, x ∈ R
n with xi > xn for some index i. Suppose that x does not

lie in any UA. Since σ is a complete strategy for attaining n, σ contains an action
B with source i. Write this action as i → T , for some set of targets T . Action
B is an element of A, so x does not lie in UB. Consequently, for some target
j ∈ T , xi ≤ xj , implying that xj > xn. One may now repeat the argument with
index j. Continuing in this manner, one obtains an unbounded sequence of actions
v1 →T1, v2 →T2, . . ., all in σ, such that vk+1 ∈ Tk for all k = 1, 2, . . . . Since G is
finite, this means σ contains a circuit, establishing a contradiction.

II. Suppose G contains no complete strategy for attaining s. Let Σ be the
subcomplex of ΔG←s

consisting of all simplices that contain no loopback actions
and let σ0 be a maximal simplex of Σ. Suppose σ0 	= ∅ and consider the collection
(not a simplicial complex) Γ = {γ ∈ ΔG←s

| σ0 ⊆ γ } .
Since σ0 is not a complete strategy for attaining s = n, there must be some

state i 	= n such that σ0 contains no action with source i. Suppose γ is in Γ and
does not contain the loopback action n→ i. By maximality of σ0 in Σ, γ also does
not contain an action with source i. Consequently, γ ∪ {n→ i} is convergent and
thus in Γ. Suppose γ is in Γ and does already contain the loopback n→ i. Then
removing that loopback produces as well an element of Γ. By Lemma 7.6 of [8], this
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1

2 3

G

3       1

1       2 2       3

1         2,3{     }ΔG

Figure 7. Action 1→ 2 is more precise than action 1→ {2, 3},
in G. Consequently, all simplices containing the action 1→{2, 3}
may collapse away without changing the homotopy type of ΔG.

means the complex ΔG←s
collapses to the complex ΔG←s

\Γ, preserving homotopy
type. Repeating this process, one may collapse away all nonempty simplices of
Σ along with their supersets in ΔG←s

, leaving only the loopback actions. All the
loopback actions together are convergent. So, we have shown how to collapse the
complex ΔG←s

to a single nonempty simplex, which in turn collapses to a point. �
Remarks 3.7. (1) The contradiction argument in part I of the proof is much

like planning, now from an adversary’s perspective. (2) Part II of the proof actually
establishes that ΔG←s

is collapsible when G fails to contain a complete strategy
for attaining s. Later, Corollary 10.7 will establish the yet stronger property that
ΔG←s

is nonevasive. (3) Allowing σ0 = ∅ in part II would be fine though less
explicit.

Corollary 3.8. With notation as above, G contains a complete strategy for
attaining s if and only if ΔG←s

contains an odd number of simplices (counting ∅).
Proof. The reduced Euler characteristic is 0 for points and ±1 for spheres. �
Corollary 3.9. Let G be a nondeterministic graph with state space V . Let

s ∈ V . The number of complete strategies for attaining s in G is either zero or odd.

Example 3.10. Understanding the homotopy types of strategy complexes in
general is an open question. Globally, we have seen the significance of spheres of a
certain dimension. Locally, homotopy collapse ignores imprecise actions in favor of
more precise actions, as follows: Whenever a nondeterministic graph contains two
actions with the same source state and comparable target sets, then all simplices
containing the less precise action may collapse away. Imagine actions v → T and
v→S with S ⊆ T . If v→T ∈ σ ∈ ΔG, then σ ∪ {v→S} ∈ ΔG. So all simplices
containing v→T may collapse away without changing homotopy type. See Figure 7.

4. Stochastic Graphs and Strategy Complexes

Example 4.1. Consider again the graph of Figure 3. Now suppose that the
transitions of each action are not so uncertain as to be nondeterministic, but instead
have associated probabilities, as indicated in Figure 8. The probabilities mean that
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1 2

3
p p'

q'q

2        {q'1, p'3}1        {q2, p3}

Figure 8. The graph on the left contains two stochastic actions.
Although the actions together may cause the system to cycle be-
tween states 1 and 2, the cycling will be transient. As a result, the
graph’s strategy complex on the right contains not only the ver-
tices representing the individual stochastic actions, but the edge
between them. Compare with Figure 3.

during each execution of an action, a particular transition occurs with the indicated
probability, independent of the past. Although such uncertainty in the actions
might cause the system to cycle between states 1 and 2 for a while, the probability
that the system would cycle forever is zero. With every action execution there is
some minimum nonzero probability that the system will exit the cycle and move to
state 3. Consequently, we should consider the set consisting of both actions to be
a simplex in the graph’s strategy complex, as shown in Figure 8.

In order to make this intuition precise, we need to generalize the notion of
circuit given in Def. 2.8 from the nondeterministic setting to the stochastic setting.
The earlier definition models an adversary who selects action transitions in such
a way that the system finds itself stuck in some set of states, moving endlessly
between those states. In the nondeterministic setting, the adversary can choose
the transitions so as to create a cyclic path, but that is almost incidental; the key
idea is that the system is stuck in a subspace. That idea generalizes readily to the
stochastic setting: instead of a cyclic path, one obtains a recurrent class [17, 28] in
a Markov chain created by the adversary. We formalize these concepts as follows:

Definition 4.2. A stochastic action A consists of a source state v and a non-
empty set T of target states, along with a strictly positive probability distribution
p : T → (0, 1]. We may write action A as v → p T . If T = {u1, . . . , uk} and
pi = p(ui), for i = 1, . . . , k, then we may also write A as v→{ p1u1, . . . , pkuk}. In
this representation, pi > 0, for i = 1, . . . , k, and

∑k
i=1 pi = 1. If T consists of a

single state, then A is deterministic. In that case, with T = {u}, we may write A
in several different ways, including v→u, v→{1u}, and v→{u}.

Interpretation: As in the nondeterministic case, action A may be executed
whenever the system is at state v. When action A is executed, the system moves
from state v to one of the targets u in T , selected from all the targets with prob-
ability p(u). This process is Markovian, that is, independent of how or when the
system arrived at state v. If T contains multiple targets, the precise target attained
is not known to the system before executing A, but is known after.
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Definition 4.3. A stochastic graph G = (V,A) is a set of states V and a
collection of actions A, such that each action of A is either nondeterministic or
stochastic, with its source and targets in V . We may refer to V as G’s state space.

(NB: A stochastic graph may contain both nondeterministic and stochastic
actions. Of course, this also includes the special case of deterministic actions.)

In the remaining definitions of this section, let G = (V,A) be a stochastic graph.

Definition 4.4. Define src : A → V so src(A) is the source of A. Extend to
sets of actions. If A ⊆ A, we say src(A) is the start region of A.

Definition 4.5. Let W ⊆ V and A ∈ A. Action A moves off W if src(A) ∈ W
and one of the following is true: (i) A is stochastic with at least one of its targets
in V \ W , or (ii) A is nondeterministic with all of its targets in V \ W .

Definition 4.6. Let A ⊆ A be some set of actions in G. We say A contains
a stochastic circuit if, for some nonempty subset B of A, no action of B moves off
src(B). We say A converges stochastically or is stochastically convergent if A does
not contain a stochastic circuit.

Remark 4.7. Suppose A contains a stochastic circuit. Then an adversary could
select some nonempty subset of actions B in A and some nonempty subset of states
W in V , such that: (i) W = src(B), (ii) B contains exactly one action with source
w for every w ∈ W , and (iii) no B in B moves off W . Now consider an action B
in B. If B is stochastic, then every target of B lies in W . If B is nondeterministic,
then the adversary could further select one target of B lying in W . The complete
selection process just described amounts to the construction of a Markov chain on
state space W . Since the chain is finite, it must contain a recurrent class [17, 28].
This means that there is a nonempty subset R of W such that the probability of
the chain eventually moving from any given state of R to any other state of R is
1, while the probability of ever leaving R is 0. Restricting the Markov chain from
W to R defines a new Markov chain. This new chain has state space R and is
irreducible; it is the stochastic analogue of any irreducible directed cycle appearing
via Def. 2.8 for the nondeterministic setting. (With this generalization in mind, we
usually omit the explicit “stochastic” designation in the terms of Def. 4.6.)

We may now define a strategy complex much as we did earlier for nondeter-
ministic graphs, but now allowing both stochastic and nondeterministic actions:

Definition 4.8. If V 	= ∅, the strategy complex ΔG of G is the simplicial com-
plex whose underlying vertex set is A and whose simplices are all the stochastically
convergent subsets A of A. Every simplex of ΔG is a (stochastic) strategy. If V = ∅,
we let ΔG be the void complex.

Remarks 4.9. (1) Remarks 2.10 carry over to the stochastic setting with small
changes. For instance, a stochastic action v→ p T with a self-loop may appear in
some simplices, so long as |T | > 1. (2) Theorem 3.6 holds as well in the stochastic
setting. The proof carries over with small changes. See for example the covering
sets of Section 5. The decision trees of Section 10 will provide yet a different type
of proof.

Remark 4.10. The Markov chain construction of Remark 4.7 suggests an al-
ternate definition of stochastic convergence. Intuitively, no matter what Markov
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chain the adversary constructs, all states at which the strategy specifies actions
should be transient states of the Markov chain, not recurrent states. The actions
of a strategy should eventually move the system to some set of states at which the
strategy specifies no actions. The next two definitions and lemma rephrase this
intuition algebraically.

Definition 4.11. Define the “adversity” function adv : A × R
|V | → R by

adv(A, {xv}v∈V ) =

⎧⎪⎪⎨
⎪⎪⎩
∑
u∈T

p(u)xu, if A = w → p T ;

max
u∈T

xu, if A = w → T ;
(for some w).

Interpretation: Given a family {xv}v∈V of real numbers indexed by V and
given an action A, the expression adv(A, {xv}v∈V ) computes an expectation based
on A’s targets when A is stochastic and a maximization based on A’s targets when
A is nondeterministic. This definition will help us model expected outcomes arising
from worst-case adversarial choices. Notation: We frequently drop the index set V
to write adv(A, {xv}), or use vector notation to write adv(A,x).

Definition 4.12. If A is a collection of actions and w a state, let A|w denote
all actions in A that have source w.

Lemma 4.13. Let G = (V,A) be a stochastic graph with V 	= ∅ and let A ⊆ A.
Then A is stochastically convergent if and only if the following system of equations
in the real variables {xv}v∈V has a unique finite solution, identically zero:

(4.1) xw = max
A∈A|w

adv(A, {xv}), for all w ∈ V .

(We take any maximization over the empty set to be 0.)

Proof. Follows by standard techniques for Markov chains [17, 28]. �
Remark 4.14. Suppose V 	= ∅ and A is stochastically convergent. Then src(A)

must be a proper subset of V , so System (4.1) has at least one explicit equation of
the form xw = 0. We may view strategy A as attaining the goal set consisting of
all states w for which (4.1) contains the explicit equation xw = 0, that is, all states
in V \ src(A).

Remark 4.15. Now imagine that we associate to each action A of A a nonneg-
ative action transition time δA. Let A ⊆ A. Then the following system of equations
in the real variables {tv}v∈V again has a unique finite solution if and only if A is
stochastically convergent, in which case each of the tv is nonnegative:

(4.2) tw = max
A∈A|w

(adv(A, {tv}) + δA), for all w ∈ V .

We may interpret the unique finite solution {tv}v∈V , when it exists, as worst-
case expected convergence times. Intuitively, an adversary can choose actions and
nondeterministic transitions from A in such a way that the expected time for the
system to enter the set of states V \ src(A), when started at state w, can be as
great as tw.

Definition 4.16. Given a stochastically convergent set of actions A, let tmax(A)
be the maximum tw obtained as a solution to System (4.2). For any nonnegative T ,
let ΔTG be the subcomplex of ΔG consisting of all simplices σ for which tmax(σ) ≤ T .
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5. Topological Characterization of Full Controllability

Definition 5.1. (a) Let G = (V,A) be a stochastic graph and suppose I and S
are nonempty subsets of V . We say that a simplex σ of ΔG is a stochastic strategy
for attaining S from I if, with probability 1, the system eventually stops at some
state of S whenever it starts at any state of I and executes strategy σ. In the case
of singleton sets I = {i} and S = {s}, we may simply say that σ is a stochastic
strategy for attaining s from i.

(b) A nonempty set of states S is certainly attainable (in G) if there is some
stochastic strategy σ ∈ ΔG for attaining S from all of V .

(c) A graph G is fully controllable if, for any initial state i and any stop state s
in G’s state space, G contains a stochastic strategy for attaining s from i.

This section characterizes full controllability by the condition that ΔG be ho-
motopic to S

n−2. This condition and its proof are a generalization of Theorem
3.6 and its proof. We will employ a generalization of nondeterministic covering
sets and show how transitivity of actions translates to unions of open sets even
in the stochastic setting. Later (see Remark 6.7) we will see the basis for a more
combinatorial proof.

In order to simplify the discussion, throughout the rest of this section we assume
that G is a stochastic graph with actions A and state space V = {1, . . . , n}, n ≥ 1.

Definition 5.2. Let {δA}A∈A be nonnegative action transition times, associ-
ated to the actions of G. For each action A in A, define the covering set of A to be
the following open subset of R

n:

UA,δA
= {x ∈ R

n | xi > adv(A,x) + δA}, with i = src(A).

For the special case in which δA = 0, we may write UA in place of UA,δA
. This

notation is consistent with the notation for nondeterministic covering sets that
appeared earlier in the proof of Theorem 3.6.

Remark 5.3. Suppose we write stochastic action A as i→p T , with ∅ 	= T ⊆ V ,
as per Def. 4.2. States are now integers. Then, letting pj = p(j) for j ∈ T ,

UA,δA
=
{
x ∈ R

n
∣∣∣ xi >

∑
j∈T

pjxj + δA

}
.

Similarly, if we write nondeterministic action A as i→T , then

UA,δA
=
{
x ∈ R

n
∣∣∣ xi > max

j∈T
xj + δA

}
.

In particular, for stochastic A with δA = 0, the set UA is an open homogeneous
halfspace, whose defining hyperplane normal is determined by A’s transition prob-
abilities. This hyperplane includes the diagonal ↗n

= . For nondeterministic A with
δA = 0, the set UA is the intersection of several such open homogeneous halfspaces,
as specified by A’s possible source-to-target transitions, just as in the proof of
Theorem 3.6.

Lemma 5.4. Suppose G contains a stochastic strategy σ for attaining state k
from state �. Let t� be the worst-case expected convergence time starting from state
�, obtained by solving System (4.2) with A = σ. Then

{x ∈ R
n | x� > xk + t� } ⊆

⋃
A∈A

UA,δA
.
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Proof. We can assume without loss of generality that k = n and that σ is a
complete strategy for attaining n. If � = n, then there is nothing to prove, since
the set on the left is empty, so we may assume that 1 ≤ � < n.

Let {ti}n
i=1 be the solution to System (4.2) with A = σ.

Suppose there is some x∗ ∈ R
n such that x∗� > x∗n + t�, but x∗ lies in no UA,δA

.
Since the sets UA,δA

are invariant with respect to translation along the diagonal
↗n
= , we may assume that x∗n = 0.

When System (4.2) has a unique finite solution, one can obtain that solution
by iteration, that is by computing

t(m+1)
w = max

A∈A|w
(adv(A, {t(m)

v }) + δA), for all w ∈ V , for m = 0, 1, 2, . . .,

starting from any finite initial seed values for {t(0)v }v∈V . As m → ∞, the iteration
will converge to the solution of (4.2).

In the present case, if we set t
(0)
i = x∗i , then in the limit, by induction on m, we

see that ti ≥ x∗i , for all 1 ≤ i ≤ n. Key in the induction is the observation that, for
each action A of σ with source i, we have the inequality adv(A,x∗) + δA ≥ x∗i , by
the contrary assumption on x∗. Thus t� ≥ x∗� > x∗n + t� = t�, a contradiction. �

Lemma 5.5. A nonempty set of actions A is stochastically convergent if and
only if ⋂

A∈A
UA 	= ∅.

Proof. I. Suppose
⋂

A∈A UA 	= ∅, and choose x∗ to lie in the intersection.
For each A ∈ A, define δA = x∗src(A) − adv(A,x∗). By definition of UA, δA > 0.

Writing t for {tj}n
j=1, consider the following variant of System (4.2):

(5.1) ti = max
A∈A|i

(adv(A, t) + δA) + bi, for all i ∈ V ,

with bi = 0 for all i ∈ src(A) and bi = x∗i for all i 	∈ src(A).
By construction of the {δA}A∈A, this system has at least one finite solution,

given by ti = x∗i for all i in V .
If A contains a stochastic circuit, then by Remark 4.7, we can construct from

A an irreducible Markov chain on some nonempty subset R of V . Without loss of
generality, R = {1, . . . , k}, for some 1 ≤ k ≤ n. Let (pij) denote the stochastic
matrix of this Markov chain. Combining with System (5.1), we obtain

x∗i ≥
k∑

j=1

pijx
∗
j + δi, i = 1, . . . , k,

where δi = δA, A being the particular action used to construct the transition(s) at
state i as per Remark 4.7. Since (pij) is a stochastic matrix, this is only possible if
δi ≤ 0 for at least one i, establishing a contradiction.

II. Suppose A is stochastically convergent. For each A ∈ A, let δA = 1. System
(4.2) has a unique finite solution, call it t∗. Pick some arbitrary B ∈ A. Suppose
B has source i. Then

t∗i = max
A∈A|i

(adv(A, t∗) + 1) ≥ adv(B, t∗) + 1 > adv(B, t∗),

implying that t∗ ∈ UB . So the intersection of all the UA, with A ∈ A, contains t∗

and thus is not empty. �
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Corollary 5.6. Let G = (V,A) be a stochastic graph, with V 	= ∅. Then

ΔG �
⋃

A∈A

UA.

Proof. If V consists of a single state, then ΔG is the empty complex, which
corresponds to the empty space. Any covering set is empty as well. So the corollary
holds.

If V contains multiple states, then each covering set UA is open and convex, so
intersections of such covering sets are contractible when nonempty. Together, the
Nerve Lemma and Lemma 5.5 establish the corollary. �

Theorem 5.7. Let G = (V,A) be a stochastic graph, with V 	= ∅.
G is fully controllable if and only if ΔG � S

n−2, with n = |V |.

Proof. If V consists of a single state, then G is fully controllable and ΔG is
S
−1, so the theorem holds. So assume that n > 1 in what follows.

I. Suppose G is fully controllable. By Lemma 5.4, with all δA = 0, the union
of all the covering sets UA is

⊙n
�=. Combining with Corollary 5.6, we see that

ΔG �
⋃

A∈A

UA =
⊙n
�= � S

n−2.

II. Suppose ΔG � S
n−2. If G is not fully controllable, then there must be some

state s ∈ V such that G does not contain a complete strategy for attaining s. Let
G+s = (V,A+) be the graph obtained from G by adding all possible loopbacks at
s, that is, all actions s→v, with v ∈ V \ {s}. We see

S
n−2 � ΔG �

⋃
A∈A

UA ⊆
⋃

A∈A+

UA � ΔG+s
.

Since each covering set UA is homogeneous and invariant with respect to trans-
lation along the diagonal ↗n

= , and since no proper subset of S
n−2 is homotopic to

S
n−2, it must be that the covering sets UA arising from G cover all of

⊙n
�=. The

subset relation above therefore implies that ΔG+s
� S

n−2. On the other hand, a
collapsibility argument nearly identical to that appearing in the proof of Theorem
3.6 shows that ΔG+s

is contractible, establishing a contradiction. �

Remark 5.8. A similar result follows from Lemma 5.4 for time-bounded strate-
gies: For any T ≥ 0, G is fully controllable using only strategies whose worst-case
expected convergence times are bounded by T if and only if ΔTG � S

n−2. See [14].

Example 5.9. Figure 9 shows a three-state graph in which every action is un-
certain: two actions are stochastic, one is nondeterministic. The strategy complex
is homotopic to S

1, suggesting the graph is fully controllable. Indeed, for every state
there is a strategy for moving to any other state. For instance, the actions at states
1 and 3 together will with certainty move the system to state 2. What is uncertain
is the precise time this will take (one may of course compute a worst-case expected
convergence time) and the precise route taken. The system may move directly to
state 2 or it may cycle for a while between states 1 and 3. We see in this example
how strategy complexes and the topological characterization of Theorem 5.7 have
abstracted away detailed trajectory information, while preserving a description of
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1 2

3
p p'

q'q

2        {q'1, p'3}1        {q2, p3}

3         1, 2{      }

Figure 9. The graph on the left has a stochastic action at each
of states 1 and 2 and a nondeterministic action at state 3. Its
strategy complex on the right is the boundary of a triangle.

the system’s overall capabilities. — We mention in passing that changing either
or both of the stochastic actions to nondeterministic actions would dissipate full
controllability. For instance, if all three actions were nondeterministic, then the
strategy complex would consist of three isolated vertices.

6. Source and Dual Complexes

Strategy complexes model control laws for accomplishing tasks specified by goal
states in nondeterministic or stochastic graphs. Each simplex (aka strategy) is a
collection of actions. The source of an action describes the conditions under which
the action is applicable (modeled as a state in the graph). The targets of the action
describe the possible outcomes (again modeled as states in the graph). The em-
phasis in strategies is on actions, yet often one cares primarily about the high-level
capability of accomplishing some task, that is, moving from some set of initial states
to some set of final states. This section shows how to compress the strategy complex
into a smaller complex, called the source complex, modeling the start regions of all
strategies available to the system. Moreover, this compression preserves homotopy
type. Construction of the source complex leads very naturally to a dual complex
that models the potentially unattainable goals. These two complexes provide a
basis for analyzing and designing systems with control uncertainty.

6.1. Modeling System Capabilities. Let G be a stochastic graph with state
space V . We may view any σ ∈ ΔG as a strategy for attaining the goal set V \src(σ),
as suggested by Remarks 2.10(3) and 4.14: If v ∈ src(σ), then there is at least one
action in σ with source v, possibly several. The system must execute one such
action when it is at state v. If v 	∈ src(σ), then the system does not move when
it is at state v. In short, the system moves so long as its current state lies in
src(σ), and stops otherwise. Since σ is convergent, with probability 1 the system
will eventually find itself in V \ src(σ). (Of course, in some instances one may be
able to make a more precise prediction as to where the system will stop, but from
a global perspective, the outcome V \ src(σ) is a general bound.) We model this
abstraction with the following definition:

Definition 6.1. The source complex ΔG of a stochastic graph G = (V,A) is
the simplicial complex whose underlying vertex set is V and whose simplices are
the start regions of all strategies in G:

ΔG = {src(σ) | σ ∈ ΔG }.
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Lemma 6.2. Let G = (V,A) be a stochastic graph and let W be a nonempty
simplex of ΔG. Then the following subcomplex of ΔG is contractible:

ΣW = {τ ∈ ΔG | src(τ) ⊆ W }.

Proof. Let σ ∈ ΔG such that src(σ) = W . Since σ is convergent, there is
some action A ∈ σ that moves off W . Now let τ ∈ ΣW and suppose A 	∈ τ . If
τ ∪ {A} were to contain a circuit, then A could not move off W . So we see that
τ ∪ {A} ∈ ΣW , establishing that ΣW is a cone with apex A. �

Lemma 6.3. Let G = (V,A) be a stochastic graph and suppose W is a nonempty
subset of V such that every proper subset of W is a simplex of ΔG. Then W ∈ ΔG

if and only if some action of G moves off W .

Proof. I. Suppose W ∈ ΔG. Some action of G moves off W , by the first part
of the proof of Lemma 6.2.

II. Let A be an action of G that moves off W and let w = src(A). By assump-
tion, there exists τ ∈ ΔG such that src(τ) = W \ {w}. Arguing as in the last part
of the proof of Lemma 6.2, we see that τ ∪ {A} ∈ ΔG, establishing W ∈ ΔG. �

Remarks 6.4. (1) Lemma 6.3 is backchaining topologized, abstracting a plan-
ning method known as Dynamic Programming [4]. The connection to backchain-
ing will appear more explicitly in the proof of Lemma 8.6.

(2) One could modify the hypotheses of the lemma, explicitly requiring merely
that subsets of size |W |−1 lie in ΔG, rather than all proper subsets of W . The for-
mulation given emphasizes the intuition that a goal is certainly attainable precisely
when every subspace of the goal’s complement has an exit.

Theorem 6.5. For any stochastic graph G, ΔG � ΔG.

Proof. If G is null, both complexes are void. Otherwise, the theorem follows
from Lemma 6.2 and the Quillen Fiber Lemma [41, 7, 8, 47]. It is also a corollary
to upcoming Theorem 8.10, so we omit further details here. �

Corollary 6.6. A stochastic graph G with nonempty state space V is fully
controllable if and only if ΔG is the boundary complex of the full simplex on V .

Remark 6.7. Here we view Corollary 6.6 as a consequence of Theorems 5.7
and 6.5. Alternatively, we could view Theorem 5.7 as a consequence of Corollary
6.6 and Theorem 6.5, thus giving us a different, combinatorial, proof of our main
controllability theorem. Indeed, Corollary 6.6 is almost self-evident from the defini-
tion of source complex and Remark 6.9 below. To prove it fully, one would also need
to make a backchaining argument showing how to combine individual strategies for
attaining a particular state into a complete strategy for attaining that state.

Definition 6.8. The dual complex of a stochastic graph G = (V,A) is the
combinatorial Alexander dual of the source complex:

Δ*
G =

{
V \ W

∣∣W ⊆ V and W 	∈ ΔG

}
.

(The underlying vertex set of Δ*
G is again V .)

Observe that ∅ is always a simplex of Δ*
G, since V is never a simplex of ΔG.
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Figure 10. Possible source and dual complexes for a graph with
three states and at least one convergent action at each state.

Remark 6.9. The source complex ΔG of a graph G is the collection of all
start regions of convergent sets of actions of G. The complements (relative to V )
of these start regions are all the certainly attainable goals (see again Def. 5.1). The
simplices of Δ*

G describe all potentially unattainable goals, that is, all sets of states
that are not certainly attainable (from everywhere in the graph).

Example 6.10. Figure 10 shows the relationship between ΔG and Δ*
G, along

with their meanings, for graphs on three states, assuming that, for every state,
some action moves off that state. Given such actions, there are exactly four source
complexes possible, ignoring state permutations, since there are three possible edges
that may or may not be present in the source complex. Observe that there could
be many different graphs that give rise to these complexes, but the details of these
graphs are irrelevant at the level of understanding global capabilities. That obser-
vation is one interpretation of Theorem 6.5.

Example 6.11. The source and dual complexes for the loopback graph of
Figure 5 appear in the first column of complexes in Figure 10. The graph is fully
controllable. The example of Figure 9 similarly maps to this same column in Figure
10. In contrast, the loopback graph of Figure 6 maps to the third column of
complexes in Figure 10. Its source complex is in fact 1 3 2, with dual complex
given by the singleton vertex representing state 3. This means that all goals are
certainly attainable (in the loopback graph) except for state 3 alone, as we have
seen in a variety of ways elsewhere.

The next theorem establishes arbitrary finite complexes as source complexes.

Theorem 6.12. For any finite simplicial complex Σ, there exists a nondeter-
ministic graph G such that Σ = ΔG (disregarding underlying vertex sets).

Proof. We give the basic construction and point to [14] for further details.
Let G = (V,A), with V consisting of Σ(0) plus one additional state, and let A
consist of all actions x→V \ X, with x ∈ X and X a maximal simplex of Σ. �
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6.2. System Design. The minimal nonfaces of ΔG are useful indicators of
how a system loses full controllability, as Lemma 6.3 suggests. By a minimal
nonface of ΔG we mean a set of states that is not a simplex of ΔG but all of
whose proper subsets are simplices of ΔG. An adversary can prevent the system
from leaving any minimal nonface W of ΔG, since no action moves off W . In
particular, any stochastic action with source in W has all its targets in W , while
any nondeterministic action with source in W has at least one target in W . For
such actions, an adversary can, in effect, delete all the targets outside W (if even
there are any). Doing so would produce a new graph with state space W . That
graph would be fully controllable. To see this, observe that all proper subsets of
W lie in ΔG since W is a minimal nonface. So the original system can certainly
attain any goal of the form {w} ∪ (V \W ), with w ∈ W . Relative to the adversary
preventing exit from W , this says the system has full controllability within W . This
relative controllability is consistent with the simplices of ΔG inside W forming a
sphere of dimension |W | − 2.

From a design perspective, one can treat the minimal nonfaces of an existing
system as hints for improving system capabilities. The key is to fill in nonfaces by
adding or modifying actions. For instance, in the example of Figure 6, since {1, 2} is
the only minimal nonface of ΔG←3

, adding any action with source 1 or 2 that moves
off {1, 2}, will establish full controllability. There are many different possibilities,
including deterministic action 1→3 and stochastic action 1→{p11, p22, p33}.

See [14] for further discussion of design.
These ideas extend to improving the performance of a system by considering

the complexes ΔTG, along with their source and dual variants, for various times T .

6.3. Inferring Adversarial Capabilities. The source complex also allows
one to infer fairly high-level adversarial capabilities, again by looking for missing
simplices. A simple observation is that

ΔG = Γ ∗ Σ1 ∗ · · · ∗ Σk,

where Γ is generated by a full simplex consisting of all states in the graph G that
do not lie in any minimal nonface of ΔG, while the {Σi} are defined as follows:
Define an equivalence relation on the states outside Γ(0) as the transitive closure
of a simple relation in which two states are related whenever they lie in a common
minimal nonface of ΔG. Then Σi consists of all simplices of ΔG that lie within the
ith equivalence class of this equivalence relation.

This decomposition of ΔG reveals some time-varying adversarial capabilities.
At any state that lies within multiple minimal nonfaces of ΔG, an adversary may
select within which of these minimal nonfaces to keep the system. Consequently,
an adversary has some control over an impatient system, meaning a system that
keeps trying to escape a minimal nonface, for instance by moving to every state
of the minimal nonface and by eventually executing all actions available to it. If
the system starts within a particular Σ(0)

i and is impatient, then the adversary can
eventually force the system to reach any particular state within Σ(0)

i . (Adversarially
chosen transitions between different equivalence classes may also be possible, but
that information is not directly knowable from the source complex.)

Finally, one can infer some adversarial capabilities more abstractly from ho-
mology and cohomology representatives, again by finding minimal nonfaces. Here
are some sample results (see [37, 25] for background and notation):
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Lemma 6.13. Suppose 0 	= [α] ∈ H̃p(ΔG; Z), with G = (V,A) a stochastic
graph, p ≥ 0, and α a simplicial cycle. Write α =

∑
i niσi, with {σi} a basis of

elementary p-chains for ΔG and each ni an integer. Then:
(a) For every v in V , there is some σi with ni 	= 0 such that σi ∪ {v} 	∈ ΔG.
(b) No action moves off the set of states

⋃
ni �=0 σi (called the support of α).

Proof. (a) follows from the definition of nontrivial reduced homology: if no
σi with the claimed property existed, then α would be homologous to zero.

(b) follows from (a) and Lemma 6.3. �
Corollary 6.14. With notation as above, given any initial state of the system,

either an adversary can force the system into the support of α and keep it there or
the system has no action for moving off its initial state.

Lemma 6.15. Suppose [α∗] ∈ H̃p(ΔG; Z), with G = (V,A) a stochastic graph,
p ≥ 0, and α∗ a simplicial cocycle (possibly cobounding). Write α∗ =

∑
i niσ

∗
i , with

{σi} a basis of elementary p-chains for ΔG and each ni an integer.
Let v ∈ V \

⋃
ni �=0 σi. Then, for every σi with ni 	= 0, σi ∪ {v} 	∈ ΔG.

Proof. Write τi = σi ∪ {v} and suppose τi ∈ ΔG for some i such that ni 	= 0.
With δ as coboundary operator and ∂ as boundary operator, bearing in mind that v
lies outside the support of α∗, we calculate: < δα∗, τi > = < α∗, ∂τi > = ±ni 	= 0.
That is a contradiction, since α∗ is a cocycle. �

Corollary 6.16. With notation as above, given any initial state of the system
outside the support of α∗, either the system has no action for moving off its initial
state or an adversary can force the system into some subspace of any of the defining
simplices of α∗. Thereafter, the adversary can hold the system to the union of that
subspace and the system’s initial state.

Remarks 6.17. Lemmas 6.13 and 6.15 infer missing simplices of ΔG from
simplicial cycles and cocycles. The two lemmas differ primarily in quantification.
Lemma 6.13 and its corollary assert that an adversary can force a system to some
defining simplex of a nonbounding cycle, whereas Lemma 6.15 and its corollary
make a similar assertion for any defining simplex of a (possibly cobounding) cocycle.
Lemma 6.15 is a generalization of the observation that the coboundary operator
implicitly reveals missing simplices. (The two lemmas and their corollaries also
impose slightly different conditions on the initial state of the system and describe
different subspaces within which the adversary can hold the system.)

Example 6.18. Suppose ΔG is the triangulation of the torus shown in Fig-
ure 11. Each minimal nonface of ΔG is a triangle and a generator of some one-
dimensional homology. An adversary can hold the system to any such triangle once
the system is at a state defining the triangle. For instance, the oriented 1-cycle
α = [a, b] + [b, c] + [c, a] is a generator of some homology and constitutes a minimal
nonface of ΔG, so certainly the adversary can hold the system to the support of α.
Corollary 6.14 makes the stronger point that the adversary can force the system
to this 1-cycle from any state, should the system move from that state. Figure 11
also depicts the 1-cocycle α∗, whose support consists of all states except state c.
Lemma 6.15 asserts that state c does not form a triangle with any of the defining
edges of α∗. Consequently, the adversary can force the system from state c to any
of α∗’s defining edges, should the system move from state c.
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Figure 11. A particular triangulation of the torus. The thickened
oriented edges depict a 1-cocycle α∗ dual to the oriented 1-cycle
α = [a, b] + [b, c] + [c, a].

The triangulation of Figure 11 is in fact very bad for the system. All states are
equivalent by the equivalence relation defined at the beginning of this subsection,
meaning an adversary can eventually force an impatient system anywhere.

7. Unions and Quotients

In this section we explore how the relationship between subgraphs and their
encompassing graphs carries over to strategy complexes.

Definition 7.1. A stochastic subgraph H = (W,B) of a stochastic graph G =
(V,A) is a stochastic graph in its own right such that W ⊆ V and B ⊆ A.

7.1. Graph Unions.

Definition 7.2. If G1 = (V1,A1) and G2 = (V2,A2) are stochastic graphs with
nonempty (possibly overlapping) state spaces, define their union G1 ∪G2 to be the
stochastic graph (V1 ∪ V2,A1 � A2). Here “�” means “disjoint union”; we treat
actions in A1 and A2 as distinct even if their written representations are identical.

Lemma 7.3. With notation and hypotheses as above, write G = G1 ∪ G2.

(a) Always, ΔG ⊆ ΔG1 ∗ ΔG2 .
(b) If either of the following conditions is satisfied, then ΔG = ΔG1 ∗ ΔG2 :

(i) At least one of G1 and G2 has no actions with sources in V1 ∩ V2;
(ii) |V1 ∩ V2| ≤ 1.

Proof. (a) The simplicial join ΔG1 ∗ ΔG2 is sensible since G combines actions
of G1 and G2 with a disjoint union. The join is nonvoid since neither graph is null.



ON THE TOPOLOGY OF DISCRETE PLANNING WITH UNCERTAINTY 25

Finally, any convergent subset σ of A1 � A2 can be written as (σ ∩ A1) � (σ ∩ A2),
each term of which is a convergent set of actions in one of the original graphs.

(b)(i). Suppose src(A1) ⊆ V1\V2. Choose σi ∈ ΔGi
, i = 1, 2, and let σ = σ1�σ2.

If σ contains a circuit, then there is some nonempty set of actions τ ⊆ σ such that
no action of τ moves off src(τ). Since actions of G2 have no targets in V1 \ V2 and
since src(τ ∩A1) is disjoint from V2, either τ ∩A2 is empty or it too defines a circuit.
Since τ ∩A2 ⊆ σ2, the second possibility cannot occur. The first possibility implies
that τ ⊆ σ1, which means τ could not have defined a circuit.

(ii). If V1 ∩V2 = ∅, then ΔG = ΔG1 ∗ ΔG2 by (i). Otherwise, suppose τ is some
nonempty subset of σ1�σ2, with σi ∈ ΔGi

, i = 1, 2, such that no action of τ moves
off src(τ). One may choose τ so no two actions have the same source. Specializing
(i) to a subgraph of G1 and a subgraph of G2, whose collections of actions are τ∩A1

and τ ∩ A2, respectively, produces a contradiction. �

7.2. Collapsing Fully Controllable Subgraphs.

Definition 7.4. Suppose G = (V,A) is a stochastic graph with V 	= ∅. Let ∼
be an equivalence relation on V . Define the quotient graph G/∼ = (V/∼,A/∼) as
follows: The state space V/∼ consists of one representative state for every equiv-
alence class of ∼. The set of actions A/∼ is nearly identical to the set A; the
difference is we relabel source and target states by their representatives in V/∼.

Three comments: (a) State relabeling may identify targets. In the case of
stochastic actions, we sum the corresponding transition probabilities when such
identifications occur. (b) Distinct actions of G may appear identical in G/∼. We
treat them as distinct. (c) Convergent actions of A may become self-loops in A/∼.

Definition 7.5. Suppose G = (V,A) is a stochastic graph and W is a non-
empty subset of V . Let ∼ be the relation in which two states are equivalent if they
are identical or if they both lie in W . Write G/W for the quotient graph G/∼.

Lemma 7.6. Suppose H = (W,B) is a fully controllable stochastic subgraph of
stochastic graph G = (V,A), with W 	= ∅. Then

ΔG � ΔH ∗ ΔG/W .

Proof. This lemma is a special case of upcoming Lemma 8.12. �

Definition 7.7. Suppose G = (V,A) is a stochastic graph. Let ↔ be the
equivalence relation in which two states u and v are equivalent if there exists some
fully controllable stochastic subgraph H = (W,B) of G such that u and v both lie
in W . (H may depend on u and v.)

Remark 7.8. Relation ↔ is not the same as attainability, by Figure 12.

Theorem 7.9. Let G be a non-null stochastic graph. Then

ΔG � S
n−k−1 ∗ ΔG/↔,

with n the size of G’s state space and k the number of ↔ equivalence classes.

Proof. Apply Lemma 7.6 repeatedly, once for each ↔ equivalence class (the
order does not matter), using the fact that S

i ∗ S
j � S

i+j+1. �
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1

2 3

G

3       1

2       3

1         2,3{     }ΔG

Figure 12. States 1 and 3 are certainly attainable from each
other, but they do not together lie in a fully controllable subgraph.
The nondeterminism of the action at state 1 may or may not force
the system to pass through state 2 on its way to state 3; the system
can neither definitely avoid state 2 nor be certain of attaining it.

Remark 7.10. For deterministic directed graphs, ↔ is the same as strong con-
nectivity. In that case, ΔG/↔ is generated by a full simplex consisting of all directed
edges between the strong components of G. If there are no such edges, then ΔG/↔
is the empty complex and ΔG � S

n−k−1. Otherwise, ΔG is contractible. This
is Hultman’s result [26], mentioned earlier in Example 2.14. For nondeterministic
graphs, ΔG/↔ can be much more general, as we have seen. Via the methods of
Section 6, the complex ΔG/↔ reveals system limitations and adversarial power.

8. Topology of Prescribed Motions

In some situations, when creating a plan to accomplish a task, some actions may
be prescribed, perhaps by earlier choices or by external constraints. For example,
construction on a highway may force a local detour, or a broken finger may require
a robot to perform an assembly from some specific angle. The link of the prescribed
actions in the original strategy complex describes all the strategies consistent with
the prescription. This section explores links in strategy complexes. We will see
that many of our earlier ideas generalize. Indeed, we deferred proofs for some of
the earlier results since they really are corollaries to this section. The next section
will further use these results to characterize essential actions topologically.

8.1. Links and Sources. Following [27], we define deletion and link more
generally than is customary, allowing deletions and links with respect to sets of
elements that might not even be in the complex’s underlying vertex set:

Definition 8.1. Given a simplicial complex Σ and some set E , we define the
deletion dl(Σ, E) and the link lk(Σ, E) to be the following subcomplexes of Σ:

dl(Σ, E) = {τ ∈ Σ | τ ∩ E = ∅},
lk(Σ, E) = {τ ∈ Σ | τ ∩ E = ∅ and τ ∪ E ∈ Σ}.

Remarks 8.2. (1) If the underlying vertex set of Σ is X, then the underlying
vertex set of both dl(Σ, E) and lk(Σ, E) is generally understood to be X \ E .

(2) If E is not a simplex of Σ, then lk(Σ, E) is the void complex.
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First, we generalize the definition of “moves off”. To set the stage, suppose
G = (V,A) is a stochastic graph, σ ∈ ΔG, and W ⊆ V . Suppose A is an action of
G whose source lies in W . We are interested in the behavior of the system starting
from src(A), given that the system first executes action A and then executes strategy
σ, with the provision that execution of σ stops if ever the system re-enters W . Since
σ ∪ {A} need not lie in ΔG, we refer to this behavior by saying that the system
moves according to [A;σ�W ].

Definition 8.3. Let G = (V,A) be a stochastic graph, σ ∈ ΔG, W ⊆ V , and
A ∈ A. Action A moves off W subject to σ if A 	∈ σ, src(A) ∈ W , and the worst-
case probability of returning to W from src(A) is strictly less than 1 whenever the
system moves according to [A;σ�W ].

Remarks 8.4. (1) If σ = ∅, Def. 8.3 is equivalent to Def. 4.5.
(2) Algebraically, we may express the probability condition of Def. 8.3 by re-

quiring that adv(A, {qv}) < 1, where {qv}v∈V is the solution to the following system
of equations (the solution exists and is unique since σ is convergent):

(8.1) qw =

⎧⎪⎪⎨
⎪⎪⎩

max
B∈σ|w

adv(B, {qv}), if w ∈ src(σ) \ W ;

1, if w ∈ W ;

0, otherwise.

(The maximization at w is taken over σ|w, that is, all actions of σ with source w.)

Next, we generalize the definition of source complex:

Definition 8.5. Suppose G = (V,A) is a stochastic graph and σ ∈ ΔG. The
source link of σ in ΔG is the subcomplex of ΔG given by:

Lk(ΔG, σ) = {src(τ) | τ ∈ lk(ΔG, σ)}.
Lemma 6.3 generalizes as follows:

Lemma 8.6. Let G = (V,A) be a stochastic graph and σ ∈ ΔG. Suppose W
is a nonempty subset of V such that every proper subset of W is a simplex of
Lk(ΔG, σ). Then W ∈ Lk(ΔG, σ) if and only if some action of G moves off W
subject to σ.

Proof. I. Suppose W ∈ Lk(ΔG, σ). Then there exists τ ∈ ΔG such that
τ ∩ σ = ∅, τ ∪ σ ∈ ΔG, and src(τ) = W . We will now backchain using actions
of τ and σ to define a sequence of triples (W1, A1, v1), . . . , (Wk, Ak, vk) such that
W ∪ src(σ) = {v1, . . . , vk} and action Aj has source vj and moves off Wj (in the
standard sense of Def. 4.5):

• Let W1 = W ∪ src(σ) and k = |W1|. (So W1 = src(τ) ∪ src(σ).)
• For j = 1, . . . , k: Choose vj ∈ Wj so that all actions of τ ∪ σ with source

vj move off Wj . Such a vj exists since τ ∪ σ is convergent and since
Wj ⊆ src(τ) ∪ src(σ). If vj ∈ W , let Aj be an action of τ with source
vj . Otherwise, let Aj be an action of σ with source vj . Finally, define
Wj+1 = Wj \ {vj}. (Observe: Wk+1 = ∅.)

Choose i to be the smallest index in {1, . . . , k} such that Ai ∈ τ (well-defined
since W 	= ∅). This is the action A we seek. To verify: Action A is in τ , so not in
σ. Action A moves off W in the standard sense, by minimality of i. We need to
show that adv(A, {qv}) < 1, with {qv}v∈V being the solution to System (8.1).



28 MICHAEL ERDMANN

Suppose i = 1. Then A moves off W ∪ src(σ). If A is nondeterministic,
then all of A’s targets lie outside W ∪ src(σ), so adv(A, {qv}) = 0 < 1. If A is
stochastic, then at least one target u of A lies outside W ∪ src(σ), meaning qu = 0,
so adv(A, {qv}) < 1.

Suppose i > 1. By Def. 4.11, the previous conclusion holds more generally
whenever 0 ≤ qu < 1 for all relevant targets u (meaning all targets when A is
nondeterministic; at least one target when A is stochastic). Recall that all actions
of σ with source vj move off Wj , for j = 1, . . . , i − 1. Inductively we therefore see
that qvj

< 1 for all j = 1, . . . , i − 1, and so adv(A, {qv}) < 1.

II. Let A be an action of G that moves off W subject to σ and let w = src(A).
By assumption, there exists τ ∈ ΔG such that τ ∩ σ = ∅, τ ∪ σ ∈ ΔG, and
src(τ) = W \ {w}. Write τ ′ = τ ∪{A}. Then src(τ ′) = W . Since A 	∈ σ, τ ′ ∩σ = ∅.
To establish that W ∈ Lk(ΔG, σ), we therefore should show that τ ′ ∪ σ ∈ ΔG.

Suppose otherwise. Then, for some γ ⊆ τ ′∪σ, with A ∈ γ, no action of γ moves
off src(γ), in the standard sense of Def. 4.5. Let γ′ = {B ∈ γ | src(B) 	∈ W } ⊆ σ.
Either γ′ is empty or an adversary could select nondeterministic transitions so that,
with probability 1, execution of γ′ eventually moves the system into W whenever
it starts in src(γ′). That means qv = 1 in (8.1) for every v ∈ src(γ), implying
adv(A, {qv}) = 1, a contradiction. �

Finally, we generalize Lemma 6.2:

Lemma 8.7. Let G = (V,A) be a stochastic graph, σ ∈ ΔG, and W ∈ Lk(ΔG, σ),
with W 	= ∅. Then the following subcomplex of lk(ΔG, σ) is contractible:

ΣW,σ = {τ ∈ lk(ΔG, σ) | src(τ) ⊆ W }.
Proof. Let A move off W subject to σ, as by Lemma 8.6. We claim that

ΣW,σ is a cone with apex A. To see this, suppose τ ∈ ΣW,σ and A 	∈ τ . Write
τ ′ = τ ∪{A}. We know that τ ∩σ = ∅, τ ∪σ ∈ ΔG, and src(τ) ⊆ W . We also know
that A 	∈ σ and src(A) ∈ W . So we should show that τ ′ ∪ σ ∈ ΔG. The argument
is identical to that given in the last paragraph of the proof of Lemma 8.6. �

8.2. Quillen Fiber Lemma. Before generalizing the key results of Sections
6 and 7, we review the Quillen Fiber Lemma [40, 41] in a form for our proofs.
See [7, 8, 47] for further details regarding partially ordered sets (posets), order
complexes, and the Quillen Fiber Lemma.

Every simplicial complex Σ defines a poset F(Σ), called the face poset of Σ. The
elements of F(Σ) are the nonempty simplices of Σ, partially ordered by set inclusion.
Conversely, any poset P defines a simplicial complex Σ(P ), called the order complex
of P . The simplices of Σ(P ) are given by the finite chains p1 < · · · < pk in P . The
order complex of a face poset, Σ(F(Σ)), is isomorphic to sd(Σ), showing that Σ and
Σ(F(Σ)) are homeomorphic. One may therefore speak of the topology of a poset,
implicitly meaning the topology of its order complex.

Definition 8.8. If Q is a poset, let Q≤q denote the set {q′ ∈ Q | q′ ≤Q q },
with ≤Q being the partial order on Q (set inclusion in the case of face posets derived
from simplicial complexes).

Theorem 8.9 (Quillen Fiber Lemma). Suppose f : P → Q is an order-
preserving map between two posets. If f−1(Q≤q) is contractible for all q ∈ Q,
then P and Q are homotopy equivalent.
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Quillen’s original version (as Theorem A in [40]) makes a stronger category-
theoretic assertion than the combinatorial version we have reproduced here. Quillen’s
version for posets [41] is also stronger, asserting that f actually induces a homotopy
equivalence. In this chapter, we only require the version stated above.

8.3. Two Link-Based Homotopy Equivalences. We generalize Theorem
6.5 and Lemma 7.6 to links.

Theorem 8.10. For any stochastic graph G and any σ ∈ ΔG,

lk(ΔG, σ) � Lk(ΔG, σ).

Proof. Let P = F(lk(ΔG, σ)) and Q = F(Lk(ΔG, σ)) be the face posets of the
two complexes. Define f : P → Q by f(τ) = src(τ). For any W ∈ Q, f−1(Q≤W )
is the face poset of ΣW,σ, which is contractible by Lemma 8.7. The Quillen Fiber
Lemma completes the argument. �

Remark 8.11. For non-null G, Theorem 6.5 follows as a corollary, with σ = ∅.
In what follows, let tilde accents (as in σ̃) designate the image of G’s actions

in G/W as per Defs. 7.4 and 7.5.

Lemma 8.12. Suppose H = (W,B) is a fully controllable stochastic subgraph of
stochastic graph G = (V,A), with W 	= ∅. Let σ ∈ ΔG with W ∩ src(σ) = ∅. Then

lk(ΔG, σ) � ΔH ∗ lk(ΔG/W , σ̃).

Remark 8.13. Lemma 7.6 follows as a corollary, with σ = ∅.
Proof of Lemma 8.12. Observe that σ̃ ∈ ΔG/W , since σ ∈ ΔG and σ con-

tains no actions at states in W , so the lemma’s statement makes sense. Moreover,
by Theorems 6.5 and 8.10, we only need to prove that

Lk(ΔG, σ) � ΔH ∗ Lk(ΔG/W , σ̃).

Let P = F(ΔH ∗ Lk(ΔG/W , σ̃)) and Q = F(Lk(ΔG, σ)) be the associated face
posets. The elements of P are the nonempty simplices of ΔH ∗ Lk(ΔG/W , σ̃). We
may write any such simplex uniquely as X∪Y , with X ∈ ΔH and Y ∈ Lk(ΔG/W , σ̃),
not both X and Y empty.

Let � be the state in G/W representing W identified to a point and define
f : P → Q by

f (X ∪ Y ) =

{
X ∪ Y, if � 	∈ Y ;

W ∪ Y \ {�}, if � ∈ Y ;

with X ∈ ΔH and Y ∈ Lk(ΔG/W , σ̃). Observe that X ⊆ W and Y ⊆ (V \W ) ∪ {�}.
Establishing the following conditions will complete the proof, by the Quillen

Fiber Lemma:
(i) f is well-defined, meaning that f(X∪ Y ) really is a simplex of Lk(ΔG, σ);
(ii) f is order-preserving;
(iii) the fibers f−1(Q≤q) are contractible.
There are several cases to verify. We will prove the most interesting cases,

leaving the remainder for the reader.

(i). We assume here that � ∈ Y , leaving to the reader the case for which � 	∈ Y .
We know there exists a set of actions τ ⊆ A such that τ̃ ∩ σ̃ = ∅, τ̃ ∪ σ̃ ∈ ΔG/W ,

and src(τ̃) = Y . (Recall again that, for example, τ̃ is the image of G’s actions τ
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in the quotient graph G/W .) We can assume that τ̃ contains exactly one action Ã
with source �. Let w ∈ W be the source of the corresponding action A of τ . Since
H is fully controllable, there exists γ ∈ ΔH such that src(γ) = W \ {w}. Since
W∩ src(σ) = ∅, (γ∪τ) ∩ σ = ∅. We know src(γ∪τ) = (W \{w}) ∪ (Y \{�}) ∪ {w} =
W ∪ Y \ {�}. So it remains to establish that γ ∪ τ ∪ σ ∈ ΔG.

The set of actions (τ \ {A}) ∪ σ is convergent since the set (τ̃ \ {Ã}) ∪ σ̃ is
convergent and since the only difference, if any, between these two sets of actions is
in the labeling of targets at which neither set has sources. Since γ has no sources
or targets outside W and (τ \ {A})∪ σ has no sources in W , Lemma 7.3(b)(i) tells
us γ∪ (τ \{A})∪σ is convergent. Any circuit contained in γ∪τ ∪σ would therefore
necessarily involve the action A. Mapping that circuit to the quotient graph G/W
then tells us τ̃ ∪ σ̃ must contain a circuit, which is impossible.

(ii). Easy.

(iii). Every q ∈ Q is a nonempty simplex of Lk(ΔG, σ), so we will write U in
place of q, with U ⊂ V . Let such a nonempty U be given. We need to show that
f−1(Q≤U ) is contractible. We assume here that U ∩W = W , leaving to the reader
the case in which U ∩ W is a proper subset of W .

To establish contractibility, we will show that f−1(Q≤U ) is the face poset of
a cone with apex �. Observe that f−1(Q≤U ) is indeed the face poset of some
simplicial complex, since f is order-preserving.

Let X ∪Y ∈ f−1(Q≤U ), with X ∈ ΔH and Y ∈ Lk(ΔG/W , σ̃). Suppose � 	∈ Y .
We need to show that X ∪ Y ∪ {�} is an element of f−1(Q≤U ). Observe:

f (X ∪ Y ) = X ∪ Y ⊆ U, since X ∪ Y ∈ f−1(Q≤U );

f (X ∪ Y ∪ {�}) = W ∪ Y ⊆ U, since W ⊆ U .

To complete the proof, we will show that Y ∪ {�} ∈ Lk(ΔG/W , σ̃).
Suppose otherwise. Then there must be some set of states Y ′ ⊆ Y , such that

every proper subset of Y ′ ∪ {�} is a simplex of Lk(ΔG/W , σ̃) but Y ′ ∪ {�} is not.
By Lemma 8.6, no action of G/W moves off Y ′ ∪ {�} subject to σ̃. Consequently,
no action of G moves off Y ′ ∪ W subject to σ. Lemma 8.6 therefore implies that
Y ′ ∪ W 	∈ Lk(ΔG, σ). That establishes a contradiction, since Y ′ ∪ W ⊆ Y ∪ W ⊆
U ∈ Lk(ΔG, σ).

The same argument shows that {�} is itself in f−1(Q≤U ). �

9. Essential Actions

A graph may contain redundant actions. For instance, in the graph of Figure 7,
the action 1→{2, 3} is completely unessential. We can remove the action without
changing the overall capabilities of the system: with or without the action, the
system can move from any state to any other state. The link of this action in the
graph’s strategy complex is the edge appearing in the right panel of Figure 13. It
is contractible. That observation is generally true, as the next lemma shows.

Definition 9.1. Given stochastic graph G = (V,A) and actions A ⊆ A, let
G\A denote the graph (V,A\A) formed from G by removing the actions A.

Remark 9.2. Viewing G\A as a subgraph of G, we may think of ΔG\A as a
subcomplex of ΔG. In fact, ΔG\A = dl(ΔG,A).
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3       1

1       2 2       3

1         2,3{     }

1       2 2       3

lk(ΔG 
, {                 })1         2,3{     }ΔG

Figure 13. Left panel: The strategy complex ΔG of Figure 7.
Right panel: The link of the action 1→{2, 3} in ΔG. The link is
contractible since 1→{2, 3} is not essential for full controllability.

Lemma 9.3. Let G = (V,A) be a fully controllable stochastic graph. Suppose
A is a nonempty set of actions in A such that G\A is also fully controllable. Then
lk(ΔG,A) is contractible.

Proof. If A is not a simplex in ΔG, then lk(ΔG,A) is the void complex, which
is considered to be contractible. So we may assume that A ∈ ΔG.

The covering set homotopy equivalence of Corollary 5.6 carries over to links of
strategies as follows:

lk(ΔG,A) �

⎛
⎝ ⋃

A∈A\A
UA

⎞
⎠ ⋂ ( ⋂

A∈A
UA

)
.

Since G\A is fully controllable, ΔG\A � S
n−2, with n = |V |. As a result, the union

of all the covering sets UA, with A ∈ A\A, is all of
⊙n
�=. So

lk(ΔG,A) �
⋂

A∈A
UA.

That last intersection is nonempty and convex, hence contractible. �
Definition 9.4. Let G = (V,A) be a stochastic graph and let s ∈ V . Suppose

G contains a complete strategy for attaining s. Let A be a set of actions in A. We
say A is essential for attaining s in G if G\A does not contain a complete strategy
for attaining s.

Theorem 9.5. Let G = (V,A) be a stochastic graph and let s ∈ V . Suppose G
contains a complete strategy for attaining s. Let A be a nonempty subset of A.

(a) If A is not essential for attaining s in G, then lk(ΔG←s
,A) is contractible.

(b) If A is essential, but no proper subset of A is essential, for attaining s in
G, then lk(ΔG←s

,A) � S
n−3, with n = |V |.

Proof Sketch. Part (a) follows from Lemma 9.3. For part (b), we first ob-
serve that S

n−3 is sensible, since A’s existence means n is at least 2. We next
outline the key steps of a proof, leaving the details to the reader:

(1) One may replace any stochastic action A of A \ A with a collection of
deterministic actions, one for each stochastic transition of A, without
changing the homotopy types of these complexes: ΔG, ΔG←s

, lk(ΔG,A),
lk(ΔG←s

,A). See Remark 9.7 below for more detail.
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1       33       2

3       1 2       3

lk(ΔG←3
, {            })1       2 lk(ΔG←3

, {            ,            })1       2 1       3

3       2

2       3

Figure 14. The link shown in the left panel is contractible since
action 1 → 2 is not essential for attaining state 3 in the graph
of Figure 2. The link shown in the right panel is homotopic to
S

0 since together the actions 1 → 2 and 1 → 3 are essential for
attaining state 3 while neither is individually. See also Figure 5.

(2) Let Gndet be G with all stochastic actions of A\A replaced as in Step (1).
Define W to be all states w in V for which Gndet contains a strategy that
attains s from w without requiring any of the actions A. Observe s ∈ W .

(3) The loopback graph formed from Gndet and s contains a fully controllable
subgraph with state space W , disjoint from src(A). Prereasoning some of
Step (4) shows that A is convergent. Lemma 8.12 then factors S

|W |−2 out
of the link of A in the loopback complex formed from Gndet and s.

(4) Consider G again. Steps (1)–(3), along with the hypotheses regarding A,
allow us to assume without loss of generality that every action in A moves
off V \ {s} and that no action in A \ A moves off V \ {s}.

(5) Let H = (V ′,A′), with V ′ = V \ {s} and A′ = {A ∈ A \ A | src(A) ∈ V ′ }.
This construction makes sense for all stochastic actions of A \ A by Step
(4). There could, however, be nondeterministic actions in A\A that have
transitions both to s and to one or more states in V \ {s}. In constructing
A′, remove from any such action the transition to s.

(6) Observe that for any v ∈ src(A), H contains a complete strategy for
attaining state v, by the hypotheses regarding A.

(7) Let H+ designate H with all possible loopbacks added at every state
of src(A). Using Theorems 6.5 and 8.10, along with the Quillen Fiber
Lemma, one sees that ΔH+ � lk(ΔG←s

,A).
(8) Since H+ is fully controllable and contains n − 1 states, Theorem 5.7

establishes that lk(ΔG←s
,A) � S

n−3.
�

Example 9.6. The three-state graph of Figure 2 contains a complete strategy
for attaining state 3. The associated loopback graph and complex appear in Figure
5. The action 1→ 2 is not essential for attaining state 3. Topologically, the link
lk(ΔG←3

, {1→ 2}) is contractible, as shown in the left panel of Figure 14. Action
1→ 3 is not essential by itself either. However, the two actions 1→ 2 and 1→ 3
together clearly are essential for attaining state 3. Topologically, the right panel of
Figure 14 shows that lk(ΔG←3

, {1→2, 1→3}) is indeed homotopic to S
0.
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Figure 15. The graph in the top left panel contains an action
with stochastic transitions. These transitions appear as separate
deterministic actions in the graph shown in the bottom left panel.
The strategy complexes for the two graphs, shown in the right two
panels, have the same homotopy type.

Remark 9.7. In Step (1) of the proof of Lemma 9.5, we observed that one may
replace any stochastic action in a graph G by a collection of deterministic actions,
one such action for each of the original stochastic transitions, without changing the
homotopy type of ΔG. In fact, the corresponding source complexes are identical, as
a straightforward application of Lemma 6.3 shows. See Figure 15 for an example.
The argument generalizes with the aid of Lemma 8.6, showing that replacement of
stochastic transitions by deterministic actions does not change the homotopy type
of lk(ΔG,A), so long as one does not make such replacements for any actions of A.
The same reasoning applies to ΔG←s

and lk(ΔG←s
,A).

Example 9.8. Lemma 9.3 is phrased in terms of a fully controllable graph,
whereas Lemma 9.5 is specialized to loopback graphs. One wonders whether part
(b) of Lemma 9.5 holds as well for fully controllable graphs. In fact, it need not
hold when stochastic actions appear in the essential set A, as Figure 16 shows.

10. Decision Trees

This section re-examines the structure of loopback complexes. We have seen
that strategy complexes and source complexes can have the topology of any finite
simplicial complex (Theorems 2.16 and 6.12), but loopback complexes are either
spheres or points, homotopically (Theorem 3.6). Decision trees allow us to be more
specific. We are motivated in this exploration by the extensive results Jonsson ob-
tained for directed graph complexes via decision trees [27] as well as the connections
Forman established between decision trees and discrete Morse theory [18, 19].
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1       {p2,q3}

ΔG

Figure 16. The graph on the left is fully controllable. Stochastic
action 1 → {p2, q3} is essential for full controllability. However,
the link of that action in ΔG is not homotopic to S

0.

Intuitively, a decision tree is a variant of the “20 Questions” game, for determin-
ing whether an unknown set lies in some known collection of sets. Let Σ (perhaps
a simplicial complex) be such a collection, drawn from an underlying vertex set X.
We can view any subset σ of X as a bit vector over X. Suppose we know Σ exactly
and someone has a secret σ that may or may not lie in Σ. We may ask whether
individual bits in σ’s bit vector are on or off. Any question we ask may depend
on the answers to earlier questions. Our goal is to ask as few questions as possible
in order to decide whether σ ∈ Σ. For example, suppose x0 ∈ X is some specific
point, and suppose Σ consists of all subsets of X that do not contain x0. Then the
answer to one question, “Is x0 in σ?”, is sufficient to establish whether σ ∈ Σ. (We
do not need to figure out what σ is exactly, merely whether it lies in Σ.)

In the worst case, one may need to ask |X|-many questions. Such sets σ are
called evasive (relative to Σ and the questions being asked). Simplicial complexes
for which one can structure the questions in such a way that no simplex is evasive
are called nonevasive. This is a strong property. For finite simplicial complexes it
is well-known [7] that the following proper inclusions hold:

Cones ⊂ Nonevasive

Complexes
⊂ Collapsible

Complexes
⊂ Contractible

Complexes
.

This section shows that a contractible loopback complex is in fact nonevasive.
Similarly, for any loopback complex ΔG←s

homotopic to a sphere, one can pose
the membership questions in an order such that exactly one simplex is evasive,
corresponding to a complete strategy for attaining goal state s.

We now define decision trees recursively, much as one would in a functional
programming language such as SML [39]. A decision tree is an object containing
some data, with the object assuming one of two forms. One form of object, which we
designate Node below, contains a simplicial complex, a vertex, and two subtrees.
By containing two subtrees, a Node spawns two structural recursions. The other
form of object, which we designate Leaf below, stops such recursions. A Leaf

contains only a simplicial complex. There are further restrictions on the data in
each object, made explicit in the next definition.
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Figure 17. Left panel: A simplicial complex Σ generated by an
edge {x, y} and a point z. Right panel: One possible decision
tree ∧ for Σ. (Notation: Formally, a Node contains its subtrees.
Pictorially, it is convenient to draw edges to the subtrees. For ease
of viewing, the figure depicts nonempty complexes geometrically
rather than algebraically.)

Definition 10.1. Suppose Σ is a finite simplicial complex with finite under-
lying vertex set X. A decision tree for Σ (with underlying vertex set X) is defined
recursively as follows:

• Suppose Σ is one of the following complexes: ∅, {∅}, {∅, {x}} (void com-
plex, empty complex, single point x, respectively). Then Leaf(Σ) is a
decision tree for Σ.

• Suppose x ∈ X. Define the underlying vertex set for both lk(Σ, {x}) and
dl(Σ, {x}) to be X \ {x}. Suppose ∧lk is a decision tree for lk(Σ, {x})
and ∧dl is a decision tree for dl(Σ, {x}). Then Node(Σ, x,∧lk,∧dl) is a
decision tree for Σ.

• Nothing else is a decision tree for Σ.

Remarks 10.2. (1) One may think of Node and Leaf as functions that take
data and produce a decision tree, or, equivalently, as the actual objects containing
that data. (2) Figure 17 shows one possible decision tree for a simplicial complex
generated by an edge and a point. (3) Decision trees need not be unique. For
instance, the complex consisting of a single point x with underlying vertex set {x}
gives rise to these two possible decision trees:

Leaf({∅, {x}}) Node({∅, {x}}, x,Leaf({∅}),Leaf({∅})).
Definition 10.3. A decision tree ∧ for a finite simplicial complex Σ and a

simplex σ of Σ together define a descent path through the tree, as follows: The
path starts at ∧. Suppose ∧ = Node(Σ, x,∧lk,∧dl). If x ∈ σ, then the path
continues via tree ∧lk and simplex σ \ {x}; otherwise, the path continues via tree
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∧dl and simplex σ. The path stops upon encountering a Leaf. The simplex σ is
evasive with respect to ∧ if the Leaf attained contains the empty complex, and
nonevasive with respect to ∧ otherwise. A simplicial complex Σ is nonevasive if
there is some decision tree ∧ for Σ such that every simplex of Σ is nonevasive with
respect ∧. See [18, 27] for further details.

Remark 10.4. The void complex is nonevasive, as is the complex representing
any full nonempty simplex. The empty simplex is evasive with respect to any
decision tree for the empty complex.

The following lemma is immediate from the definitions:

Lemma 10.5. Suppose ∧ = Node(Σ, x,∧lk,∧dl) is a decision tree for finite
simplicial complex Σ.

(a) If ∧lk and ∧dl establish that lk(Σ, {x}) and dl(Σ, {x}), respectively, are
nonevasive, then ∧ establishes that Σ is nonevasive.

(b) If exactly one simplex τ of lk(Σ, {x}) is evasive with respect to ∧lk and
every simplex of dl(Σ, {x}) is nonevasive with respect to ∧dl, then exactly
one simplex σ of Σ is evasive with respect to ∧, given by σ = τ ∪ {x}.

(c) If every simplex of lk(Σ, {x}) is nonevasive with respect to ∧lk and exactly
one simplex τ of dl(Σ, {x}) is evasive with respect to ∧dl, then exactly one
simplex σ of Σ is evasive with respect to ∧, given by σ = τ .

The following technical lemma regarding strategy complexes is also immediate:

Lemma 10.6. Let G = (V,A) be a stochastic graph, v ∈ V , and τ ∈ ΔG.
Suppose B is some collection of actions, all with source v, such that τ ∪ {B} ∈ ΔG

for each single action B ∈ B. Then τ ∪ B ∈ ΔG.

We now strengthen the contractibility claim of Theorem 3.6:

Corollary 10.7. Let G = (V,A) be a stochastic graph and s ∈ V . Suppose G
does not contain a complete strategy for attaining s. Then ΔG←s

is nonevasive.

Proof. Let A� s denote the set of all actions of G←s except for those with
source s. Define a partial decision tree for ΔG←s

by arranging the actions A� s in
any order and recursively constructing Node(Σ, A,∧lk,∧dl), with A ranging over
A� s, starting from Σ = ΔG←s

, until all actions of A� s have been used along every
possible descent path. Consider the (yet to be instantiated) subtrees {∧i} at the
frontier of this partial decision tree. The “lk” branches on the descent path from
the overall decision tree for ΔG←s

to subtree ∧i define a subset Ai of A� s. Subtree
∧i is a decision tree for a subcomplex Σi of ΔG←s

, consisting of all simplices σ
such that σ ∩ A� s = ∅ and σ ∪ Ai ∈ ΔG←s

. Subcomplex Σi could be void and thus
nonevasive. Otherwise, its zero-skeleton is some subset of the loopback actions.
That subset is nonempty. (To see this, observe that Ai must be a simplex of ΔG←s

when Σi is nonvoid, but it cannot be a complete strategy for attaining s. As in the
proof Theorem 3.6, Ai can therefore join with at least one loopback action.) By
Lemma 10.6, Σi must in fact represent a full nonempty simplex, so is nonevasive.
Lemma 10.5(a) then implies that ΔG←s

is nonevasive. �

The next lemma will be a useful stepping stone to two results. By a minimal
strategy σ we mean a strategy with exactly one action at every state in src(σ).
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Lemma 10.8. Let G = (V,A) be a stochastic graph and let s ∈ V . Suppose
σ0 is a minimal complete strategy for attaining s in G. Let A be some nonempty
subset of A \ σ0. Then lk(ΔG←s

,A) is nonevasive.

Proof. By Lemma 10.5(a), along with Remarks 8.2(2), 9.2, and 10.4, the
proof reduces to the case in which A is convergent and consists of all actions in
A \ σ0 that do not have source s.

Let τ0 = {B ∈ σ0 | src(B) 	∈ src(A)} and write τ0 = {B1, . . . , Bk}, for some
k ≥ 0 (k = 0 means τ0 = ∅). Again by Lemma 10.5(a), the proof further reduces
to showing that the complexes dl(lk(ΔG←s

,A ∪ {B1, . . . , Bj−1}), {Bj}), for j =
1, . . . , k, and the complex lk(ΔG←s

,A ∪ τ0) are all nonevasive. We will show that
the last of these complexes, call it Σ, is nonevasive, leaving the first k complexes to
the reader.

For every v ∈ V \ {s}, now let Bv designate the action of σ0 with source v. By
convergence of σ0, the following system of equations has a unique finite solution:

(10.1)
tv = adv(Bv, {tu}) + 1, for v ∈ V \ {s};
ts = 0.

Observe that if Bv is nondeterministic, then tv > tu for all targets u of Bv. If
Bv is stochastic, then tv > tu for at least one target u.

Let t0 = min { tv | v ∈ src(A)}, let v0 be a state in src(A) at which the mini-
mum t0 is attained, and let C0 be the action of σ0 with source v0. (At least one v0

exists since A 	= ∅. If more than one v0 is possible, pick any one.)
We will show that Σ, if not void, is a cone with apex C0. Thus Σ is nonevasive.

Let σ ∈ Σ with C0 	∈ σ. Define σ′ = σ ∪ {C0}. By construction, σ ∩ (A ∪ τ0) = ∅
and σ ∪ A ∪ τ0 ∈ ΔG←s

. By definition, C0 /∈ A. Since src(C0) ∈ src(A), C0 	∈ τ0.
So σ′∩ (A∪τ0) = ∅. We need to establish that σ′∪A∪τ0 ∈ ΔG←s

, for then σ′ ∈ Σ.
Suppose σ′ ∪ A ∪ τ0 is not convergent. Then there is some nonempty set of

actions γ ⊆ σ′∪A∪τ0 such that no action of γ moves off src(γ). Necessarily, C0 ∈ γ.
Some target u of C0 with t0 > tu lies in src(γ). Let v1 = u, t1 = tu, and let C1 be an
action of γ with source u. Suppose u 	= s. By definition of t0, this means C1 must
be an action of σ0. Now repeat the construction. We obtain a sequence of distinct
states v0, v1, . . . , vi, all in src(γ). By finiteness, we must eventually find that vi = s.
So s ∈ src(γ). On the other hand, observe that src(A ∪ τ0) = V \ {s}, implying
src(σ ∪ A ∪ τ0) = V . That is a contradiction, since σ ∪ A ∪ τ0 is convergent. �

Remark 10.9. The method of decision trees is a combinatorial approach for in-
ferring topology, seemingly different from the covering set approach we used earlier.
A connection to covering sets appears via System (10.1).

We can now strengthen as well Lemma 9.5(a):

Corollary 10.10. Let G = (V,A) be a stochastic graph and let s ∈ V . Suppose
G contains a complete strategy for attaining s. Let A be a nonempty subset of A
that is not essential for attaining s in G. Then lk(ΔG←s

,A) is nonevasive.

The following result is useful in a decision-tree-theoretic proof that loopback
complexes are spheres when complete strategies exist:

Corollary 10.11. Let G = (V,A) be a stochastic graph and let s ∈ V . Suppose
σ0 is a minimal complete strategy for attaining s in G. There exists a decision tree
for ΔG←s

with exactly one evasive simplex, given by σ0.
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Proof. By using Lemma 10.5(c) and specializing Lemma 10.8 to cases in
which A consists of a single action, we reduce to the case in which A = σ0. Writing
σ0 = {A1, . . . , An−1}, with n = |V |, we may construct a partial decision tree for
ΔG←s

whose frontier consists of decision trees for the following n complexes:

Σi = dl(lk(ΔG←s
, {A1, . . . , Ai−1}), Ai), for i = 1, . . . , n − 1;

Σn = lk(ΔG←s
, {A1, . . . , An−1}).

For i = 1, . . . , n − 1, complex Σi is a cone with apex given by the loopback action
s→ src(Ai). Complex Σn is the empty complex. Repeated application of Lemma
10.5(b) finishes the proof. �

We may now obtain the sphere result of Theorem 3.6 using decision trees:

Corollary 10.12. Let G = (V,A) be a stochastic graph, s ∈ V , and n = |V |.
If G contains a complete strategy for attaining s, then ΔG←s

� S
n−2.

Proof. We may assume that n > 1, as otherwise the claim is trivially true.
Now recall the following general result from discrete Morse theory [18]:

Suppose ∧ is a decision tree for a simplicial complex Σ, such that the empty
simplex is nonevasive with respect to ∧. Then Σ is homotopy equivalent to a CW
complex consisting of exactly one p-cell for every p-dimensional simplex of Σ that
is evasive with respect to ∧, along with one additional 0-cell. In particular, if Σ
is nonempty and admits a decision tree with exactly one evasive simplex, then the
associated CW complex consists of a 0-cell and a k-cell, with k the dimension of the
evasive simplex. The complex Σ is therefore homotopic to a sphere of dimension k.

In our case, Corollary 10.11 produces exactly one evasive simplex. That simplex
has dimension n − 2. �

11. Category Connections

This section explores connections between strategy complexes and category the-
ory. For an introduction to category theory, see [2]. For more advanced treatments,
see [36, 23, 48]. Then recall that the nerve of a small category is the simplicial set
whose simplices are the diagrams of composable morphisms and that the classifying
space of a small category is the geometric realization of its nerve. A strategy com-
plex looks almost like the nerve of some category, particularly since actions look
like morphisms. Moreover, any finite simplicial complex is a small category, via its
face poset. In that setting, categorical nerve amounts to barycentric subdivision.

These observations suggest viewing strategy and source complexes as homeo-
morphic to the classifying spaces of planning processes, each described by a poset.
Informally, “Plans are the nerve of planning.” This section explores the founda-
tions for that statement. We focus on nondeterministic graphs and give a sampling
of key results. The constructions extend to stochastic graphs, with some technical
modifications to account for probabilities and quantification differences.

11.1. Each Graph as a Category. We may view a given nondeterministic
graph G = (V,A) as a category in several distinct but related ways:

(1) We view G directly as a category as follows: The objects are the individual
states v of V plus every subset T of V that is the target set of some action in A. The
morphisms are the actions A plus all required identities. There are no compositions
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except between an action v→T of A and identities at v and T . In particular, here
we view a source state v and a singleton target set {v} as different objects.

(2) We view G as a category with subsets as follows: Much as in (1), but with
additional objects and morphisms. The objects now are the individual states v
plus all nonempty subsets S of target sets T . The morphisms now are all labeled
arrows v

A−→ S, with A ∈ A, A = v→T , and ∅ 	= S ⊆ T , plus all required identities.
(3) We view G as a category with supersets as follows: Much as in (2), except

that we include supersets S of T instead of subsets.
Intuitively, one might interpret the original G in category (2) as an upper bound

on an adversary’s actual choices. One might interpret the original G in category
(3) as a benign instantiation of more evil adversaries.

11.2. All Graphs as a Category. We may view all nondeterministic graphs
as a category, again in several distinct but related ways. The objects in all cases
are the graphs themselves. We include the null graph; it is an initial object in
each category. A morphism f : G → H between two nondeterministic graphs is
simultaneously a function on states and on actions that induces a functor from G to
H, viewed as categories via Section 11.1. Composition of morphisms is composition
of the underlying functions. To be explicit, we write out the analogue for case (2):

(2) In the category of nondeterministic graphs with cycle-preserving morphisms,
a morphism f : G → H, with G = (V,A) and H = (W,B), is simultaneously a
function f : V → W and a function f : A → B such that: if v → S ∈ A and
f(v → S) = w → T ∈ B, then f(v) = w and f(S) ⊆ T . One can verify that
identities and composition are well-defined in this category. The name for this
category comes from Lemma 11.1 below.

(3) The category of nondeterministic graphs with goal-preserving morphisms is
much like (2), except that we replace subset with superset. The name for this
category comes from Lemma 11.2 below.

Lemma 11.1. If f : G → H is a cycle-preserving morphism, then f(A) contains
a circuit in H whenever A contains a circuit in G.

Proof. Suppose A contains a sequence of actions v1 →S1, . . . , vk →Sk, such
that vi+1 ∈ Si, for i = 1, . . . , k, with k ≥ 1 and k + 1 meaning 1. For each i,
f(vi → Si) = wi → Ti (some action of H), with f(vi) = wi and f(Si) ⊆ Ti. So
wi+1 ∈ Ti, telling us f(A) contains a circuit in H. �

Lemma 11.2. If f : G → H is a goal-preserving morphism, with G = (V,A)
and H = (W,B), and if Z is certainly attainable in G, then f(Z) ∪ (W \ f(V )) is
certainly attainable in H.

Proof. We know V \Z ∈ ΔG. We need to show that f(V )\f(Z) ∈ ΔH . Using
Lemma 6.3, it is enough to show that for every nonempty subset Y of f(V ) \ f(Z),
some action of H moves off Y . Pick any such Y and let X = V \ f−1(f(V ) \ Y ).
Observe that ∅ 	= X ⊆ V \ Z, so X ∈ ΔG. By Lemma 6.3, some action v →S in
A moves off X. In particular, v ∈ X and S ⊆ V \ X. Since f is a goal-preserving
morphism, f(v → S) is an action w → T in B, with w = f(v) ∈ f(X) ⊆ Y and
f(S) ⊇ T . Thus T ⊆ f(V \ X) ⊆ f(V ) \ Y . So f(v→S) moves off Y . �

11.3. Functoriality of Strategy Complexes. Let JOIN
+ be the following

category: The objects are finite join semi-lattices with two restrictions: (1) Each
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semi-lattice must contain a distinguished top element 1̂. (2) A semi-lattice with
more than one element must contain a distinguished bottom element 0̂. Morphisms
are functions between semi-lattices viewed as sets, that further respect the join
structure, send 1̂ to 1̂, and send 0̂ to 0̂ 	= 1̂ whenever 0̂ 	= 1̂ exists in the domain.

Comment: Let J,K be objects of JOIN
+, with |J | = 1 and |K| > 1. Then

JOIN
+ contains identity morphisms at J and K, a unique morphism J → K, but

no morphism K → J .

Definition 11.3. Given a nondeterministic graph G, we may view its strategy
complex ΔG as an object L(G) in JOIN

+ by adjoining a top element 1̂. Intuitively,
1̂ represents circuits. The join operation is defined by saying that τ ∨ σ = τ ∪ σ
whenever τ , σ, and τ ∪ σ are all simplices of ΔG, and is 1̂ otherwise.

Comment: If G is null, then L(G) consists just of 1̂. Otherwise, L(G) also
contains 0̂ = ∅ ∈ ΔG, distinct from 1̂.

Lemma 11.4. The assignment operator L from Def. 11.3 is a functor from the
category of nondeterministic graphs with cycle-preserving morphisms to JOIN

+.

Proof. To define the functor, let L(G) be as in Def. 11.3, then extend to
morphisms as follows: If f : G → H is a cycle-preserving morphism, define the
morphism L(f) : L(G) → L(H) in JOIN

+ as follows:

L(f)(1̂) = 1̂;
L(f)(τ) = f(τ), if τ ∈ ΔG and f(τ) ∈ ΔH ;
L(f)(τ) = 1̂, otherwise.

We now assume that all graphs are non-null; the null cases are straightforward.
To verify that L(f) is a morphism, first observe that L(f) sends 1̂ to 1̂ and 0̂

to 0̂ (since 0̂ = ∅). Moreover, if x and y are elements in L(G), with at least one of
them being 1̂, then L(f)(x ∨ y) = 1̂ = L(f)(x) ∨ L(f)(y). So suppose τ, σ ∈ ΔG.
If τ ∪ σ 	∈ ΔG, then f(τ ∪ σ) 	∈ ΔH , by Lemma 11.1. So L(f)(τ ∨ σ) = L(f)(1̂) =
1̂ = L(f)(τ)∨L(f)(σ). The last equality holds either because one of the terms is 1̂
already or because f(τ)∪f(σ) = f(τ ∪σ) 	∈ ΔH . If τ ∪σ ∈ ΔG but f(τ ∪σ) 	∈ ΔH ,
then L(f)(τ ∨ σ) = L(f)(τ ∪ σ) = 1̂ = L(f)(τ) ∨ L(f)(σ), with the last equality
holding for the same reasons as before. Finally, if τ ∪ σ ∈ ΔG and f(τ ∪ σ) ∈ ΔH ,
then L(f)(τ ∨ σ) = f(τ ∪ σ) = f(τ) ∪ f(σ) = L(f)(τ) ∨ L(f)(σ).

To verify that L is a functor:

Identities. If G
i−→ G is an identity morphism, then L(G)

L(i)−−→ L(G) is as well.

Composition. Suppose G
g−→ H

h−→ K. Consider L(G)
L(g)−−−→ L(H)

L(h)−−−→ L(K).
L(h ◦ g) and L(h) ◦ L(g) both send 1̂ to 1̂ and 0̂ to 0̂. Let τ ∈ ΔG. If g(τ) 	∈ ΔH ,
then h(g(τ)) 	∈ ΔK by Lemma 11.1. Thus L(h ◦ g)(τ) = 1̂ and (L(h) ◦ L(g))(τ) =
L(h)(L(g)(τ)) = L(h)(1̂) = 1̂. If g(τ) ∈ ΔH but h(g(τ)) 	∈ ΔK , then L(h◦g)(τ) = 1̂
and (L(h) ◦ L(g))(τ) = L(h)(g(τ)) = 1̂. Finally, if g(τ) ∈ ΔH and h(g(τ)) ∈ ΔK ,
then L(h ◦ g)(τ) = h(g(τ)) = (L(h) ◦ L(g))(τ), by definition of ◦. �

Remark 11.5. The join structure shows how ΔG is homeomorphic to a plan-
ner’s classifying space. Imagine a forward-chaining planner that takes unions of
convergent sets of actions, retaining only those unions that remain convergent.
This planner defines a category whose objects are the nonempty convergent sets
of actions. The morphisms are induced by other sets of convergent actions, which
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may be adjoined without creating a circuit. The categorical nerve of this category
is sd(ΔG).

11.4. Functoriality of Source Complexes. It is harder to see source com-
plexes as functors. The reason is that source complexes discard information about
precise paths and targets attained, retaining only the start regions of strategies. For
functoriality, some contextual information appears to be necessary. This subsection
explores one possible approach.

Definition 11.6. Let G = (V,A) be a nondeterministic graph. If A is any
set of actions in A, let trg(A) denote all the targets of those actions. Formally,
trg(A) =

⋃
v→T∈A T .

Definition 11.7. Let G = (V,A) be a nondeterministic graph. Define the
poset of local strategies of G, denoted P (G), to consist of all pairs (W,X) such
that: (i) X ⊆ W ⊆ V , and (ii) there exists a σ ∈ ΔG with src(σ) = W \ X and
trg(σ) ⊆ W . Define a partial order on P (G) by (U, Y ) ≤ (W,X) if and only if
X ⊆ Y ⊆ U ⊆ W .

Remarks 11.8. (1) If X is a nonempty proper subset of W , then (W,X) is in
P (G) precisely when G contains a nonempty strategy for attaining goal set X from
start region W \ X, moving wholly within ambient subspace W . (2) An element
of P (G) “less” than another has a reduced ambient subspace and/or a looser goal
set. (3) If G is the null graph, then P (G) is the empty poset. Otherwise, P (G)
includes, for each subset W of G’s state space, the trivial element (W,W ).

Lemma 11.9. The assignment operator P from Def. 11.7 is a functor from the
category of nondeterministic graphs with goal-preserving morphisms to the category
of finite posets.

Proof. To define the functor, let P (G) be as in Def. 11.7, then extend to
morphisms as follows: If f : G → H is a goal-preserving morphism, define the
poset morphism P (f) : P (G) → P (H) by P (f)(W,X) = (f(W ), f(X)). One
should verify that: (a) P (f)(W,X) ∈ P (H) whenever (W,X) ∈ P (G), (b) P (f) is
a poset morphism, and (c) P preserves identities and composition.

We will prove (a) and leave verification of (b) and (c) to the reader.
Let (W,X) ∈ P (G). So there exists σ ∈ ΔG such that src(σ) = W \ X and

trg(σ) ⊆ W . Consider any v → S ∈ σ. Let u → T = f(v → S). Since f is
goal-preserving, T ⊆ f(S) ⊆ f(W ). So, we see that trg(f(σ)) ⊆ f(W ).

Now let U be any nonempty subset of f(W ) \ f(X). We will show that some
action of f(σ) moves off this set. As a result, by applying Lemma 6.3 repeatedly, we
see that there is some τ ∈ ΔH for which src(τ) = f(W ) \ f(X) and trg(τ) ⊆ f(W ).

Let Y = W \f−1(f(W )\U). Observe ∅ 	= Y ⊆ W \X. So σ contains an action
v→S that moves off Y . Let u→T = f(v→S). Then u = f(v) ∈ f(Y ) ⊆ U and
T ⊆ f(S) ⊆ f(W \ Y ) ⊆ f(W ) \ U . This says the action u→T moves off U . �

Definition 11.10. Given a nondeterministic graph G = (V,A) and a nonempty
subset W of V , let G|W = (W,AW ) with AW = {v→T ∈ A | v ∈ W and T ⊆ W }.
So G|W consists of state space W and all actions of G whose motions lie within W .
Also let P |W = {(W,X) ∈ P (G)} (W fixed, X varying), inheriting P (G)’s partial
order. So P |W models the certainly attainable goals of G|W , suggesting the next
lemma.
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Lemma 11.11. Let G = (V,A) be a nondeterministic graph. Suppose ∅ 	= W ⊆
V . Then P |W and ΔG|W are isomorphic when viewed as partially ordered sets.

Proof. Define P |W f−→ ΔG|W and ΔG|W
g−→ P |W by f(W,X) = W \ X and

g(Y ) = (W, W \ Y ). The reader may verify that f and g are well-defined and that
they are poset maps. They are inverses. �

11.5. A Planner’s Classifying Space. Lemma 11.11 suggests how one may
view ΔG|W as homeomorphic to a planner’s classifying space. In particular, P |W
defines a poset category which one may interpret as a planner’s search space. The
category’s objects are the elements of P |W . The category’s morphisms are arrows
of the form (W,Y ) → (W,X), exactly one such arrow for each comparison (W,Y ) ≤
(W,X) in P |W . This subsection elaborates the interpretation of P |W as a planner.

Lemma 11.12. Let G = (V,A) be a nondeterministic graph. Suppose ∅ 	= X ⊆
W ⊆ V . Then (W,X) ∈ P (G) if and only if there exists a sequence of triples
(X0, A0, v0), . . . , (Xk−1, Ak−1, vk−1), with k ≥ 0, such that:

(i) W = X0 ⊃ X1 ⊃ · · · ⊃ Xk−1 ⊃ Xk
def= X;

(ii) Xj \ Xj+1 = {vj}, for j = 0, . . . , k − 1;
(iii) Aj is an action of G|W with source vj that moves off W \ Xj+1, for

j = 0, . . . , k − 1.

Proof. The lemma holds when W = X, by letting k = 0, so we may assume
that X is a (nonempty) proper subset of W .

I. Suppose (W,X) ∈ P (G). Let σ ∈ ΔG be a minimal strategy satisfying
src(σ) = W \X and trg(σ) ⊆ W . In particular, all actions of σ are actions of G|W .
Now backchain from X, starting by letting k = |W \ X| and Xk = X. Inductively,
suppose Xj+1 ⊃ · · · ⊃ Xk (and the corresponding triples) have been defined, for
some j ∈ {0, . . . , k − 1}. Since σ is convergent, some action Aj of σ must move off
W \ Xj+1. Let vj = src(Aj) and Xj = Xj+1 ∪ {vj}. Decrement j by one. Repeat
this process until reaching (X0, A0, v0), at which point X0 = W .

II. Suppose the specified sequence of triples exists. Then the set of actions
σ = {A0, . . . , Ak−1} is convergent. Moreover, src(σ) = W \ X and trg(σ) ⊆ W . So
(W,X) ∈ P (G). �

Remark 11.13. Viewing P |W as a poset category, Lemma 11.12 says that for
every object (W,X) in this category, there is a diagram of composable morphisms

(11.1) (W,W ) = (W,X0) → (W,X1) → · · · → (W,Xk) = (W,X),

with the {Xi} satisfying the conditions stated in the lemma. This type of diagram
defines a forward-chaining planner, as described next.

The planner starts its search at (W,W ) and thereafter regards (W,W ) as visited.
The planner iterates as follows:

(a) Suppose the planner has visited (W,Z) ∈ P |W .
(b) Suppose there is some state z ∈ Z and some action A of G|W such that

A has source z and A moves off W \ Z ′, with Z ′ = Z \ {z}.
(c) This means (W,Z ′) is an object in P |W and thus (W,Z) → (W,Z ′) is

a morphism in P |W . If (W,Z ′) has not yet been visited, the planner
traverses the arrow and visits (W,Z ′).
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Figure 18. Top panel: A graph with state space V = {1, 2, 3}.
Bottom panel: The category P |V , drawn with its four generat-
ing morphisms. (Not shown are four identity morphisms and the
morphism (V, V ) → (V, {3}) arising from composition.) Three of
the four morphisms (solid arrows) are labeled by the actions that
the forward-chaining planner of Remark 11.13 might produce. The
fourth morphism (dashed arrow) amounts to a strategy switch; the
planner would not traverse this arrow merely by forward-chaining,
since no action of G with source 1 moves off {1, 2}.

The planner loops over all possible choices of z and A at all visited objects,
visiting more objects in the process, until it has visited every possible object in
P |W . Some further comments:

(1) The conclusion that (W,Z ′) ∈ P (G) in step (c) is independent of whatever
strategy establishes that (W,Z) ∈ P (G). This observation means that the
planner needs to keep track merely of the objects (W,X) it encounters not
of the actions leading to those objects.

(2) If desired, one may also view the planner as an output device. As such,
the planner reports each arrow (W,Z) → (W,Z ′) that it traverses, labeled
with the action A found in step (b). Implicitly, this linear output defines
a strategy for attaining X from W for each object (W,X) visited by the
planner. For any given (W,X), one may recover that strategy by scanning
the output in reverse. (Of course, backchaining directly in G would be
more efficient.)

(3) The category P |W contains non-identity morphisms beyond the arrows
traversed by the basic forward-chaining search just described, either be-
cause an arrow points to a previously visited object or because no action
can label the arrow. See Figure 18. Viewed as planning operations, these
additional morphisms constitute strategy switches: If the planner discov-
ers both (W,X) and (W,Y ) via forward-chaining, with X ⊂ Y , then the
planner may, at least implicitly, traverse the arrow (W,Y ) → (W,X),
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thereby instantiating a preference for strategies with tighter goals over
those with looser goals. (Morphism composition is a particular instance.)

Summary: The poset category P |W defines the search space of a forward-
chaining planner augmented with strategy switches that improve goal attainment.
The objects (W,X) of P |W constitute the planner’s search states; the morphisms
(W,Y ) → (W,X) constitute the planner’s possible state transitions.

Corollary 11.14. Let G = (V,A) be a nondeterministic graph. Suppose
∅ 	= W ⊆ V . Let P ◦|W be the poset subcategory of P |W formed by removing
the object (W,W ). Then the categorical nerve of P ◦|W is isomorphic to sd(ΔG|W ).
Consequently, ΔG is homeomorphic to the classifying space of a category which one
may interpret as a planner for finding all nontrivial certainly attainable goals in G.

Proof. By Lemma 11.11, P |W and ΔG|W are isomorphic posets. The bottom
elements, (W,W ) and ∅, respectively, correspond via this isomorphism. As a result,
P ◦|W (which is P |W \ {(W,W )}) and ΔG|W \ {∅} are isomorphic poset categories,
implying that the categorical nerve of P ◦|W is isomorphic to sd(ΔG|W ). Using
W = V in Remark 11.13, then dropping the planner’s trivial initial state (V, V ),
establishes the lemma’s planning assertion. �

Remark 11.15. The diagram of morphisms (11.1) gives rise to a (k−1)-simplex
in P ◦|W ’s categorical nerve, of the form (W,X1) → · · · → (W,Xk), with k ≥ 1.

The following lemma provides an alternative perspective:

Lemma 11.16. Let G = (V,A) be a nondeterministic graph. Suppose ∅ 	= W ⊆
V . Then (W,X1) < (W,X2) < · · · < (W,Xk) is a chain in P (G) if and only if
there exist minimal strategies σ1 ⊂ σ2 ⊂ · · · ⊂ σk in ΔG|W , with all inclusions
proper, such that src(σj) = W \ Xj, with Xj ⊆ W , for j = 1, . . . , k.

Proof. I. Suppose (W,X1) < (W,X2) < · · · < (W,Xk) is a chain in P (G).
Let σk ∈ ΔG be a minimal strategy satisfying src(σk) = W \ Xk and trg(σk) ⊆
W . So σk ∈ ΔG|W . For j = 1, . . . , k − 1, let σj = {A ∈ σk | src(A) ∈ W \ Xj }.
Observe that src(σj) = W \ Xj since Xk ⊂ Xj . Moreover, σj is minimal since σk

is minimal. By definition of P (G), Xj ⊆ W . Finally, σ1 ⊂ σ2 ⊂ · · · ⊂ σk since
X1 ⊃ X2 ⊃ · · · ⊃ Xk, with all inclusions proper.

II. Suppose the specified strategies exist. Then (W,Xj) ∈ P (G), for j =
1, . . . , k. Since the strategies are minimal, proper inclusion of strategies implies
proper inclusion of start regions. Consequently, (W,X1) < · · · < (W,Xk). �

Remark 11.17. Consider a planner that constructs all possible strategies of
ΔG|W in the manner described by Remark 11.5. Suppose further that the planner
reports the status of its search not by outputting full strategies but simply their
start regions, along with corresponding arrows. Passing to complements in W ,
Lemma 11.16 tells us that this planner will traverse exactly all the arrows of the
category P |W (some arrows perhaps more than once). Omitting again the trivial
object of P |W , one may therefore view ΔG|W as homeomorphic to the classifying
space of a category derived from a planner. The difference between this planner and
that described in Remark 11.13 lies in each planner’s search space. The planner of
Remark 11.13 never needs to remember actions; its search space truly is P |W . In
contrast, the planner suggested by Lemma 11.16 operates in the join semi-lattice
L(G|W ), then produces P |W as a trace.
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12. Discussion

12.1. Uncertainty, Geometry, and Topology. This research shows how
the following are equivalent topologically: (a) the convergent sets of motions in finite
graphs with control uncertainty, (b) finite simplicial complexes, (c) certain families
of polyhedral cones in R

n. Similar results were known for braid arrangements in
R

n via earlier work on directed graph complexes and partially ordered sets [7,
8, 26, 47, 27]. Those ideas extend readily from directed graphs to graphs with
nondeterministic transitions. The ideas extend as well to graphs with stochastic
transitions, by allowing the hyperplanes comprising the R

n arrangements to rotate
more freely about the line {x1 = · · · = xn}. The usefulness of these hyperplanes
is their ability to cast geometrically the expected convergence time equations of
adversarially chosen Markov chains. That geometry provides a stepping stone to
topology via the Nerve Lemma.

The significance of the step to topology is in showing how to infer global system
capabilities from local graph connectivity. Traditionally, in order for a system with
uncertainty to know that it can attain a goal, it tries to exhibit a strategy for
doing so. Exhibiting a strategy entails combining uncertain actions in a manner
that converges to the desired goal. Our theorems provide an alternative: instead
of creating a specific strategy, one merely needs to show that the available actions
cover a sphere. Exhibiting a specific strategy is one way to cover a sphere, but not
the only way. For instance, imagine a collection of strategies {σv}, such that σv

converges to goal s in time T when started from state v. The strategies need not
be consistent with each other; their union may contain a circuit or simply take too
long. Nonetheless, we know there is some strategy σ ⊆

⋃
v σv that will converge

to goal s in time T from all relevant v, simply because the union of the original
strategies along with loopbacks from s must cover a sphere of the correct dimension.
Section 6.2 suggests related applications in system design.

12.2. Higher-Order Interactions. The compression of strategy complexes
to source complexes discards detailed action information while preserving knowl-
edge of the system’s global capabilities. This permits higher-level reasoning about
interactions with an adversary. In effect, the start regions of strategies now become
much like actions, facilitating reasoning about time-varying goals and tactics. This
perspective holds as well when there are prescribed motions, via the source com-
plexes of links. An interesting direction for future exploration is to vary these links
and see how the complexes vary. From a practical perspective, this may be useful
in disaster preparation.

12.3. Computational Complexity. Our recent robotics paper [14] provides
explicit algorithms for computing many of the structures presented in this chapter,
such as the source complex and the fully controllable subgraphs of any stochastic
graph. That paper also discusses several approaches for computing the strategy
complex of a stochastic graph. The subroutine used within many of these algorithms
is a form of backchaining, much as it appeared in several proofs throughout this
chapter. The backchaining algorithm starts with a desired goal set S. It searches for
some action A that moves off the complement V \S, then enlarges the goal to a new
subgoal S′ by adding the source of A to S. The algorithm repeats this process, now
with S′ in place of S, enlarging to a new S′, and so forth. If and when an enlarged
subgoal S′ engulfs all of V , the algorithm terminates successfully; the actions it
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found constitute a strategy for attaining the original goal S. Otherwise, for some
S′, the algorithm is unable to find an action that moves off V \ S′, meaning that
no strategy exists for attaining the original goal S from all of V . The worst-case
runtime complexity of this backchaining algorithm is O(|V |2|A|), with G = (V,A)
being the underlying stochastic graph. Depending on the particular graph G and
the particular goal S, faster versions may be possible.

While backchaining has low polynomial time complexity, computing the source
or strategy complex of a graph may require exponential time. At first glance, one
suspects a representational defect, since the number of simplices in a simplicial
complex can be exponential in the size of the complex’s zero-skeleton. However,
the underlying reasons appear to be intrinsic to the questions we are investigating
rather than merely an artifact of the methods. Observe that the maximal simplices
of a graph’s source complex correspond to the minimal certainly attainable goals
in the graph (as complements with respect to the state space V ). It turns out
that the problem of finding the size of the smallest certainly attainable goal in a
nondeterministic graph is NP -complete [14]. Consequently, it is unlikely that faster
than exponential time algorithms exist for determining the global capabilities of an
uncertain system (as via a source complex), in the worst case.

From a robotics perspective, discovering that a problem is NP -complete is
good news. The problem is nontrivial enough to be interesting yet probably not
so complicated as to be intractable in all settings. Indeed, in applications one
may be fortunate to have small upper bounds on the sizes of the minimal certainly
attainable goals. Backchaining then allows one to construct the maximal simplices
of the source complex reasonably quickly. The maximal simplices fully determine
the complex. Other practical efficiency improvements are possible. For instance, in
some cases the dual complex has a compact representation, as for a fully controllable
graph. More generally, one may find the fully controllable subgraphs of a stochastic
graph in fairly low polynomial time [14]. The results of Section 7 then simplify the
source and strategy complexes by collapsing each such subgraph to a single state.

12.4. Complex Structure and Future Work. Loopback complexes are
highly specialized structures, as analysis via decision trees shows, yet source and
strategy complexes can be fairly arbitrary. Full controllability appears as homotopy
equivalence to a sphere of a particular dimension. Dually, subcomplexes arising
from certain subgraphs in a fully controllable graph must be cones, as we saw in
several proofs. Yet, we do not understand in and of itself what contractibility of a
strategy complex implies. This gap, between specific structure on the one hand and
almost arbitrary structure on the other, suggests a spectrum of potential results.
Future research should further classify the homotopy types of uncertain systems in
order to facilitate effective design. A robot encountering a novel scenario should be
able to abstract from it a topological hash, index into a table of applicable strategies,
then select one such strategy optimized with respect to attendant objectives, much
like a robot hand grasping an object today will select from a collection of forces in
the grasp’s null space. The research discussed in this chapter provides one step in
that direction.
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