AN INTRODUCTION TO THE COGENT PROGRAMMING SYSTEM
John C. Reynolds
Applied Mathematics Division

Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois

T39-TT11



AN INTRODUCTION TO THE COGENT PROGRAMMING SYSTEM®
John C. Reynolds
Applied Mathematics Division
-Argonne National Laboratory

Argonne, Illinois

ABSTRACT

The COGENT programming system isva compiler whose input
language is designed to describe symbolic or linguistic manipula«
tion algorithms. It represents an attempt to unify the concepts of
syntax-directed compilation and recursive list-processing. Basically,
a COGENT program is a list-processing program in which the list struce
tures normally represent phrases of one or more object languages.
Correspondingly, the COGENT language itself contains two major

constructions: productions, which define the object language syntax,

and generator definitions, which define list-processing subroutines.

The COGENT (COmpiler and GENeralized Translator) programming system is a
compiler whose input language is designed to describe symbolic or linguistic
manipulation algorithms, Although the system is intended primarily for use as
a'compiler compiler, it is also applicable to such problem areas as algebraic
manipulation, mechanical theorem-proviné, and heuristic programming.

In designing the system the major objective has been to unify the concept
'of syntax-directed compilation(l) with the more general but primitive concept

of recursive list-processing(z). This objective is achieved by using the syntax

*Work performed under the auspices of the U.S. Atomic Energy Commission.



of & language to define a mapping between strings of the language and list
structures. Given such a mapping, linguistic processes become equivalent to
list processes, and a list-processing language becomes a concise vehicle for
describing such processes.

Thus & program written in the COGENT langusage is a list-processing
program in which the:list structures normally represent phrases of one or
more gyiggz_languages (i.e., the input and output languages to be processed
by the program), in a representation determined by the syntax of these
languages. Correspondingly, the COGENT language itself contains two major
constructions: productions, which define the object language syntax, and

generator definitions, which define list-processing subroutines called

generators.

Productions and the String-to-List Mapping

The productions used in COGENT are conceptually identical to the
(3)

Backus Normal Form. A set of such productions, describing a simple

language of polynomials, is illustrated in Table l. The five metalinguistic

symbols of the Backus notation, "::=", "<", ">", "|", and the end-of-line,

are transliterated into the conventional keypunch characters "=", ",

myw " and "." . This transliteration creates an ambiguity between

metasymbols and object characters which is resolved by requiring that the
"on

characters "(" , ")" , "," , and "." must themselves be enclosed in paren-

theses when used as object characters, as in the fifth line of Table 1.



(LETTER) = A,B,C,D,E. . (1-5)

(STRING) = (LETTER),(STRING)(LETTER). (6-7)
(VARIABLE) = (STRING). (8)
(FACTOR) = (VARIABLE). (9)
(FACTOR) = (()(POLYNOMIAL)()). (10)
(TERM) = (FACTOR). (11)
(TERM) = (TERM)*(FACTOR). (12)

(POLYNOMIAL) = (TERM), +(TERM), -(TERM). (13-15)

(POLYNOMIAL) = (POLYNOMIAL)+(TERM). (16)
(POLYNOMIAL) = (POLYNOMIAL)-(TERM). (171)

Table 1. Productions describing a simple language
of polynomials. Illustrative internal code

numbers are shown on the right.

When several alternative constructions are to be given for the same
phrase class (we follow Brooker and Morris(h) in using "phrase class" rather
than "syntactic unit" to denote a set of syntactically equivalent phrases),

a sequence of single-alternative productions may be used, €.g.,

(TERM) (FACTOR) .

(TERM) (TERM)*(FACTOR) .

or the alternative constructions may be combined into a compound production,

€ofoy

(TERM) = (FACTOR),(TERM)*(FACTOR).



The latter format is merely an abbreviation for the former, and in discussing
the meaning of COGENT we will assume that such coﬁpounds have been expanded so ‘
that all productions are single-alternative.

It is well-known that a set of productions may be used to convert a
phrase of object language into a parsing diagram or construction tree, in
such a tree, an example of which is given in Figure 1, the nonterminél nodes
correspond to phrase classes, the terminal nodes correspond to characters,
and the relationship of any nonterminal node to its subnodes eorresponds to
a particular production. Essentially, the concept of the construction tree
provides the mapping between object language phrases and list structures.
However, the list structures actually used in COGENT are considerably more
compact than construction trees, since the latter contain redundant informa-
tion already specified by the productions themselves,

When productions are read by the COGENT compiler (after compounds have
been expanded into single-alternative productions), they are assigned unique
internal code numbers. Given such a set of cbde numbers, the list structure
representing an object phrase may be defined in terms of the construction
‘tree for the phrase as follows: There is a list element corresponding to
each nonterminal node of the tree. The first field of this element gives
the code number of the production that relates the tree node to its subnodes.
The remaining fields, if any, are pointers to the list elements that repre-
sent those subnodes of the original node which are themselves nonterminal.
Figure 2 gives the list structure corresponding to the construction tree in
Figure 1, using the code numbers shown on the right of Table 1. There are
no list elements representing terminal tree nodes since the nature of these

nodes is defined by the productions themselves.



Two further comments should be made on the use of productions to map
object strings into list structures. First, this usage requires that a
set of productions must be nonambiguous, i.e., it must define a unique
mapping. Except for a minor restriction on the use of empty productions
(which define a phrase class to contain the empty string), nonambiguity is
the only requirement imposed on productions in COGENT.

Secondly, two different sets of productions defining the same object
language may define different mappings. Thus, for example, if the seventh
line in Table 1 is replaced by

(TERM) = (FACTOR)*(TERM).
the same object language is defined, but the list structures representing

terms are reversed,

The Syntax Analyzer

When a COGENT program is executed, its main routine is always a
syntax analyzer compiled from the productions describing the input object
language. This analyzer reads strings from the input medium, creates the
corresponding list structures, and calls upon generators to process these
gtructures. In the COGENT program itself, this calling of generators is
specified by prefixing labels to some of the productions defining the input
language.

Normally, the syntax analyzer constructs list structures from the
bottom up, so that each list element is created immediately after its last
sublist, However, whenever the analyzer is about to create an element
corresponding to a labelled production, it calls the generator named by the
label and gives this generator as input arguments the sublists of the element

that would otherwise be created. When the generator returns control, its



result replaces the element that would have been created, and the syntax
analysis continues. Thus, at a higher stage of the analysis, the generator
result may be passed on to other generators for further processing.

For example, suppose that labels are attached to the following two
productions from Table 1:

MULTCOMP/ (TERM) = (TERM)*(FACTOR). (12')

ADDCOMP/ (POLYNOMIAL) = (POLYNOMIAL) + (TERM). (16%)

Figure 3 illustrates the action ‘of the syntax analyzer while parsing the
input string "-(A+B)*DC" according to these productions. First, the
generator ADDCOMP will be called and given the two arguments shown in 3a.
Next, MULTCOMP will be called and given the arguments shown in 3b, the
first of which conteins the result of ADDCOMP. The final result of the
parse is shown in 3c.

This general method, of associating generators with productions and
calling a generator at each syntactic level where the corresponding
production is used, is equivalent to syntax-directed compilation as

developed by E. T. Irons.(l)

Our approach extends beyond Irons' only in
the generators themselves, which are capable of conditional analysis of

list structures and of calling each other recursively.

Generator Definitions: Constants

Basically, a generator is & subroutine for menipulating list structures
and is similar in form to an ALGOL procedure. More precisely, since a
generator may have any number of input arguments but only a single result,
jt is similar to a function procedure with call by value imposed on all

arguments.



The essential peculiarity of generators is that the values of their
variables are list structures, usually representing phrases of object
language. Thus the most distinctive feature of generator definitions is
the format of constants, which must denote such list structures.

The ideal approach would be to allow a constant to consist merely of
the desired object phrase enclosed in some type of quotation marks, and to
heve the COGENT compiler convert this quoted phrase into the corresponding
list structure according to the appropriate productions. But to perform
this conversion, the compiler must know not only the characters of the
object phrase but also the class name of the phrase. Thus & constant
consists of both a phrase class name and a string of object characters,
separated by a slash and enclosed in parentheses., Just as in productions,
the four object cheracters "(", ")", "' , and "." must be parenthesized
to prevent ambiguity. Thus, for example, to denote the object phrase
"_(A+B)*DC" one would write the constant

(POLYNOMIAL/=~(()A+B())*DC)

The actual list structure denoted by this constant is shown in Figure 2.

The set of constants used in COGENT (and therefore the set of values

that variables may assume) is extended to include parametric phrases, i.e.,

phrases in which one or more subphrases, called parameters, are left
unspecified. Such phrases play a central role in COGENT as templates for
the synthesis and analysis of list structures.

Parametric_phrases are represented by allowing phrase class names to
appear in the obJect string of a constant., For example,

(TERM/ (FACTOR ) * (FACTOR ) * (FACTOR) )

represents & term containing three parametric factors. In general, each



phrase class name in the object string represents a parameter, Asgociated
with each such parameter is a numerical index, vhich is normally the order
of appearance of the parameter in the entire object string. However,
indices may also be specified explicitly, e.g.,
(TERM/(FACTOR/l)*(FACTOR/2)*(FACTOR/3))
is equivalent to the constant above.
Parametric constants are converted into list structures in a manner
similar to that for conventional constants. Each phrase class name
behaves syntactically as a phrase of the named class, but is converted

into a special list element called & parameter element, which always

contains a single field giving the index of the parameter. The list
structure corresponding to either of the above constants is shown in

Figure L,

Assignment Statements

The format and meaning of variables, expressions, and simple assignment
statements is the same in COGENT as in most programming languages. An
expression may be & constant, a variable, or a compound expression; in
the latter, a functional notation represents the calling of other generators
(i.e., the value of the compound expression is the result of the called
generator).

However, in addition to the conventional or direct assignment statement,

synthetic and analytic assignment statements are provided to describe the

synthesis and analysis of list structures. While these statements are
actually general-purpose list-processing operations, they explicitly display
the linguistic manipulations which these operations represent. As noted

earlier, this is accomplished by using parametric constants as templates.



The synthetic assignment statement has the format
<synthetic assignment statement> ::=

<name> /= <expression <expression.>,..sg<expression >,
1° b n

template>’
This statement evaluates all the expressions, creates a copy of the list
structure that is the value of the template expression (usually a parametric
constant), and assigns the copied list to the variable named on the left,
However, as the copy is produced, each parameter element in the list structure
is replaced by the value of expressioni, where i is the index of the parameter
element.

For example, suppose that X has the value (FACTOR/ABE), and Y has the
value (FACTOR/BED). Then the statement

Z /= (TERM/(FACTOR)*(FACTOR)),X,Y.

will assign to Z a copy of (TERM/(FACTOR)*(FACTOR)) in which the first
parameter is replaced by the value of X and the second by the value of Y.
Thus Z will be given the value (TERM/ABE¥*BED).

The analytic assignment statement has the format

<analytic assignment statement> ::=

£ =/ <expression » <namel>,,,.,<namen> .

>
s template

<expressionte
This statement evaluates both expressions, and then compares, element by
element, the list structures which are the values of these expressions.
During the comparison, whenever a parameter element with index i is en-
countered in the template structure, the corresponding sublist in the test
structure is made the value of the variable name, . Thus, for example, if Z
has the value (TERM/ABE¥BED), then the statement

Z =/ (TERM/(FACTOR)*(FACTOR)),X,Y.

will give X the value (FACTOR/ABE) and Y the value (FACTOR/BED).,



10

An additional property of the analytic assignment statement arises
because the comparison 6f the test and template list structures may show
that these structures are dissimilar (beyond the occurrence of parameter
elements in the template in place of sublists in the test structure),
If the structures do not match, then the analytic assignment statement will
fail, without changing the value of any variables. (Failure is a conditional
control mechanism explained below.) Thus if Z has the value (TERM/ABE*BED*CAB) ,
then the statement given above will fail, leaving the values of X and Y
unchanged.

The synthetic and analytic assignment statements are generalizations

()

of the "parameter operations" used by Brooker and Morris.

Control Statements and Failure

Any statement in a generator definition may be prefixed with a
numerical label or statement number, to allow it to be referenced by control
statements in the same generator definition. The most important control
statement is the conditional jump statement, with the format:

<conditional jump statement> ::=

+ <gtatement number> IF <assignment statement> I

+ <statement number> UNLESS <assignment statement>
(The character "+" is used to mean "go to".) When control reaches a
conditional jump statement, the right-hand assignment statement is executed,
and then control jumps to the statement denoted by the statement number IF
or UNLESS the assignment statement did not fail.

For example, consider the statement

+10 IF 2 =/ (TERM/(FACTOR)*(FACTOR)),X,Y.



11

If the value of Z is a term composed of two factors, then this statement will
assign these factors to the variables X and Y and will transfer control to
statement 10, But if the value of Z is not a term containing two factors,
then control will pass to the next statement without altering X or Y.

Failure, which is the basic control mechanism in COGENT, is a formaliza-
tion of the concept of an error trap. A failure may originate in three ways:

1) Certain primitive (built-in) generators used to perform tests

may fail.

2) An analytic assignment statement will fail if the lists being

compared do not match,

3) A control statement written "$FAILURE." is provided which simply

fails without taking any other action.

Once a failure occurs, it propagates upwards through the chain of
generator calling sequences until a conditional jump statement or the syntax
analyzer is reached. Thus, when an assignment statement calls a generator
that fails, the statement fails without calling further generators or
assigning values to its variables. When a statement in a generator fails,
unless it is a substatement of a conditional jump statement, the generator
fails., When a statement within a conditional Jump statement fails, the Jjump
statement does not fail, but branches appropriately. Finally, if a failure pro=
pagates all the way to the syntax analyzer without encountering a conditional
Jump statement, an error stop occurs.

The ability of a failure to propagate up a long chain of calling
sequences is useful in describing complex processes that may either run to
completion and return a result, or else fail at an arbitrary point in their
operation, Such a process, perhaps involving numerous recursions and many

generators may be coded to terminate upon a failure at any point in its operation.



Declarations and Nested Generator Definitions

In addition to statements, a generator definition may contain declara-
tions that control the interpretation of variables and other names within
the definition. The usual concept of type, e.g., integer, real, or array,
is not meaningful in COGENT since all variables have the same set of possible
values. Thus the only function of declarations is to control storage alloca-
tion and to specify initialization values. For example,

$OWN X,Y = (FACTOR/BED),Z.
declares the names X, Y, and Z to be own variables and specifies (FACTOR/BED)
as the initiel value of Y.

In general, names may be declared to be own variables, lcal variables,
or pseudoconstants. Own variables are similar to ALGOL own variables and
are initialized at the beginning of program execution. Local variables are
similar to ALGOL non-own variables and are initialized upon each entrance to
the generator in which they are declared.

Pseudoconstants are names which are used as abbreviations for constants,
‘and are not variables in the usual sense of possessing dynamically varying
values, For example, within the scope of the declaration

$PCON TERM3 = (TERM/(FACTOR)*(FACTOR )% (FACTOR) ).
any appearance of the name TERM3 is equivalent to the constant
(TERM/ (FACTOR ) * (FACTOR ) * (FACTOR) ) .

A complete generator definition has the format:

<generator definition> ::=

$GENERATOR<name>( (<input variable sequence>)
<declaration sequence><generator definition sequence>

<statement sequence>).

12



13

where
<generator definition sequence> ::= <empty> |

<generator definition sequence><generator definition>

This format allows generator definitions to be nested and thus provides
a limited block structure (in which complete generator definitions are the
only blocks)., This nesting allows a generator to evaluate or alter variables

declared in a higher-level generator.

Generator Elements

In many programs, it is convenient to use variables which take on
generators themselves as their values., This capability is provided by a

special type of list element called a generator element, which has a single

field giving the entry address of a generator. A génerator element may
appear as the value of any variable or may even be imbedded within a larger
list structure.

The introduction of generator elements leads to a more general inter-
pretation of the concepts of generator names and compound expressions.
A generator name is actually a type of pseudoconstant which denotes a
generator element. On the other hand, the first item in a compound expression,
which is normally a generator name, may actually be any expression whose
value is & generator element.

For example, suppose that X has been declared as & variable, while
PLUSCOMP is a generator name, Then

X = PLUSCOMP,
will set X to a generator element giving the address of PLUSCOMP, Then at

a later step in the computation,



z = X(Y).
will call PLUSCOMP with the value of Y as an input argument.

Similarly, if PROCESS and PLUSCOMP are generator names, then

7 = PROCESS(Z, PLUSCOMP).
will call PROCESS and provide the generator element for PLUSCOMP as the
last argument. The generator definition for PROCESS might héve the form:

$GENERATOR PROCESS ((X, G) ceo

ceo Y = G(Y)s o000 Jo
in which the expression G(Y) would cause PROCESS to call the generator
indicated by its last argument (in this case PLUSCOMP) .

A more esoteric example is a compound expression such as

GSWITCH(X) (Y)
which is meaningful if the result of the generator GSWITCH is & generator
element, In the evaluation of this expression, GSWITCH is called with the
value of X as its argument, and then the generator whose element is the

result of GSWITCH is called with the value of Y as its argument.

Primitive Generators: Numerical Operations

A variety of facilities is provided in COGENT by primitive generators,
i.e., generators which may be used in a COGENT program without being defined.
These facilities include numerical operations, symbol-table maintenance, and
output.

Numbers in COGENT are represented by special list elements called
number elements, which contain two fields: a mode (integer or floating-point)
and a value, The value fields of floating-point numbers have a fixed length,

but the value fields of integers have a variable length depending upon the

1b



15

magnitude of the integer. Thus there is no overflow in integer arithmetic,
since the result of each operation is dynamically assigned adequate storage.
This facility for arbitrarily large integers is particularly useful in
algebraic manipulation prograﬁs, in which exact fractional coefficients may
be used throughout the computation.

Primitive generators are provided for performing the basic arithmetic
operations upon number elements, For example, ADD(X, Y) accepts two number
elements and produces a new element representing their éum. In general, these
arithmetic primitives accept arguments with mixed modes, and produce floating-
point results if any of their arguments are floating-point.

Primitive generators are also provided for converting general list
structures into number elements. For example, DECCON(X) accepts a list
structure and reduces this structure back into a character string in accordance
with the string-to-list mapping defined by the object language syntax. This
string is then interpreted as a positive decimal integer (ignoring nondigits),
and the corresponding number element is returned as the result of DECCON.
Similar primitives are provided for octal integers and decimal floating-
point numbers.

To facilitate the programming of arithmetic operations, unsigned integer
constants are allowed in generator definitions, and are used to denote positive

integer number elements.

Identifiers
A general-purpose symbol~table facility is provided by special list
elements called identifier elements, which contain packed character strings.

These elements serve two purposes:



16

1) To save storage by allowing phrases whose syntactic substructures
have no semantic content to be represented by packed strings
rather than parsed list structures.

2) To allow descriptive information to be associated with such
phrases. |

Tdentifier elements are grouped into one or more identifier tables,

which are distinguished by positive integers called table numbers. Within

a single table no two elements can contain the same character string. Thus
all references to identifier elements with the same string and in the same
table are references to the same element,

Specifically, an identifier element contains four fields: the table
number, the character string, the table link name (used to link elements
together for table searching and not directly accessible to the programmer ) ,
and the association list name. The association list name may be set by the
programmer to point to an arbitrary list structure, and is used to associate
descriptive information with an identifier,

Identifier elements are created by the primitive generator IDENT(X, N),
which accepts a list structure X and a positive integer number element N
denoting a table number. The list structure X is mapped back into a string
of object characters, and then jdentifier table N is searched for an element
with the same character string. If such an element is found, it is returned
as the result of IDENT; otherwise & nevw element with the appropriate string
is added to table N and return as the result.

Two primitive generators are provided for setting and obtaining associa-
tion lists. SETA(I, X) accepts an identifier element I and an arbitrary list
structure X, and replaces the association list name of I by X. ALIST(I) accepts

an identifier element I and returns the association list neme from this element.



Additional primitives are provided for iterating over all elements in

an identifier table, and for deleting elements from tables.

Outgut

Output operations in COGENT consist of two phases: character scanning,

which reduces a list structure to a string of object characters, and char-

acter output, which assembles these characters into records and sends these

records to the appropriate output device,

Character scanning is usually performed by the primitive generator
STANDSCN(X, CR), which accepts a list structure X to be scanned, and a
second argument CR, which must be a generator element denoting a generator

called the character receiver, The charscter receiver is a one=argument

generator which will be called repeatedly by STANDSCN and given on each
call an aigument representing a single object character, i.e., an integer
number element giving the BCD code for the character,

Basically, the list-to-string mapping performed by STANDSCN is deterw=
mined by the productions that describe the output object language, sO that
the output operation of character scanning is the inverse of the input
operation of syntax analysis. However, the productions do not specify the
response of STANDSCN to special list elements such as number elements.
Normelly, STANDSCN will convert a number element to a free-field decimal
digit string, but this response may be asltered by the programmer. The
programmer also has the option of defining his own character-scanning
generator in terms of more basic scanning primitives.

The character-output phase is performed by the character receiver.
For printed output, the primitive PUTP(C) is supplied for use as a character

receiver. On each call, PUTP accepts an integer number element giving the



BCD code for a single character, and repeated calls of PUTP place these
characters in successive positions of a print line. When the character
position reaches a margin limit, the current print line is written on the
printed output tape, a new line is initialized, and the next character is
placed at the left of the new line, A second primitive OUTP() outputs
the current line even if the margin limit has not been reached, and then
initializes a new line. Similar primitives are provided for BCD and
binary card output.

Thus, for example, to print the object character string represented
by the list structure X and then skip to a new line, one would use the
statements

STANDSCN(X, PUTP). OUTP().

Normelly, the character-output primitives produce a free-field format,
but the programmer has the option of introducing more sophisticated output
formats by arbitrarily specifying the response of a character-receiving

primitive to special character codes or margin limits.

Implementation

An initial version of COGENT has been coded for the Control Data 3600.
Two aspects of this implementation warrant a brief description: the basic
method used for syntax analysis, and the data representation and storage
allocation mechanism used for list structures.

It is fairly straightforward to convert a set of Backus Normal Form
productions into a set of recursive subroutines which collectively form a
syntax analyzer. The essential difficulty is that for certain object

languages these subroutines will contain ambiguity points, i.e., points at

18

(5)



19

which a conditional branch must be performed although the current state of
the analysis is insufficient to determine the branch, In most approaches to
syntax analysis, these ambiguity points are handled by "packup": a single
control path extending from an ambiguity point is pursued until the analysis
ig found to be inconsistent with the input string; then the analyzer and input
string are backed up to the lagt-encountered ambiguity point and en alterna-
tive path is pursued.

However, in COGENT all paths extending from an ambiguity point are
pursued in parallel., The actual analysis program simulates an assembly of
independent analyzers, all parsing the same input string according to the
same program, but with different internal states. When an analyzer encounters
an ambiguity point, it figsions into two or more analyzers; when an analyzer
reads an input character inconsistent with its internal state, it vanishes
from the assembly.

In performing this simulation, the analysis program alternates between
a normal mode, in which the assembly contains & single analyzer, and an
ambiguity mode, in which the assembly contains more than one analyzer.

In the ambiguity mode the actions of 1list comstruction and generator calling
that would be performed by a single analyzer are not actually executed;
instead, indicators for these actions are stored in a queue associated with
the analyzer, When the program switches from the ambiguity mode to the
normal mode, the actions stored in the queue of the surviving analyzer are
carried out before the analysis continues. Thus, from the user's viewpoint,
the analysis program behaves like a single analyzer which, when necessary

to resolve an ambiguity, looks ahead at the input string.



The storage allocation mechanism used for list structures follows the

(2)

bvasic approach used in LISP, A pushdown stack of consecutive words
provides dynamically assigned storage for the variables of the generators,
and thus contains the names of all list structures being used in the
computation, The list elements themselves are stored in a separate area
called list storage, which is divided into active and free areas. When the
free area is exhausted, a storage recovery routine is automatically called
which marks all active elements and then retrieves the remaining elements
to form a new free storage aresa.

However, the representation of list elements differs from LISP in
several respects., Most important, a list element is not always a single
machine word, but may be an array of consecutive words whose length depends
upon the size and number of fields in the element. (Thus list structures in

COGENT are akin to plexes, as defined by D. T. Ross.(6))

This use of
variable~sized elements requires that the free list storage area must be
a coalesced block rather than a linked list of free elements, 8o that new
elements of arbitrary size may always be created. To produce such a
coalesced block, the storage recovery routine relocates the active list
elements after marking them. This routine is based upon a scheme proposed
by D. Edwardso(7)
A second feature of the list representation is the use of literal list
names to denote certain short but frequently used list elements. These names
are not addresses of arrays in list storage, but are direct encodings of the
fields of the named elements., The use of literal names for parameters, small

integers, and normal elements with no sublists provides substantial savings

in both storage space and execution time.

20



21

A Programming Example

Table 2 gives & COGENT program for translating algebraic expressions
from Polish prefix notation into conventional infix notation. The input
to this program is assumed to be a sequence of Polish expressiohs separated
by commas and followed by a period. The Polish expressions use single-letter
variable names, the binary operators "+" , nao o e 0 and "/" , and
the unary operator "=" (denoting negation).

The overall program consists of three sections:

1) The primary syntax description, headed by "$PRIMSYN", gives the

productions describing the input object language. This section

begins with a goal specifier " ((SENTENCE)(.))", which specifies

the phrase class (SENTENCE) to be the overall goal to be sought
by the syntax analyzer, and specifies "." to be the terminal char-
acter which must follow the (SENTENCE).

2) The secondary syntax description, headed by "$SECSYN", gives the

additional productions needed to descrive the output object language.

3) The generator description, headed by "$PROGRAM", gives the generator

definitions. Within these definitions the control statement
"$RETURN(X)." causes a generator to exit with X as its result,
The statement "NORMEXIT()." is a call of a primitive generator
which causes a normal program termination.

The program converts a (PEXP) (Polish expression) into an equivalent
(EXP) (conventional expression) at each syntactic level where a (PEXP) is
recognized. Thus the input arguments of the generators GMULT, GADD, and GNEG
are always phrases of the class (EXP). Within these generators, conditional

analysis is used to avoid unnecessary parenthezation.



$PRIMSYN ( (SENTENCE)(.))

(VAR) = A,B,C,D,E,F,G,H,I,J,K,L,M,
N,0,P4QsRsS,T,Uy VoW, X, Y, 20
(MOP) = *,/. |
(AOP) = +,=-,
(NOP) = =,
GVAR/ (PEXP) = (VAR).
GMULT/ (PEXP) = (MOP)(PEXP)(PEXP).
GADD/ (PEXP) = (AOP)(PEXP)(PEXP).
GNEG/ (PEXP) = (NOP)(PEXP).

(PEXPSEQ) = (PEXP),(PEXPSEQ)(,)(PEXP).
OUT/ (SENTENCE) = (PEXPSEQ).
$SECSYN
(FACTOR) = (VAR),(()(EXP)()).
(TERM) = (FACTOR),(TERM)(MOP)(FACTOR).

(ExP) = (TERM),-(TERM),(EXP)(AOP)(TERM).

NOTE TO EDITOR: This is the first page of a
two-page table. The caption

is on the next page.

22



$PROGRAM
$GENERATOR GVAR ((X)
X /= (EXP/(VAR)),X. $RETURN(X). ).
$GENERATOR GMULT ( (OP,X,Y)
+1 IF X =/ (EXP/(TERM)),X.
X /= (TERM/(()(EXP)())),X.
1/ +2 IF Y =/ (EXP/(FACTOR)),Y.
Y /= (FACTOR/(()(EXP)())),Y.
2/ X /= (EXP/(TERM)(MOP)(FACTOR)),X,0P,Y.
$RETURN(X). ).
$GENERATOR GADD ((OP,X,Y)
+1 IF Y =/ (EXP/(TERM)),Y.
Y /= (TERM/(()(EXP)())),Y.
1/ X /= (EXP/(EXP)(AOP)(TERM)),X,0P,Y.
$RETURN(X). ).
$GENERATOR GNEG ((OP,X)
+1 IF X =/ (EXP/(TERM)),X.
X /= (TERM/(()(EXP)())),X.
1/ X /= (EXP/-(TERM)),X.
$RETURN(X). )
$GENERATOR OUT ((X)

STANDSCN(X,PUTP). OUTP(). NORMEXIT(). ).

Table 2. An illustrate program which translates Polish prefix

expressions into conventional infix expressions.

23



1.

2,

3.

Se

6.

Te

REFERENCES

Irons, Edgar T., "A Syntax Directed Compiler for ALGOL 60,"

Comm, ACM, 4, p. 51 (1961).

McCarthy, John, "Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part I," Comm. ACM, 3, p. 184 (1960).

McCarthy, John, et al., LISP 1.5 Progremmer's Manual, M.I.T, Press

(1962).
Backus, J. W., "The Syntax and Semantics of the Proposed International

Algebraic Language of the Zurich ACM-GAMM Conference,”" Proceedings of

the International Conference on Information Processing, UNESCO, Paris,

June 1959, p. 125,
Brooker, R, A., and Morris, D., “"A General Translation Program for
Phrase Structure Languages," Journal ACM, 9, P. 1 (1962).

Reynolds, John C., COGENT Programming Manual, ANL-T022, Argonne

National Laboratory, March 1965.
Ross, Do T, "A Generalized Technique for Symbol Manipulation and

Numerical Calculation,"” Comm. ACM, L, p. 147 (1961).

Edwards, Daniel J., "LISP II Garbage Collector," unpublished.

2L



2
FIGURE CAPTIONS 2

Figo
No.

1 Construction tree for the polynomial "_(A+B)*DC", according to the

productions given in Table 1,

2 List structure representing the polynomial "_(A+B)*DC", according

to the productions given in Table 1,

3 List structures communicated between the syntax analyzer and

generators (see text).

L List structure representing the parametric constant

(TERM/(FACTOR)*(FACTOR)*(FACTOR)).



(POLYNOMIAL)

"/ \ (TERM)

/
(TERM) * (FACTOR)
(FACTOR) (VARIABLE)
N
( (POLYNOMIAL) ) (STRING)

N

(POLYNOMIAL) + (TERM) (STRING) (LETTER)

|

(TERM)  (FACTOR) (LETTER) C

|

(FACTOR) (VARIABLE) D

|

(VARIABLE) (STRING) -

(STRING) (LETTER)

(LETTER) B

A



15

12

10

16

13
.




(@) Inputs of ADDCOMP:

| ST

13

ARG.

.

~

9
o
8
)
'T/

(b) Inputs of MULTCOMP:

IST
ARG.

result of
ADDCOMP

1L

10

(c) Final result:

—=1I5

|
result of
MULTCOMP

2ND Ty}
ARG.
9
8
0
o
2
2ND _
ARG. | 9
7/
é
Vil




12

“‘




