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Abstract

If the set of atomic formulas is augmented by adding a ‘universal formula’
and a ‘null formula’, then the equivalence classes of this set under alphabetic
variation form a complete non-modular lattice, with ‘instance’ as the partial
ordering, ‘greatest common instance’ as the meet operation, and ‘least
common generalization’ as the join operation. The greatest common instance
of two formulas can be obtained from Robinson’s Unification Algorithm.
An algorithm is given for computing the least common generalization of two
formulas, the covering relation of the lattice is determined, bounds are ob-:
tained on the length of chains from one formula to another, and it is shown
that any formula is the least common generalization of its set of ground
instances.

A transformational system is a finite set of clauses containing only units
and transformations, which are clauses containing exactly one positive and
one negative literal. It is shown that every unsatisfiable transformational
system has a refutation where every resolution has at least one resolvend
which is an initial clause. An algorithm is given for computing a common
generalization of all atomic formulas which can be derived from a trans-
formational system, and it is shown that there is no decision procedure for
transformational systems.

INTRODUCTION
This paper is a collection of theoretical properties of the entities and opera-
tions used in the resolution approach to mechanical theorem-proving
(Robinson 1965). Hopefully, this material will eventually be helpful in the
development of more efficient proof procedures, but we are presently unable
to formulate a complete procedure which takes full advantage of our results.
These results fall in two separate areas. The first is the algebraic structure
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of atomic formulas under instantiation. Robinson’s Unification Algorithm
allows the computation of the greatest common instance of any finite set of
unifiable atomic formulas. This suggests the existence of a dual operation of
‘least common generalization’. It turns out that such an operation does exist
and can be computed by a simple algorithm.

As a result, if one adds a ‘universal atomic formula’ (whose ground
instances are all ground formulas) and a ‘null atomic formula’ (with no
ground instances), then the set of atomic formulas (more precisely, the
equivalence classes of atomic formulas under alphabetic variation) forms a
complete non-modular lattice, with ‘instance’ as the partial ordering, ‘greatest
common instance’ as the meet operation, and ‘least common generalization’
as the join operation. The covering relation in this lattice determines the set
of ‘closest’ instances of an atomic formula, and bounds can be obtained on
the length of chains from one atomic formula to another.

The second area is the properties of transformational systems, which are
sets of clauses containing only units and mixed two-clauses (clauses with one
positive and one negative literal). The refutation of transformational systems
seems to be the simplest non-trivial case of theorem-proving. Its simplicity
is that a search for a refutation can be limited to resolutions in which one
resolvend is a unit and the other is an initial clause; in effect one is doing
path-searching rather than tree-searching. The non-triviality is that Church’s
theorem still holds: by an appropriate mapping of Post’s correspondence
problem it can be shown that no decision procedure exists for transforma-
tional systems.

A connection between these areas is provided by the least common
generalization. It can be used to examine a subset S of a transformational
system and to compute a single unit which is a ‘super-consequence’ of S.
This unit is not necessarily a valid consequence of S, but each of the (usually
infinite number of) consequences must be an instance of the super-
consequence. Thus when the super-consequence can be shown to be irrelevant,
all of the consequences of S must be irrelevant, and the generation of an
infinite sequence of useless clauses can be avoided.

Throughout this paper, we will use the definitions and results given in
Robinson’s original paper on resolution (Robinson 1965). Also, a variety of
well-known properties of lattices will be stated without proof; these
properties are discussed in the opening chapters of a standard text such as
Birkhoff (1967).

THE LATTICE STRUCTURE OF ATOMIC FORMULAS

In this section we will show that the operation of instantiation induces a
lattice-like structure on the set of atomic formulas, and we will examine
various properties of this structure. First, we must generalize the notion of
an atomic formula to include a universal formula of and a null formula Q;
these formulas will be the greatest and least elements of the lattice.
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Definition. A generalized atomic formula (GAF) is either a conventional atomic
formula (CAF) as defined in Robinson (1965), or one of the special symbols
&, Q. A GAF is called a ground GAF iff it is a CAF and it contains no occur-
rences of variables.

 Given GAFs A and B, we write A> B (read A is a generalization of B or
B is an instance of A) iff A is o, or B is Q, or A and B are both CAFs
and there exists a substitution 8 such that B=A0. If A>B and B> A,
we write A~ B (read 4 and B are variants or A and B are equivalent). If
A>B and not B> A, we write A>B (read A is a proper generalization of
B or B is a proper instance of A).

(We assume that the set of conventional atomic formulas is generated
from a fixed but unspecified vocabulary containing at least one constant, one
unary function symbol, and one binary predicate symbol. A second, distinct
predicate symbol will be required in Theorem 8; a binary function symbol
will be required in Theorem 11.)

Corollary 1

The relation > is a quasi-ordering in which & and Q are unique greatest
and least elements, i.e., for all GAFs 4, B, and C:

A=A

A>B and B> C implies A>C

A=A

AZQ

A> o if A=oA

Q>Aiff A=Q.
Lemma 1

- A~ B iff one of the following cases occurs:

(1) A=B=4«.

(2) A=B=Q.

(3) 4 and B are CAFs and there is a substitution 6 such that: B = A0, for
all variables X occurring in 4, X0 is a variable, and for all pairs X, Y of
distinct variables occurring in 4, X0+# Y0.

Proof. If either A or B is not a CAF, the lemma is trivial. If 4 and B are
cAFs and 4~ B, then there are substitutions 6 and y such that B=A0 and
A=By=A0y. Then if X is any variable occurring in 4, X6y =X, so that X0
must be a variable. If X and Y are distinct variables occurring in A4, then
X0y =X and YOy =Y+ X0y, so that X0+ Y0.

On the other hand, if B= A6, where 6 meets condition (3), let X3, ..., X,
be the variables occurring in 4. Then y={Xi/Xi0,..., X,/ X,0} is a
substitution, and By =4 { X160/ X1, ..., X,0/X,}Yy=A. Thus A~B.
Definition. Let S be a set of GAFs. If Iis a GAF such that, for all A€ S,
I<A, then I is a common instance of S. If I is a common instance of S and,
for all common instances I’ of S, I=1', then I is a greatest common instance
of S. If G is a GAF such that, for all A€ S, G=A4, then G is a common
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generalization of S. If G is a common generalization of S and, for all common

generalizations G’ of S, G G’, then G is a least common generalization of S.
It is easily shown that:

Corollary 2

& and Q are the only greatest common instance and least common genera-
" lization of the empty set. Q and & are the only greatest common instance and
least common generalization of the set of all GAFs.

If A is a greatest common instance (least common generalization) of S,

then B is a greatest common instance (least common generalization) of S
iff B~A.

We now define two total, computable binary functions [ and L], and show
that these functions produce a greatest common instance and a least common
generalization of any pair of GAFs.

Definition. Given GAFs A and B, we define the GAF A[T]B as follows:

(1) If A=/, then A[|B=B. '

(2) If B=«, then A[|B=A.

(3) If A=Q or B=Q, then A[1B=Q.

(4) If A and B are both CAFs, then let A’ and B’ be variants of 4 and B
respectively (chosen in some standard manner) such that no variable occurs
in both 4’ and B'. If A’ and B’ are not unifiable, then 4[1B=Q. Otherwise
A[MB=A'c=B'c, where ¢ is the most general unifier of 4’ and B’ [obtained
from the Unification Algorithm given in Robinson (1965)].

Then the Unification Theorem in Robinson (1965) has the following
direct consequence:

Theorem 1
For all GAFs A4, B, and C, A= A["|B, B> AMB, and if A>C and B=C,
then A[1B>C. Thus Al B is a greatest common instance of {4, B}.
Definition. Given GAFs A and B, we define the GAF A||B as follows:

(1) If A=Q, then A| |B=B.

(2) If B=Q, then A| |[B=A.

(3)If A=, or B=o, or A and B begin with distinct predicate symbols,
then A| |[B=4.

(4) If 4 and B are CAFs beginning with the same predicate symbol, then
let Zy, Z, . . . be a sequence of variables which do not occur in 4 or B, and
~obtain 4[| B by the following Anti-unification Algorithm:*

(a) Set the variables 4 to 4, B to B, { and 5 to the empty substitution, and
i to zero.

(b) If A=B, exit with 4| |[B=A=B.
(c) Let k be the index of the first symbol position at which 4 and B differ,

* This algorithm has been discovered independently by Mr Gordon Plotkin of the
University of Edinburgh.
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and let S and T be the terms which occur, beginning in the kth position, in 4
and B respectively. :

(d) If, for some j such that 1<j<i, Z,{=S and Zn=T, then alter 4 by
replacing the occurrence of S beginning in the kth position by Z;, alter Bby
replacing the occurrence of T beginning in the kth position by Z;, and go to
step (b).

(e) Otherwise, increase i by one, alter 4 by replacing the occurrence of S
beginning in the kth position by Z,, alter B by replacing the occurrence of T
beginning in the kth position by Z;, replace { by {u {S/Z,}, replace n by
nu{T/Z,}, and go to step (b).

Bach iteration of the Anti-unification Algorithm will either produce the
termination condition 4= B, or else it will increase k without increasing the
length of A or B. Thus, since k cannot exceed the length of A or B,
the algorithm must always terminate. The following lemma may be proved
by induction on the number of iterations:

Lemma 2

After each iteration of the Anti-unification Algorithm:
(1) A=A and Bn=B.
(2) Each of the variables Zj, . . ., Z; occurs in both A and B, but only to
the left of the first symbol position at which 4 and B differ.
(3) There exist terms Sy, . . ., S;, T1, . - -, T; such that:
(){={$1/Z, .. Si[Z}.
(b)n={T/Zy, ..., T\|Z:}.
(c) For 1<j<i, S; and Tj differ in their first symbols.
(d) For 1<, k<i, if j#k then either S;#S, or T;#T;.

Theorem 2

For all GAFs 4, B, and C, A 1B>A4, AL |B>B,and if C>4 and C= B, then
C> A IB. Thus A| |B is a least common generalization of {4, B}.

Proof. The theorem is non-trivial only in the case where 4 and B are both
CAFs beginning with the same predicate symbol. In this case, AL|B is defined
by the Anti-unification Algorithm, and part 1 of Lemma 2 implies that
Al |1B>A and Al |1B>B.

Now suppose Cis a GAF such that C> 4 and C> B,and let D= Cr(ALlB).
By Theorem 1, C> D, (ALIB) > D, and, since 4 and B are both common
instances of C and (ALIB), D> 4 and D> B. Moreover, since D is both an
instance of a CAF and a generalization of a CAF, D must be a CAF. Thus
there exist substitutions 6, ¥, ¢ such that D= (4L |B)6, 4= Dy = (A4ALIB)6y,
and B=D¢=(ALIB)0¢.

Let{={S1/Z1, ..., Si/Z;} and n={T1/Z,, .. ., T,/ Z;} be the final values
of the variables { and 5 in the execution of the Anti-unification Algorithm
used to compute AL 1B. By part 1 of Lemma 2, (4LIB){ =A=(ALIB)6yY,
and (A|_|B)n=B= (AL1B)6¢. Thus if X is any variable occurring in 4| 1B,
then X{= X0y and Xn=X0¢.

139



MECHANIZED REASONING

We now use Lemma 1 to show that D= (AL|B)0 is a variant of Al |B.
Let X be any variable which occurs in 4| |B. Then:

(1) If X is one of the Z;, then X8y = X{=S; and X0¢ = Xn=T;. If X0 were
not a variable then S; and T; would begin with the same symbol, which
contradicts part 3c of Lemma 2. )

(2) If X is not one of the Z;, then X8y =X{=X, so that X6 must be a
variable.

Let X and Y be any pair of distinct variables which occur in 4| |B. Then:

(1) If X is some Z; and Y is some Z,, then X6y =S;, YOy =S,, X0¢=T;,
and Y0¢=T,. By part 3d of Lemma 2, either S;#S, or T;#T,. Either case
implies that X0+ Y8.

(2) If neither X nor Y is one of the Z;, then X8y =X and Y6y =Y, so that
X0+ Y6.

(3) If X is some Z; and Y is not one of the Z;, then X8y =S; and X0¢ =T},
so that part 3c of Lemma 2 implies X0y # X0¢. But YOy = Y0¢ =Y. Thus
X0+ Y06.

(4) If Y is some Z; and X is not one of the Z;, the argument is similar to
(3) with X and Y interchanged. _

Thus, by Lemma 1, D is a variant of Al |B. Then, since C> D, we have
C=AllB.

Theorems 1 and 2 establish the existence of a lattice structure. However,
since > is a quasi-ordering rather than a partial ordering, the lattice elements
are not the atomic formulas themselves, but the equivalence classes induced
by the relation ~.

Corollary 3

The set of equivalence classes of GAFs under the relation =~ is a lattice, in
which {7} is the greatest element, {Q} is the least element, and (the appro-
priate generalizations to the equivalence classes of) >, [T, and || are the
partial ordering, meet, and join operations. We call this lattice the GAF
lattice.
The existence of the GAF lattice implies the following results, which hold
for lattices in general:
Corollary 4
For all GAFs A4, B, and C;
AMB~B[4
(AMB)MC=AN(BMC)
Al |B~B| |A
(ALB)LIC= AL |(BLIC)
AM(BLIC) = (4AMB)LI(AMC)
ALI(BMC) < (4UB)M1(4LIC)
If A<C then AL|(B[MC) < (4ALIB)[C.
Unfortunately, the equivalences which correspond to the last three state-
ments of this corollary are (in general) false, since:
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Theorem 3

The GAF lattice is non-modular.

Proof. Let P be a binary predicate symbol, let f be a unary function symbol,
and let [4] denote the equivalent class of 4 under =~. Then the GAF lattice
contains the following non-modular sublattice:

[Ptxy)]

[Ptfix) y1]

P(x x)
(Pex] [PCE () Fiy))]

[Per(x) t(x)1]

In the remainder of this section we will determine various special properties
of the GAF lattice. We begin by defining a relation 4— B which will eventually
be shown to be the covering relation of the lattice.

Definition. For GAFs 4 and B, the relation A—B holds iff one of the following
cases occurs:

(1) A is & and B is a CAF containing no function symbols and no repeated
occurrences of a variable (e.g., B=PX1... X;).

(2) 4 and B are CAFs such that for some function symbol F of degree K,
B~A{FZ,...Z/X}, where Xis a variable occurring in 4 and Z;, . . ., Z;
are distinct variables not occurring in 4.

(3) 4 and B are CAFs such that B~A{Y/|X}, where X and Y are distinct
variables occurring in A4. '

(4) 4 is a ground GAF and B=Q.

It is evident that 4— B implies 4> B.

Definition. For n>0, a sequence Ao, ..., A, of GAFs is called a chain of
length n from A to B iff A=Ao>A41> ... >A4,~B. An infinite sequence
Ao, Ay, . . . is called an infinite descending (or ascending) chain from Ao iff
Ao>A1> ... (or Ap<A1< ...).In each of these definitions, if the relation >
can be replaced by the stronger relation —, then the (infinite descending or
ascending) chain is called fotal.

Theorem 4

If A> B, then there exists a total chain 4 =Ay—= A1~ ... >A,~Bfrom A to
B. If A> B, then the length nis at least one. [Thisis a variant of the factoriza-
tion theorem proved in Reynolds (1968).]

Proof. Consider the case where 4 and B are CAFs, and let 0 be the substitution
such that B=40 and every variable of 6 occurs in 4. Then the following
algorithm will produce the sequence Ao, . . ., 4,

(1) Let do=4, Go=0, i=0.

(2) If no term of 6, contains a function symbol, go to step 3. Otherwise,
let FT; ... T,/ X be some component of 6; whose term contains a function
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symbol, and let Zy, . . ., Z, be distinct variables not occurring in 4;. Then set
Aiv1=A{FZ;...Z,|] X}
Oi+1= (6;-— {FT1 cee Tk/X})U{Tllzl, .oy Tk/Zk}.

Increase i by 1 and repeat step 2.

(3) If there is no pair X, Y of distinct variables occurring in 4; such that
X6,= Y0,, then go to step 4. Otherwise, let X, Y be such a pair and set

- A=A4{Y/X}
0:i+1=0,— { X0,/ X}.

Increase i by 1 and repeat step 3.

(4) Set n=i and terminate.

Step 2 must terminate since each iteration decreases the total number of
function symbol occurrences in the terms of 6;. Step 3 must terminate since
each iteration decreases the number of distinct variables occurring in 4,.
By induction on 7, one can show that:

B= A;B,(O < IS n).
All variables of 8, occur in 4,(0<i<n).

Ai—A4iv1 (0<ign-1).
When termination is reached, all of the terms of 6, will be variables, and for
any pair X, Y of distinct variables occurring in 4,, X0,+# Y0,. Thus 4,~B.

We now consider the cases where 4 or Bis not a CAF. If A=« and Bis
a CAF, let P be the predicate symbol beginning B, let k be the degree of P,
and let A'=PZ; . ..Z,, where Z, . . ., Z, are distinct variables. Then A—>A4'>
B and A’ and B are CAFs, so that a chain from 4’ to B can be constructed
as above and joined to the link 4—A4'.

If Ais o or a CAF and B is Q, let B’ be any ground instance of A. Then
A>B'—B and B’ is a CAF, so that a chain from A to B’ can be constructed
as above and joined to the link B'—B.

The remaining cases are A=B=. and 4=B=Q, which are trivial. The
assertion that n>>1 when 4> B is also trivial, since n=0 implies A~ B.
Definition. The size of a GAF is defined as follows: size (&) =0. size (Q) = 0.
If A is a CAF, then size (A) is the number of symbol occurrences in 4 minus
the number of distinct variables occurring in A.

Corollary 5

If A and B are GAFs, then A~ B implies size (B) =size (4), and 4—»B
implies size (B) >size (4). More generally (by Theorem 4) A>B implies
size (B) >size (4).

We will now use Theorem 4 and Corollary 5 to obtain bounds on the length
of chains, to determine the covering relation, and to show that the GAF
~ lattice is complete.
Theorem 5
(1) If B#Q, then there is no chain from 4 to B whose length is greater than
size (B)-size (A4).
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(2) There are no infinite ascending chains from any GAF.

(3) If 4 is a ground GAF, then the only chain from 4 to Q is A-Q, and
there are no infinite descending chains from 4.

(4) If A is not a ground GAF and is not Q, then there is no bound on the
length of chains from 4 to Q, and there is an infinite descending total chain
from A.

Proof. (1) Let A=Ap>A> ... >A,~Bbeany chain from 4 to B. Then by
Corollary 5, size (A)=size (A4o) <size (41)< .. .<size (4,)=size (B).
Thus n<size (B)-size (4).

(2) An infinite ascending chain 4o<41<A2< ... would imply that size
(Ao) >size (A1) >size (42)> .... But this is impossible, since A;#Q
implies that 4; has finite size.

(3) If Ay is a ground GAF, then 4o>4; implies 41=Q, and there is no 4
such that Q> 4.

(4) Suppose A is a non-ground CAF. Let X be a variable occurring in 4,
let F be a unary function symbol, and let 4;=A{FX/X }. Then Ao—>A1—
Ap— ... is an infinite descending total chain from A, and for any n>0,
Ag— Ay . .. »A,~Q is a chain of length n+1 from 4 to Q.

If A is o, similar chains can be constructed by taking A; to be PZ; ... Z,,
where P is a predicate symbol of degree k>1 and Z;,. . ., Z, are distinct
variables, and then continuing as above.

Definition. A covers B iff A> B and there is no GAF C such that 4>C>B.

Theorem 6
A covers Biff A-B.

Proof. Suppose A covers B. By Theorem 4, there is a total chain 4=Ao—
Ay~ ... —=A,~B with some length n>1. But if n>1, then A>A4,>B,
which contradicts the definition of covering. Thus n=1and A—A4,~B. By
the definition of —, this implies A—B.

Conversely, suppose A—B. Since this implies that 4> B, we need only
show that 4> C> B is impossible. We distinguish three cases:

(1) 4 is a ground GAF and B=Q. This prevents A>C> B since Q is the
only proper instance of 4.

(2) Either (i) 4 is & and B is a CAF containing no function symbols and
no repeated occurrences of a variable, or (ii) 4 and B are GAFs such that
B~A{Y]|X}, where X and Y are distinct variables occurring in 4. In either
situation, size (B) =size (4) +1, while 4>C>B would imply size (B) >
size (A) +1.

(3) 4 and B are CAFs such that for some function symbol F of degree k,
B~A{FZ,...Z,/ X1}, where Xjisa variable occurring in 4 and Z3, . . ., Z;
are distinct variables not occurring in 4. Suppose there exists a GAF C such
that 4>C> B. Then by Theorem 4, there exists a CAF 4, such that 4—
A1>C> B. Since A—»A; and A is a CAF, we have A4; ~ A0, where 0 is a substi-
tution which meets the criteria of part 2 or 3 of the definition of the relation—.
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Since A0~A1>C>B~A{FZ,...Z,] X1}, there is a substitution ¥ such
that AOYy=A{FZ,...Z,[X1}.

Let Xi,..., X, be the variables occurring in 4. Then X180y =FZ,...Z,
and for 2<i<n, X0 = X,. This implies that either (i) X;0 begins with the
symbol F and X0, ..., X,0 are distinct variables, or (ii) Xj6,..., X,0 are
distinct variables. In order to satisfy both this condition and part 2 or 3
of the definition of —, § must have the form {FZ{...Z;/X1}, where
Zi, ..., Z; are distinct variables not occurring in 4. But then 40=A{FZ;...
Z;/ X1} is a variant of A{FZ,...Z,/ X1}, which contradicts 40~4,>C>
BZA{FZl . .Z,JX]}.

Theorem 7
Any set S of GAFs possesses a greatest common instance and a least common
generalization, i.e., the GAF lattice is complete.
Proof If S={A4,, ..., A,} is finite, then the theorem is trivial. Let
Iy=sf
Ly =I4i+1 (0<ign-1)
Go=Q
Gi+1=G;L4i+1 (0<i<n-1).
Then it is easily shown that I, and G, are a greatest common instance and a
least common generalization of S.
If S is infinite, let A1, 42, . . . be an enumeration of the members of S, and
let

Go=Q
Gi+1=G L idi+1 (i=0). ;
The G s satisfy Go<G1<G2< .. .. But there cannot be an infinite sequence

of is such that G;< G;+1, for this would imply that some sub-sequence of the
Gs is an infinite ascending chain. Thus there exists an integer ip such that
G,~G,, for all i=ij. It is easily shown that G, is a least common generaliza-
tion of S.

A similar argument cannot be used for the greatest common instance, since

the GAF lattice does contain infinite descending chains. Instead let
T={B|B <A forall A€ S},

and let I be the least common generalization of T. Then if 4 is any member of

S, A= B for all Be T, and therefore A>1I; thus Iis a common instance of S.

On the other hand, if B is a common instance of S, then B € T, and therefore

B<I; thus I is a greatest common instance.

Since all greatest common instances of the same set are equivalent, we will
refer to ‘the’ greatest common instance of a set, assuming that a particular
member of the equivalence class can be selected in some well-defined manner.
A similar situation holds for the least common generalization.

Definition. If S is a set of GAFs, we write [ 1S for the greatest common instance
of S and 11S for the least common generalization of S.
It is easily shown that:
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Corollary 6

If S and T are sets of GAFs such that S27T, then [ JS>1]7 and [1S<[1T.
So far, our investigation of the GAF lattice has been limited to relations

between the GAFs themselves. We now consider the relation between GAFs

and their sets of ground instances:

Definition. For any GAF A4, 9(A) denotes the set of all ground GAFs which

are instances of A.

Theorem 8

For all GAFs 4 and B:
%(A) is empty iff A=Q.
A~11%9(A).
A=Biff 4(A)=2%(B).
%(AMB)=%(A)nY(B).
Y(AUB)2%9(A)Vu%(B).

Proof. The crux of the theorem is 4 ~1J%(4), which implies that the set of ‘
ground instances of 4 is ‘rich’ enough to determine A within an equivalence.
Once this assertion has been established, the rest of the theorem is a straight-
forward application of elementary lattice theory.

Suppose 4 is a non-ground CAF, and let B=11%(A4). Since every ground
instance is an instance, A is a common generalization of 4(4), so that 4> B.
Since A has at least one ground instance, B#Q. Thus there is a substitution
0 such that B=A40.

Let Xi,..., X, be the variables occurring in 4, let C be a constant, and
let F be a unary function symbol. Then ¢(A4) must contain the following
ground instances:

Ge=A4{C|Xy,...,C|X,}
Gr=A{FC|Xi, ..., FC| X,}
Gn=A{C| X1, FC|X,,.. .. F...FC|X,}.

n times

Since each of these ground GAFs are instances of B, there are substitutions
dc, ¢r, and ¢y such that

Gc=B¢c=A9¢c

Gr= B¢F= A9¢ F

Gn=Bpn=A0¢y.

From the equations for G¢c and Gr we have, for 1<i<n, X0¢c=C and
X,0¢r=FC; thus each X,0 must be a variable. From the equations for Gy we
have, for 1<i<n, X;0¢n=F ... FC;thus each X;0 must be distinct. Therefore

i times

B=A0 is a variant of 4. ‘
If A=Q, then 1J9(A4) =1J{} =Q. If 4 is a ground GAF, then [J%(4) =
{4} ~A4. If A=/, then ¥ () is the set of all ground GAFs. Since this
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set contains GAFs which begin with different predicate symbols, its only
common generalization is &.

It should be noted that the existence of different predicate symbols is a
necessary condition for this theorem; if all CAFs begin with the same symbol
P, then 1 19(A)=PZ,...Z,.

Finally, we consider the interaction of our lattice relations with the opera-
tion of resolution. Since the lattice relations are relations between atomic
formulas rather than clauses, it is difficult to make any significant statements
about resolution in general. But useful results can be obtained for the case
where a unit clause is resolved against a mixed two-clause (which we will
call a transformation) to yield another unit.

Definition. A transformation is a clause containing exactly one positive and
one negative literal; i.e., it is a clause of the form { P, Q}, where P and Q
are CAFs. If 4 is a GAF and t={—P, Q} is a transformation, then r,(4)
is defined as follows: If 4=s then r,(4)=Q, else if A=Q or {4} and ¢
have no resolvent, then r.(4) =8, otherwise r,(A4) is the CAF which is the
only member of the unique resolvent of {4} and .

Lemma 3

Let A be a GAF and ¢={—P, 0} be a transformation. If A1P=Q, then
r(A4)=Q. If ATP#Q, then there is a substitution o such that r.(4)~ QOo,
AP~ Po, and for all variables X, if X is a variable of ¢ or occurs in any term
of o, then either X occurs in P or X does not occur in Q.

Proof. If A=/, then A[1P#Q and ¢ is the empty substitution. If 4=Q, then
AMP=Q and r,(4) =Q. Otherwise, let A" be a variant of 4 which has no
variables in common with P or Q. If 4’ and P are not unifiable, then
AMP=Q, {4} and ¢ have no resolvent, and r,(4) =Q. If 4’ and P are uni-
fiable, then {4} and ¢ have the single resolvent (whose only member is)
r(A) ~ Qa, where o is the most general unifier of A" and P. Then the defini-
tion of [ implies that AP~ P #£. Moreover, the nature of the Unification
Algorithm insures that every variable of ¢ and every variable occurring in
the terms of ¢ is a variable which occurs in A’ or P. Thus if such a variable
does not occur in P, it does not occur in Q.

Theorem 9
If A and B are GAFs and ¢= {1 P, Q} is a transformation, then

if A> B[P then r,(A) >r.(B)

r(A) ~r.(AMP)

Q=>r.(4)

r(AMB) <r.(A)r«(B)

r(ALIB) zr.(A)r.(B).
Proof. Suppose A= B[ P. Then B[P is a common instance of 4 and P, so
that AMP> B P. By Lemma 3, if B[ P=Q, then r,(4) >r.(B) =Q. Other-
wise, A[1P#Q and B[P #Q, so that there are substitutions ¢, and o such
that r,(4) ~ Qo 4, r:(B) ~ Qoy, AT\P~Po ,, B[P~ Poag, and for all variables
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X, if X is a variable of ¢, or 65 or occurs in any term of ¢, or 6, then either
X occurs in P or X does not occur in Q.

Since Po = Pop, there is a substitution ¢ such that Pog=Po ¢ and every
variable of ¢ either occurs in P or in some term of 6 4. Let X be any variable
occurring in Q. If X occurs in P then Xoz¢ = Xo ,, while if X does not occur
in P, then X is not a variable of ¢, ¢, or o, so that Xoz= Xo,¢0=X. Thus
Qog= Q06 ,¢, and r,(A) ~ Qo ,=> Qaz~r,(B).

The remaining parts of the theorem are direct consequences of this result
and the basic properties of [ and L.

TRANSFORMATIONAL SYSTEMS

In Theorem 9, we have developed certain properties of the resolution opera-
tion which hold only when one resolvend is a unit clause and the other is a
transformation. This leads naturally to the investigation of sets of clauses,
called transformational systems, which can be refuted by using this limited
form of resolution.

Definition. A transformational system is a finite set of clauses each member of
which is either a unit clause or a transformation. If S is a transformational
system, then 2(S) is the set of CAFs which occur in the positive units of S,
A7 (S) is the set of cAFs which occur in the negative units of S, and 7 (S) is
the set of transformations in S.

We will call a resolution a cross-resolution if one resolvend is a clause
containing no negative literals and the other resolvend is a clause containing
at least one negative literal. In Robinson (1965a), it is shown that a set of
clauses S is unsatisfiable iff the empty clause can be derived by repeated.
cross-resolutions.

But if Sis a transformational system, then any cross-resolution of members
of S will either resolve a positive unit against a negative unit, yielding the
empty clause, or a positive unit against a transformation, yielding another
positive unit. Thus any refutation of a transformational system by cross-
resolution will have the form shown in figurel where the ps are positiveunits,
the 7s are transformations, and n is a negative unit.

\ /
\ /
\__
\P/‘
\/

Figure 1
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Definition. For any set P of GAFs and any set T of transformations, we define:
Ry(P)={r,(A)|teT, Ae P}
RY}(P)=P
R} 1(P)=Ry(R}(P)) (n>0).

If S is a transformational system, it is evident that ’\3 Ry (2(S))— {Q}
n=0

is the set of (the members of) all positive units which can be derived from §
by cross-resolution. Moreover, a positive unit {4} and a negative unit
{ — B} will resolve to give the empty clause iff A[1B#Q. Thus:

Corollary 7

A transformational system is unsatisfiable iff there exists an integer n>0,
and GAFs A4 and B such that 4 € R% 5, (2(S)), BeA (S), and AT B#Q.
Thus one can refute a transformational system by path-searching rather than
tree-searching. In effect, the dyadic inference rule of resolution can be
replaced by a finite set of monadic rules, one for each transformation.

The path-searching aspect is even more evident on the ground level. A
transformational system S is unsatisfiable iff the empty clause can be derived
from some finite set of ground instances of S by cross-resolution. Again, the
refutation will have the form shown in figure 1, but now a positive unit {4}
will resolve against a transformation { 1P, Q} iff A=P. Thus:

Corollary 8
Let S be a transformational system and D be the directed graph whose set of
nodes is the set of ground GAFs, and in which there is an arc from node P to
node Q iff { P, Q} isa ground instance of some member of J (S). Then §
is unsatisfiable iff there is a path in D from some ground instance of a member
of #(S) to some ground instance of a member of #°(S).

In the context of transformational systems, we can illustrate the notion of a
‘super-consequence’. For a transformational system S, suppose that P< 2(S)
and T< 7 (S), Then a search procedure may eventually generate each member

of the (usually infinite) set S'= {_OJORHP). We will call a clause C a super-

consequence of P and T if C is 3 common generalization of .S’. Usually C
itself will not be a valid consequence of P and T, but if C can be shown to be
irrelevant (e.g., by subsumption or purity), then the generation of all
members of S’ can be avoided.

The following theorem gives a method for computing super-consequences:
Theorem 10
Let P be a finite set of GAFs, let T be a finite set of transformations, and let:

Co=1]JP
Con1= CuLJURT({ Cn} ) (n=0).

Then there is an integer n such that C,,1~C,. If ng is the least such integer,

[ ]
then C,, is a common generalization of UOR’% P).
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Proof. The Cs satisfy Co<C1<C>< .... Thus, since there are no infinite
ascending chains of GAFs, there is an integer n such that C,+;~C,. Let mp
be the least such integer. Then by induction on i, Cp+1+i~Cy, for all i=0.,
Thus C,< Gy, for all n>0.

To complete the proof we will show, by induction on », that C, is a
common generalization of R%(P). The assertion is obvious for n=0. Assum-
ing it is true for n, let A be any member of R3+1(P). Then A =r,(B) for some
teT and Be R}(P). Then B<C,, so that r,(B)<r,(C,), by the first part
of Theorem 9. Thus A<r,(C,) <URr({C,}) <Cn+1.

As an example, if P={P(f(c)c)} and T= {{P(x,y), PU(S(¥))x)}},
then np=1, and C,,~P(f(x)x).

It is evident that the refutation of transformational systems is significantly
simpler than the refutation of arbitrary sets of clauses. We conclude by
showing that the problem is still non-trivial, in the precise sense that there is
no decision procedure for transformational systems. This suggests that trans-
formational systems may be a useful ‘initial case’ for the development of
more efficient proof procedures.

Our proof will be accomplished by mapping a known unsolvable problem,
the Post correspondence problem, into the decision problem for trans-
formational systems.

Definition. A correspondence problem is a finite non-empty sequence of pairs,
p=(A1,B1), ..., (Am, Bn), where each 4; and each B, is a string over some
finite set ¥ of characters. The problem p is called solvable iff there exist
integers n>0, iy, . . ., i, such that 1<i;<m (for 0<j<n) and 4i,... 4i,=
B, ... B, where the juxtaposition of string variables indicates string
concatenation.

It is known (Floyd 1966, Post 1946) that there is no algorithm which will
accept an arbitrary correspondence problem p and determine whether p is
solvable.

In the following definition, corollary, and lemma, we assume that the
vocabulary V is fixed, that ¢ is some one-to-one mapping from V into a set
of ground terms, and that E is a constant, F is a binary function symbol, Pis a
binary predicate symbol, and X and Y are distinct variables.

Definition. Let A=a; . . . a; be a string of length k over V, and T be a term.
Then £(4, T) denotes the term Fo(a;1)Fo(az) . . . Fo(a)T.
Corollary 9
Let A and B be strings over V, T be a term, and 8 be a substitution. Then
X(A4,T)0=%Z(4,T76)
>(A4,XZ(B, E))=X(A4B,E)
X(A,E)=X(B,E)iff A=B.
Lemma 4
Let p=(41, B1),. .., (Am, Bm) be a correspondence problem, and let S be
the transformational system such that:
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2(S)={PZ(4,;, E)X(B,, E) |1<i<m}
T (S)={{~PXY, PL(4, X)X(B, Y)}|1<i<m}
K (S)={PXX}.

Then S is unsatisfiable iff p is solvable.

An intuitive grasp of this lemma may be obtained by the following interpre-
tation of S: E denotes the empty string. Each ground term o(a) denotes the
character a. The function F(a, s) denotes the string obtained by adding the
character a to the beginning of the string s. The predicate P(s, t) asserts
that s=Ai, ... Ai, and t=B,, ... By, for some i, ..., i, #(S)and T (S)
are axioms which define P, and .4 (S) (whose negation occurs in S)isa
theorem that p is solvable.

Proof. We first show, by induction on n, that

Rbs(@(S)=U ... U{PE(4... A E)E(By.. - By ED}.

io=1 in=1
The assertion is obvious for n=0. Assuming it is true for n,
R."'ritsl) Z2(8)= {r{'l er,rz(A.,X)z(B,,Y))(x) |[1<i<m and x € R”J'(S)(g(s))}

=U ... U {1

io=1 iw41=1

where
=Ty PXY,PZ(A."“,X)L‘(&“_bl’)}(P I(4;,... A, E)Z(By,. . By, E))
—PX(4,, X)B;, V){E(4,... 4 B)IX,
X(B; ... B, E)/Y}.
Then by the first two parts of Corollary 9,
r=PZ(A;n“,Z(Ai" ... 4,, E)) Z(Bi"“,Z(B;n ... B, E))

=P2(Ain+l coe Aio’ E) E(Bi".“ “se ‘Bio’ E)

which completes the induction.

By Corollary 7, S is unsatisfiable iff there is some n=>0 and some
PX(A, E)X(B, E) € Ry (5,(#(S)), such that PX(4, E)Z(B, E)NPXX#Q.
But by the definition of [ and Corollary 9,

PX(A4, E)X(B, E)YN\PXX#Qiff £(4, E)=X(B, E) iff A=B.
Thus S is unsatisfiable iff p is solvable.

Now suppose D were a decision procedure for transformational systems.
Then, given any correspondence problem p, we could use the mapping of
Lemma 4 to convert p into a transformational system S, and then determine
whether p is solvable by applying D to S. Since it is known that this is
impossible:

Theorem 11
There is no algorithm which will accept an arbitrary transformational system
S and determine whether S is unsatisfiable.
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In addition to establishing the non-triviality of transformational systems,
this theorem is pertinent to Wos’s unit preference strategy (Wos, Carson and
Robinson 1964). Since cross-resolution is a special case of resolution, it is
evident from figure 1 that a transformational system S is unsatisfiable iff the
empty clause can be derived from S by repeated resolutions in which at least
one resolvend is a unit. Thus:

Corollary 10

There is no algorithm which will accept an arbitrary finite set of clauses S
and determine whether the empty clause can be derived from S by repeated
resolutions in which at least one resolvend is a unit.

In effect, there is no decision procedure for the unit section of the unit
preference strategy.
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