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Abstract. We give a brief account of the discoveries of continuations and related con-
cepts by A. van Wijngaarden, A. W. Mazurkiewicz, F. L. Morris, C. P. Wadsworth,
J. H. Morris, M. J. Fischer, and S. K. Abdali.

In the early history of continuations, basic concepts were independently
discovered an extraordinary number of times. This was due less to poor
communication among computer scientists than to the rich variety of set-
tings in which continuations were found useful: They underlie a method
of program transformation (into continuation-passing style), a style of def-
initional interpreter (defining one language by an interpreter written in
another language), and a style of denotational semantics (in the sense of
Scott and Strachey). In each of these settings, by representing “the mean-
ing of the rest of the program” as a function or procedure, continuations
provide an elegant description of a variety of language constructs, including
call by value and goto statements.

1. The Background

In the early 1960’s, the appearance of Algol 60 [32, 33] inspired a ferment
of research on the implementation and formal definition of programming
languages. Several aspects of this research were critical precursors of the
discovery of continuations.

The ability in Algol 60 to jump out of blocks, or even procedure bod-
ies, forced implementors to realize that the representation of a label must
include a reference to an environment. According to Peter Naur:

. . . in order to specify a transfer of control we must in general
supply both the static description of the destination . . . and
a dynamic description of its environment, the stack reference.
This set . . . together define what we call a program point. [31]
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In retrospect, a program point was the representation of a continuation.
A more subtle realization was that return addresses could be treated

on the same footing as procedure parameters. With a prescient choice of
words, E. W. Dijkstra remarked:

We use the name “parameters” for all the information that is
presented to the subroutine when it is called in by the main
program; function arguments, if any, are therefore parameters.
The data grouped under the term “link” are also considered
as parameters; the link comprises all the data necessary for the
continuation of the main program when the subroutine has been
completed. [9]

Indeed, in the GIER Algol Compiler designed by Naur and Jørn Jensen [31],
return addresses and label parameters, both regarded as program points,
were treated in essentially the same way.

Another precursor of continuations occurred in Peter Landin’s SECD
machine [14], a state-transition interpreter for a language of applicative
expressions that was syntactically similar to the untyped lambda calculus
but used a call-by-value order of evaluation. As captured by the acronym
SECD, the state of the interpreter consisted of four components: a stack,
an environment, a control, and a dump. The dump encoded the remaining
computation to be executed after the control was exhausted; in retrospect
it was another representation of a continuation.

To be able to translate Algol 60 into applicative expressions, Landin
later extended these expressions and their interpreter with an assignment
operation, and also a control operator J used to express the translation of
goto’s and labels [15, 16]. In the extended SECD machine, the result of
applying J was a value containing a dump. Thus, in modern terminology,
the J operator provided a means of embedding continuations in values —
and was an ancestor of operations such as Reynolds’s escape [36], and
catch [44] and call/cc [8] in Scheme.

2. A. van Wijngaarden

Apparently, the earliest description of a use of continuations was given
by Adriaan van Wijngaarden (Director of the Mathematisch Centrum in
Amsterdam) in September 1964, at an IFIP Working Conference on For-
mal Language Description Languages held in Baden bei Wien, Austria. A
written version of this talk, along with a transcript of the discussion that
followed, appears in the conference proceedings [45].



THE DISCOVERIES OF CONTINUATIONS 235

Van Wijngaarden’s goal was to formulate a preprocessor that would
translate Algol 60 into a more restricted sublanguage. The final stage
of the preprocessing was (what we would now call) a transformation of
proper procedures into continuation-passing style (CPS) [41], with an at-
tendant elimination of labels and goto statements. (An earlier stage of the
preprocessing replaced function procedures by proper procedures.)

As van Wijngaarden described the transformation:

Provide each procedure declaration with an extra formal param-
eter — specified label — and insert at the end of its body a
goto statement leading to that formal parameter. Correspond-
ingly, label the statement following a procedure statement, if
not labeled already, and provide that label as the correspond-
ing extra actual parameter. [45]

Next, by inserting labels and goto statements, each block was transformed
into an equivalent block with the form

begin L1:S1; . . . ;Ln:Sn end

where every path of execution through a statement Si ends in a goto state-
ment. Actually, unless I have misunderstood his rather opaque prose, van
Wijngaarden’s description of this transformation is erroneous: When the
above block is a statement of a larger block, there is no provision for in-
serting jumps from within the inner block to the statement following the
inner block. This defect is easily remedied, however, by replacing such inner
blocks by calls of corresponding parameterless procedures (as in the work
of J. H. Morris [28]) before applying van Wijngaarden’s transformation.

Finally, according to van Wijngaarden [45]:

It is now completely harmless to insert at the end of each block
an unlabeled goto statement leading to the first statement of
that block, since this statement will never be executed. So far,
we have only increased the number of labels and goto state-
ments. But now we can perform the following operations:

1. Write before each label procedure.
2. Replace the colon following it by a semicolon.
3. Strike each goto.

The following exchange during the ensuing discussion shows that van
Wijngaarden understood clearly that the transformation into continuation-
passing style is more than just a method for eliminating labels and goto’s:
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MCILROY: . . . I’m afraid you went a bit too far in the elimi-
nation of the goto, because this actually changes the temporal
existence of values. If every goto is replaced by a procedure
call, then this means that the entire history of the computation
must be maintained. I’m a bit concerned about this limitation.

VAN WIJNGAARDEN: I suppose you have a certain imple-
mentation of a procedure call in mind when you say that. But
this implementation is only so difficult because you have to take
care of the goto statement. However, if you do this trick I de-
vised, then you will find that the actual execution of the pro-
gram is equivalent to a set of statements; no procedure ever
returns because it always calls for another one before it ends,
and all of the ends of all of the procedures will be at the end of
the program: one million or two million ends. If one procedure
gets to the end, that is the end of all; therefore, you can stop.
That means you can make the procedure implementation so
that it does not bother to enable the procedure to return. That
is the whole difficulty with procedure implementation. That’s
why this is so simple; it’s exactly the same as a goto, only called
in other words. [45]

In retrospect, it may seem surprising that van Wijngaarden’s presenta-
tion did not make continuations and continuation-passing style into stan-
dard concepts of computer science. Participants in the discussion of his
presentation included Dijkstra, Hoare, McCarthy, McIlroy, and Strachey,
and other conference attendees included Böhm, Elgot, Landin and Nivat.
But the idea didn’t take hold. In particular, although Landin referred to
van Wijngaarden’s transformation in his own treatment of Algol 60 [15], he
made no mention of the work when he heard F. L. Morris’s colloquium in
1970. (See Section 4.) Moreover, Christopher Strachey never connected the
work with Wadsworth’s continuations, and did not cite van Wijngaarden
in his own descriptions of the latter [42, 43]. (See Section 5.)

The discussion following the presentation reveals deep philosophical dif-
ferences between van Wijngaarden and other researchers, particularly van
Wijngaarden’s abhorrence of abstract syntax and his belief that proper
procedures were more basic than functions. A stronger barrier to com-
munication was probably his failure to motivate the CPS transformation.
According to M. D. McIlroy:

I remember the talk well as an insightful tour de force of reduc-
tionism. . . . Van Wijngaarden’s argument shone clearly and
unforgettably. . . . [But] an idea can be understood without all
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its ramifications being seen, even by its originator. Since van
Wijngaarden offered no practical examples of continuation pass-
ing, nor any theoretical application, save as a trick for proving
one isolated and already known result, the value of continua-
tions per se did not come through. [22]

Moreover, van Wijngaarden’s discovery was actually the CPS transfor-
mation rather than continuations themselves — nowhere does he define or
otherwise emphasize the actual concept of a continuation. This surely made
it difficult to recognize any connection with the appearance of continuations
in other settings.

It also appears that van Wijngaarden himself never used continuations
again.

A final sidelight on the talk is remembered by McIlroy [22]:

The talk actually had one direct and important consequence
for computing. Under the inspiration of the notion of the un-
necessity of goto’s, Dijkstra spent that evening constructing
realistic examples of programs without goto’s, which he scrib-
bled on napkins at coffee break the next day. In that exercise,
he posited a “quit” statement (the break of CPL and C) . . . .
That coffee-break palaver ripened into the most celebrated let-
ter to the editor in the history of computing [10]. So while van
Wijngaarden said that goto’s were unnecessary . . . , Dijkstra
stretched the point to say that goto’s were inconvenient. The
latter lesson stuck.

3. A. W. Mazurkiewicz

In December 1969, Antoni W. Mazurkiewicz (then at the Instytut Maszyn
Matematycznych in Warsaw) circulated a working paper entitled “Proving
Algorithms by Tail Functions” to the membership of IFIP Working Group
2.2 (which included Strachey). A publication version was submitted to
Information and Control in April 1970, revised in November, and published
in April 1971 [18].

In this paper, Mazurkiewicz dealt with an automaton-like concept of an
algorithm, consisting of a set E of labels, a subset T ⊆ E of terminal labels,
a set R of states, and a partial transition function γ from (E − T )× R to
E × R. He proposed that the semantics of such an algorithm, which he
called a tail function, should be the least partial function ϕ from E ×R to
R satisfying

ϕ(e, x) =
{
ϕ(γ(e, x)) if e /∈ T
x if e ∈ T .
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When curried, the tail function is an environment mapping labels into
command continuations, just as in the continuation semantics of an imper-
ative language with labels and goto commands. Mazurkiewicz’s concept of
algorithm, however, is such a limited programming language — one with-
out any hierarchical structure — that his work does not reveal much of the
general nature of continuations. For example, there is no syntactic entity
whose meaning must be a function accepting continuations. Also, if one
regards an algorithm as the while command

while e /∈ T do (e, x) := γ(e, x) ,

where the variables e and x range over labels and states, then the tail
function is just the direct semantics of this command.

Thus it is hard to say whether Mazurkiewicz’s work was a discovery of
continuations or a precursor. What is clear is that it inspired the later work
of Wadsworth. (See Section 5.)

In 1972, Mazurkiewicz published two further papers [19, 20] concerned
with the technique of tail functions.

4. F. L. Morris

In November 1970, F. Lockwood Morris (then a graduate student at Stan-
ford University who was teaching at the University of Essex while working
on his dissertation) gave a colloquium at Queen Mary College, London, en-
titled “The Next 700 Formal Language Descriptions” (an allusion to “The
Next 700 Programming Languages” [17], by Peter Landin, who had invited
Morris to give the colloquium). In the talk, Morris gave a variety of defini-
tional interpreters for a call-by-value functional language, with extensions
to include assignments and labels.

The notes distributed at the talk are published in the present issue of this
journal [26]. In the final interpreter in these notes, continuations are used
to treat labels and jumps of the kind found in Gedanken [35]. Specifically,
what Morris calls dumps (since they are abstractions of Landin’s dumps)
are expression continuations, and what he calls label values are command
continuations.

Like the SECD machine, but unlike the “circular” interpreters that Mor-
ris calls eval ′, eval ′′, and eval ′′′, the interpreter using continuations defines
a call-by-value language regardless of whether the language it is written in
uses call by value or call by name.
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Looking back on his work, Morris comments:

I think my main inspiration for programming with continua-
tions was three functions described in the Lisp 1.5 Program-
mer’s Manual [21]: prop, sassoc, and search . . . . I can’t
remember seeing McCarthy or anyone else do the same sort of
thing in programming examples, but it may have happened. [25]

He believes he was inspired to a lesser extent by the failure mechanisms in
Snobol [11] and Cogent [34]. Before discovering continuations, he had been
working on a definition of Snobol that

. . . was as I recall just a working out of the idea that every func-
tion needed two continuation arguments, one in case of success
and one in case of failure. I think the choice of two continuations
was easier to recognize than just one. [25]

The present author had the good fortune to attend Morris’s talk. It was
my first exposure to the use of continuations, and to the fact that there are
many styles of definitional interpreters, varying in abstractness and degree
of circularity. These ideas were the genesis of my own work on definitional
interpreters [36], which eventually did much to popularize continuations.

5. C. P. Wadsworth

The next bit of our story is most simply told in the first person: While
visiting Edinburgh University in December 1970, I had a conversation with
Rod Burstall and Chris Wadsworth (then a graduate student at Oxford
University) in which I summarized Lockwood Morris’s colloquium at Queen
Mary. As soon as he grasped the nature of Morris’s ideas, Wadsworth
exclaimed “That’s what I’ve been working on”.

In fact, Wadsworth had discovered the use of continuations to describe
the behavior of labels and goto’s, and had soon realized that the method
also sufficed to describe call by value and other constructs that constrain the
order of evaluation. But instead of working with definitional interpreters,
he was working with denotational definitions in Dana Scott’s then-new
lattice-theoretic semantics [39, 40]. In his words:

Through 1969–70 I had been working on trying to get a good
denotational semantics (mathematical semantics as it was then
called) [for jumps], under Christopher Strachey’s supervision.
We devised various “elaborate” schemes, none of which struck
us as being at all satisfactory.
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Then I came across a paper by A. Mazurkiewicz [18] . . .
which gave me the spark we needed. I coined the term “contin-
uation” for the concept/approach that resulted. [47]

Also:

The other spark was the struggles over earlier months (1969–70)
which had got me into “thinking backward” without then see-
ing how to express it denotationally. Reading Mazurkiewicz’s
paper gave me the key insight that turned something difficult
and messy into something so simple! That sudden insight was:
introduce a concept for “the meaning of the rest of the pro-
gram”. [48]

and on the word “continuations”:

Often getting the right word is the catalyst, and so it was for me.
Once I’d coined the word it all clicked and the rest (semantic
domains, semantic equations, etc.) followed in a matter of a few
days. Having the word made it easy and natural to write and
discuss, and disseminate (though I thought several times that I
would have liked a shorter word!). [48]

Wadsworth delayed publishing his work on continuations, while pursuing
his dissertation topics [46] of denotational models of the lambda calculus
and graph reduction.

Apart from the usual reasons things get delayed . . . , Strachey
felt that it was often good to live with, and try out, a promising
idea for a while before publishing — not the dominant practice
nowadays (or then?)! He felt, I think, that an idea’s originator
should allow himself some time to check it out and get it rea-
sonably polished before bothering the world with results that
may be of transient value. [48]

Eventually, Strachey described the ideas in a seminar at the Institut de
Recherche d’Informatique et d’Automatique in May 1973; a written version
was published by IRIA [42], and a revised and slightly expanded version ap-
peared as a report of the Oxford Programming Research Group [43]. Specif-
ically, these reports gave a continuation-style denotational definition of an
imperative language with labels and jumps, including jumps out of blocks
embedded within expressions. The texts were mostly written by Strachey,
but the underlying “method of continuations” was due to Wadsworth. (Al-
though the illustrative language did not include procedures, it appears that
Wadsworth understood the treatment of function procedures).
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6. J. H. Morris

In the first half of 1971, James H. Morris, Jr. (then at the University of
California at Berkeley — and a distant cousin of F. L. Morris) submitted
a paper to the Communications of the ACM in which he described a CPS
transformation for programs in an Algol-like language (specifically a sub-
stantial subset of Algol 60) [28]. The transformation was similar to that of
van Wijngaarden, except that it was described in more detail, it avoided the
erroneous treatment of nested blocks, and it treated function and proper
procedures on the same footing rather than converting function procedures
to proper procedures in a preliminary step.

Morris also pointed out that, in addition to eliminating labels and goto’s,
the transformation would eliminate occurrences of procedures that returned
complex results such as arrays, procedures, or labels (assuming it were
applied to a richer language that permitted such procedures).

A referee recognized that the basic idea of the paper had been anticipated
by van Wijngaarden, and as a consequence the paper was rejected. In its
place Morris published a brief letter to the editor [29] that did not describe
the program transformation in detail, but demonstrated that it could be
used to eliminate procedures returning complex values. (The letter also
noted that a conventional stack-based implementation of the transformed
program would quickly exhaust its stack.)

In retrospect, Morris comments:

I simply can’t remember the detailed process by which I first
discovered the continuation method. However, I originally con-
ceived it as a pure lambda-calculus technique, undoubtedly af-
ter several years of living with Peter Landin’s J-operator (which
must have set the stage for other discoverers, too). I laboriously
translated the idea into Algol 60 so as to make the idea more
accessible to readers. [30]

7. M. J. Fischer

At the ACM Conference on Proving Assertions about Programs, in Las
Cruces, New Mexico in January 1972, Michael J. Fischer (then at MIT) gave
a paper entitled “Lambda Calculus Schemata” [12]. (A final, more complete
version appears in the present issue of this journal [13].) In this paper, he
extended the call-by-value lambda calculus with conditional expressions,
and uninterpreted constants and primitive functions; and he described a
transformation of this functional language into continuation-passing style.
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Fischer’s purpose was to show that an arbitrary program can be trans-
formed (by the CPS transformation) into a form that can be implemented
by a stack, i.e. where the storage allocated during the execution of a pro-
cedure can be deleted when the procedure exits. Of course, the price (as
noted by J. H. Morris [29]) is that the stack never pops until the end of
program execution.

Fischer’s paper is notable for the first proof about the semantics of con-
tinuations, i.e. that the CPS transformation preserves meaning in an appro-
priate sense. This result was in a setting where lambda expressions denote
closures. (Results about the meaning of continuations in a denotational-
semantics setting, where lambda expressions denote continuous functions,
still lay several years in the future [23, 37, 24, 38].)

8. S. K. Abdali

With the appearance of papers by Fischer [12] in January, and J. H. Mor-
ris [29] and Reynolds [36] in August, continuations became widely known
by the end of 1972. Nevertheless, there was at least one later discovery.

In February 1973, S. Kamal Abdali (then a graduate student at the Uni-
versity of Wisconsin, teaching at New York University while working on his
dissertation) presented a short paper at the first Computer Science Con-
ference, held in Columbus, Ohio. In this presentation, Abdali described a
novel form of language definition, in which Algol 60 programs were trans-
lated into the untyped lambda calculus. This work was then submitted to
the first ACM Symposium on Principles of Programming Languages, but
was rejected because the extended abstract did not describe any treatment
of procedures. Later that summer the work (including a treatment of pro-
cedures) was published as a preliminary report [1]. Abdali then moved to
Rensselaer Polytechnic Institute, in Troy, New York, where he completed
his Wisconsin dissertation [2] in 1974.

According to Abdali, J. Barkley Rosser and his followers (including his
student George Petznick, who was Abdali’s Ph.D. advisor)

. . . felt that the extensions to the lambda calculus, to which
Landin had resorted [15] in establishing a correspondence be-
tween Algol 60 and that calculus, made it difficult to use the
correspondence for deriving properties of programs. My task,
therefore, was to translate programming constructs into the
“pure” lambda calclulus. Assignment, for example, was to be
modeled by substitution, avoiding the notion of memory, ad-
dress, and fetch and store operations. [5]
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To treat the imperative aspects of Algol 60, Abdali devised a translation
much like the CPS transformation. He says that the idea of a continuation
(which he called “program remainder”)

. . . was inspired by J. H. Morris’s thesis [27], in particular, by
attempting to get the outline on pp. 38–39 actually to work.
Continuations then opened the path to deal with block struc-
ture, as well as jumps and labels. The power and significance
of continuations was confirmed in overcoming the difficulties of
call-by-name; that construct was explicated with immediate and
remote continuations to denote calling and called contexts. [5]

Abdali first connected his program remainders with earlier discoveries of
continuations (by F. L. Morris and Wadsworth) in the published papers
arising from his dissertation [3, 4]. He later used his approach to model-
ing Algol-like languages in joint work with Franz Winkler [6] and David
S. Wise [7].

9. Conclusion

In summary, to the best of this author’s knowledge, continuations or closely
related concepts were first discovered in 1964 by van Wijngaarden, repeat-
edly rediscovered in a wide variety of settings — both intellectual and
geographical — during 1970 and 1971, and occasionally rediscovered there-
after.

The main mystery is why van Wijngaarden’s early work failed to become
widely understood. One can speculate, but it is unlikely ever to be known
with certainty, particularly since the deaths of Strachey (May 18, 1975)
and van Wijngaarden (February 7, 1987).

Nevertheless, the early history of continuations is a sharp reminder that
original ideas are rarely born in full generality, and that their communica-
tion is not always a simple or straightforward task.
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