Feature-wise Bias Amplification

Klas Leino, Emily Black, Matt Fredrikson, Shayak Sen, Anupam Datta

Carnegie Mellon University School of Computer Science

What is Bias Amplification?

A model exhibits bias amplification if the prior distribution of the model's predictions does not match that of the data.

[1] Zhao et al. "Men also Like Shopping: Reducing Gender Bias Amplification Using Corpus-level Constraints"

Bias Amplification | Let \mathcal{D} be a distribution over features, x, and labels, y. Let h_S be a binary classifier trained on $S \sim \mathcal{D}^n$. The *bias amplification* of h_S on \mathcal{D} is

$$B_{\mathcal{D}}(h_S) = \underset{(x,y)\sim\mathcal{D}}{\mathbb{E}}[h_S(x) - y]$$

Hypothesis: Overreliance on Weak Features

SGD Amplifies Bias — Unnecessarily In the setting of Gaussian naïve-Bayes data, the bias of the Bayes-optimal classifier is a function of the *Mahalanobis distance* between the classes and the class prior of the data. Class Prior of Bayes-optimal Predictions vs. Class Prior of Data

Implication | this bias amplification exhibited by SGD is *preventable* without decreasing accuracy

Feature-Wise Bias Amplification

manifestation | a model trained with SGD will *overestimate* the weak features for the task, and thus over-predict the class with more weak features

overestimation | putting undue weight (in linear models) or influence (in deep models) on a feature

Overestimation of Weak Features vs. Training Data Seen

 $\sigma = 3$ $\sigma = 4$ $\sigma = 5$

intuition | a feature with higher variance is a weaker predictor—the weaker the predictor, the more the model overestimates but the less it uses the feature overall

intuition | sum of the weights

from many overestimated weak

features overpowers those of

strong features

intuition | more data brings model closer to convergence, at which point the model learns appropriate weights

How do we Fix Bias Amplification?

basic idea | fix bias amplification via targeted feature selection

Influence | Let $s = \langle g, h \rangle$ be a *slice* of deep network, f, such that $f = g \circ h$, and let P be a distribution over internal points, z = h(x). class, y, is

Experts | Let F_{α} be the set of the α most influential neurons towards class 1, let F_{β} be the set of the β most influential neurons towards class 0, and let \mathcal{L}_S be the Then the *internal influence* of feature z_i on 0-1 loss on training set S. Then the *expert binary classifier* is $g_{\beta^*}^{\alpha^*}$ where

 $m_{\beta_i}^{\alpha} = \mathbb{I}(j \in F_{\alpha} \cup F_{\beta}) \qquad g_{\beta}^{\alpha}(z) = g(m_{\beta}^{\alpha}z)$ $\alpha^*, \beta^* = \underset{\alpha}{\operatorname{argmin}} |B_{\mathcal{D}}(g^{\alpha}_{\beta})| \text{ subject to } \mathcal{L}_{S}(g^{\alpha}_{\beta}) \leq \mathcal{L}(g)$

You Can Have Your High Accuracy and Low Bias, Too

