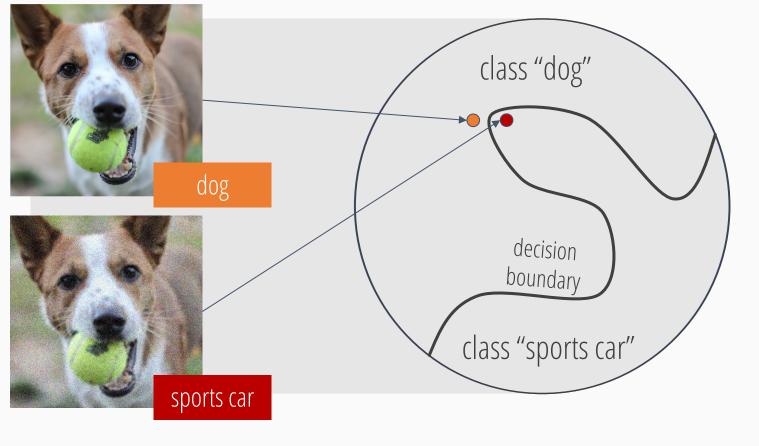
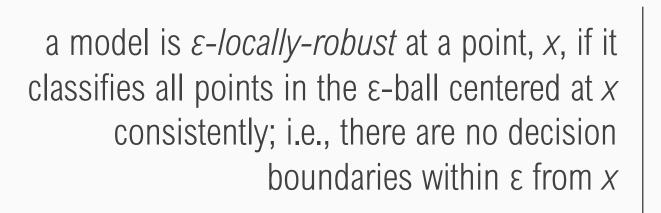
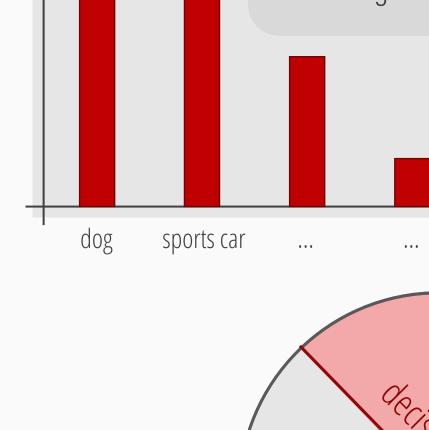
Relaxing Local Robustness Klas Leino & Matt Fredrikson

Adversarial Examples & Local Robustness

Deep networks are vulnerable to *adversarial examples*, wherein inconspicuous perturbations are chosen to cause arbitrary misclassifications.







| certified defenses

Certification of local robustness at a given point allows us to provably preclude small-norm adversarial examples at that point.

local

robustness

Local Robustness may be III-suited

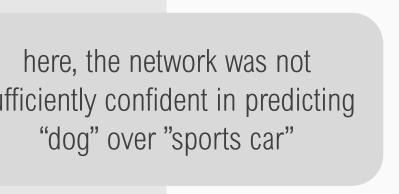


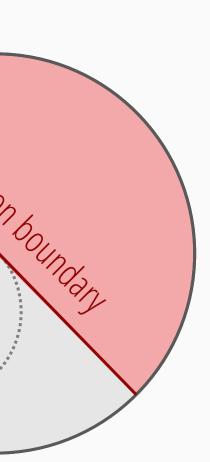
Our Contributions

We introduce two *relaxed notions of robustness* that are more suitable than local robustness in many contexts

We devise a way to construct networks such that our robustness properties can be *efficiently certified*

We provide case studies showing the *suitability* of our proposed properties to real-world classification tasks





Relaxations of Local Robustness

| Relaxed Top-K Robustness

Relaxed Top-K, or *RTK*, robustness is the robustness analogue of top-k accuracy, which is often used in classification settings with label noise, subject ambiguity, or classes that are difficult to distinguish.

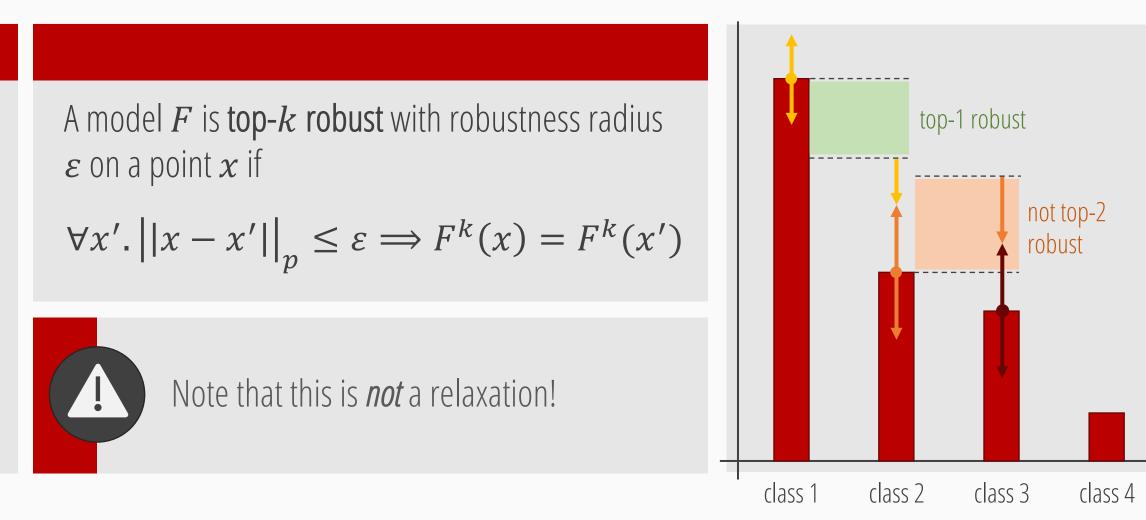
motivation | certain issues in the learning task might make local robustness impractical

Ambiguous class labels due to multiple plausible subjects

top-k robustness | a straightforward attempt at this analogue does *not* lead to a relaxation of local robustness

To define our new robustness notions, we would like to think of a model as outputting an ordered set of classes:

Given a model F, let $F^k(x)$ be the set of the top k classes as evaluated by F on x



RTK robustness | we obtain a true relaxation by allowing the model to be top-k robust for any k up to K

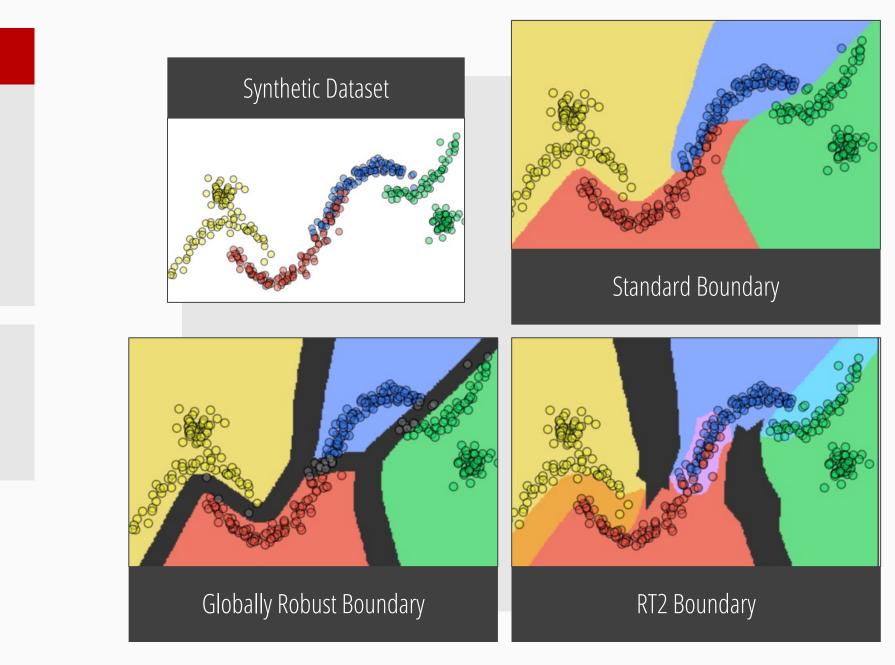
A model F is **relaxed-top-K robust** with robustness radius ε on a point x if

 $\forall x'. ||x - x'||_{p} \le \varepsilon \implies \exists k \le K : F^{k}(x) = F^{k}(x')$

This *is* a relaxation of local robustness

Affiity Robustness

Affinity robustness allows for extra control over which classes may be grouped together, to reflect the fact that some mistakes may be worse than others. E.g., in the example for **Issue 2**, we see that roads and rivers look similar in satellite images. On the other hand, some mistakes are more egregious, e.g., the dog/sports car example from earlier.

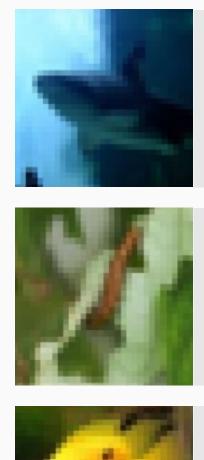


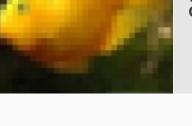


Summary of Results

robust sets.

Affinity robust





dataset	guarantee	VRA*
EuroSAT	local robustness	0.749
EuroSAT	RT3	0.908 +16%
CIFAR-100	local robustness	0.281
CIFAR-100	RT5	0.360 +8%
CIFAR-100	superclass affinity	0.323 +4%
Tiny-Imagenet	local robustness	0.224
Tiny-Imagenet	RT5	0.277 +5%

learn more

Carnegie Mellon University

Training GloRo Nets¹ with RTK robustness typically results in logical groupings of classes into

CIFAR-100 (RT5)	EuroSAT (RT3)			
oak, maple, willow, pine	highway, annu	al crop		
flatfish, man, trout, woman, girl	highway, resid	ential buildings		
palm tree, house	highway, perm	nanent crop, annual crop		
stness can help improve the guarantees obtained by adding extra supervision.				
RT5 Robustness Superclass Affinity Robustness				
shark, sea	shark, ray	robust prediction set modified to match CIFAR-10 superclass		
spider, caterpillar , butterfly	caterpillar, butterfly	prediction became correct after enforcing affinity robustness		
aquarium fish, tulip, poppy	aquarium fish	robustness improved after enforcing affinity robustness		

Relaxed robustness leads to fewer rejected points and thus better model performance.

¹Leino et al. ICML 2021

check out our talk and the full paper for more! code available on GitHub

