
Page 1 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

The Junior Woodchuck 
Manuel  

of 
Processing Programming  

for  
Android Devices 

The Image 

 

Page 2 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Chapter 5 
One More Creek to Wade. . . 

The Image  The Code 

 

float y; 
 
void setup( )  
{ 
       size( 200, 400 );  
       y =  0;    
} 
 
void draw( )  
{ 
           // draw the background 
    f il l( 200, 200, 0, 30 );  
     rect( 0, 0, 200, 400 );  
       
           // draw animated circ le 
    f il l( 200, 0, 0  ) ;  
     el lipse( 100, y,  20, 20 );  
 
           // move c ircle 
      y =  y +  5;  
 
           // see if  circ le  has gone too far 
        if  ( y >  400 )  
       { 
             y  = 0;  
       } 
} 

 

First, A Brief Review… 
Wow!  You have done a lot in only three days of class.  We hope you have 
had some fun doing this stuff.  If you are not having fun, talk to us today.  
Maybe we can help you find some. 
 

Page 3 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

In only three classes and on your own time you have written programs, 
worked with functions and variables, done programming arithmetic, 
learned how to ask questions in your code using stuff called relational 
operators.  The result of this has been some animation you can see on 
your screen.    Today we want to add to your animation abilities.   
 
The code below is the code that is on page 2 of this exciting chapter.  Let’s 
walk through it for the review. 

Code  Its Purpose 
float y; 
 
 
void setup( )  
{ 
       size( 200, 400 );  
       y =  0;        
} 
 
void draw( )  
{ 
           // draw the background 
    f il l( 200, 200, 0, 30 );  
 
 
 
     rect( 0, 0, 200, 400 );  
       
           // draw animated circ le 
    f il l( 200, 0, 0  ) ;  
     el lipse( 100, y,  20, 20 );  
 
           // move c ircle 
      y =  y +  5;  
 
           // see if  circ le  has gone too far 
        if  ( y >  400 )  
       { 
             y  = 0;  
       } 
} 

This is our variable that we will use to 
control the vertical position of the circle. 
 
This is our setup function. 
 
This sets the size of the window. 
This assigns y the value of zero. 
 
 
This is our draw function that Processing 
will run 60 times a second. 
 
This sets the color of the background to 
yell but it will be slightly transparent so 
we can see the older frames for a while. 
 
This draw a slightly transparent rectangle 
that covers the entire window. 
 
This sets the fill to red. 
This draws the circle y pixels from the top 
edge. 
 
This adds 5 to the current value of y. 
 
 
This asks if y is bigger than 400. 
If the answer is true, then the value of y is 
changed to zero. 
 

Page 4 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Now, Something New… 
The review code above and the code we worked with last time gives our
program the illusion of movement of the circle that we call wrapping.
Last week we wrapped the circle from the right edge back to the left
edge. The code in the review wraps the circle from the bottom edge
back to the top edge.

Today, we want to figure out how to bounce the circle back and fourth.
We will work with the code in the review so if you do not understand the
code in the review, talk, be sure to one of us during the work session.

Before we begin to code, let’s think a minute. We have perfectly good
code for wrapping. Can we use this code and just modify it? Let’s list
the code below and mark what we already have that we can use:
Code  Its Purpose 
float y; 
 
void setup( )  
{ 
       size( 200, 400 );  
       y =  0;        
} 
 
void draw( )  
{ 
           // draw the background 
    f il l( 200, 200, 0, 30 );  
     rect( 0, 0, 200, 400 );  
       
           // draw animated circ le 
    f il l( 200, 0, 0  ) ;  
     el lipse( 100, y,  20, 20 );  
 
           // move c ircle 
      y =  y +  5;  
 
           // see if  circ le  has gone too far 
        if  ( y >  400 )  
       { 
             y  = 0;  
       } 
} 

We need this to move the circle 
 
We need this, 
 
and this, 
and this, too. 
 
 
We need this, 
 
 
and we need this, 
and this. 
 
 
We need this, 
this, 
 
 
and this. 
 
 
We need this. 
 

Page 5 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

So it looks like we can use the entire program and just modify parts of
the code. This is one reason to put comments into your code so you do
not have to remember what you did yesterday or last week.

Ok – Great!!! How do we use this code? The first thing we need to do is
to find the code that actually moves the circle. The reason is that this
code moves the circle in only down from top to bottom. We have to find
it and figure out a way to change it to be able to move the circle both
down and up!

Go back and find the code that actually moves the circle before looking
at the next page.

GO ON – Look for it before you peek.

Page 6 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Did you really
look first???

We are watching

you…

Page 7 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Is this the code you picked?
 el lipse( 100, y,  20, 20 );

Think again if you did. Is this really moving anything? Nope. It is just
drawing the ellipse 100 pixels to the right of the left edge and y pixels
down from the top edge. The result is a moved circle but it did not
actually move the circle.

What moves the circle?

What tells Processing where to draw the circle?
The answer is the first two arguments:
  ellipse( 100, y,  20, 20 );

What actually moves the circle is the code that changes the value of the
variable, y.

So the code that actually moves the circle is this:
  y = y +  5;

In fact, the comment tells you that this is the code. This code is similar
to the fill() function. When we use fill() we do not see anything change
right then. We see the result of using fill() when we draw a circle or
rectangle. The fill() function changes stuff sorta’ behind the scenes.
The code  y = y  + 5;  works the same way. Without functions like fill()
and code like  y = y + 5; nothing would ever change – boring…

The reason the circle moves down from top to bottom is that we are
always adding 5 to the value of y. This is also why the answer to
if  ( y > 400 ) is eventually true and we reset the value of y back to
zero.

What we have to do is to figure out how to change the blue part of this
code:
 y   =     y     +     5      ;

If we add 5, the circle goes down.
But if we can subtract 5, the circle will go up.

How can we do this???

Page 8 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Let’s step back and remember why we used the variable, y and not a
constant like 100 or 42 in the original code.

We used y so we could change the location of the circle or “vary” it –
hence the name variable. By using the variable we can vary its value and
change the circle’s vertical position.

To be able to bounce the circle off of the edge, we have to be able to
vary the value that we add to y so it can move down sometimes and up
sometimes. Since we want to “vary” the value we add to y, maybe we
need a variable…

If we use a variable instead of 5, we can set its value to 5 to move it
down. What value would cause the circle to move up. What would we
change it to? If the value, 5 causes the circle to move down, then the
value -5 should move the circle up. Think about it. . .

Let’s run an experiment. Let’s move the circle up instead of down.
What would we have to change in our program to test this idea? Here is
the code – mark it up before looking at the next page.
 
f loat y; 
void setup( )  
{ 
       size( 200, 400 );  
       noFill( ) ;  
       y =  0;    
       background( 200, 200, 0 );      
} 
void draw( )  
{ 
     f il l( 200, 200, 0, 30 );  
     rect( 0, 0, 200, 400 );  
       
     f il l( 200, 0, 0  ) ;  
     el lipse( 100, y,  20, 20 );  
 
       y =  y +  5;  
        if  ( y >  400 )  
       { 
             y  = 0;  
       } 
}

Page 9 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Did you really
mark up th code

first???

Remember, we are
watching you…

Page 10 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Here is our idea:

Code both your ideas and see if they work. Then ours and see what
happens.

Ok – we have tested our idea. How do we put both ideas together to
get the circle to move down until it hits the bottom and then move up
towards the top?

First we need to replace the 5 and now the -5 with a variable. Variables
need to have names that make sense to you and to other programmers.
Picking a variable name is important. What name would you choose?

The name of your dog or cat would not be a good name:
 y = y + spot; or if (whiskers < 0)
might be cute but not very good.

Code  Its Purpose 
float y; 
 
void setup( )  
{ 
       size( 200, 400 );  
       y =  400;        
} 
 
void draw( )  
{ 
           // draw the background 
    f il l( 200, 200, 0, 30 );  
     rect( 0, 0, 200, 400 );  
       
           // draw animated circ le 
    f il l( 200, 0, 0  ) ;  
     el lipse( 100, y,  20, 20 );  
 
           // move c ircle 
      y =  y  ‐ 5;   
 
           // see if  circ le  has gone too far 
        if  ( y <   0  )  
       { 
             y  = 400;  
       } 
} 

 
 
 
 
 
Let’s start at the bottom. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let’s subtract 5 instead of adding 5. 
 
 
We need to  ask if the circle is too high. 
If this is true, we need to set the circle 
back at the bottom. 

Page 11 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Since the variable will be the distance the circle moves, we could call it
distance.

Since the variable will be the change in the location of the circle, we
could call it change.

If we want to get really silly we could use the name:
 amountOfDistanceTheCircleChangesEachFrame

Notice how these three names are written. The first letter is small.
Programmers usually follow a set of “unwritten” rules that are not
required but are very helpful. One of these rules is that all variables
begin with small letters and not capital letters. This tells other
programmer that this is a variable. This rule is also used for function
names.

Notice also that when a variable name or function name is made up of
two or more words, the new words begin with a capital letter so they are
easier to read and say. Compare this:
 amountOfDistanceTheCircleChangesEachFrame
to this:
 amountofdistancethecirclechangeseachframe

We are not suggesting that you use names like this silly name,
amountOfDistanceTheCircleChangesEachFrame
but we are suggesting that you use names that make sense to others.

For our code let’s use yChange.

Our first edits are on the next page:

Page 12 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

float y;
float yChange;

void setup()
{
 size(200, 400);
 noFill();
 y = 400;
 yChange = -5;
 background(200, 200, 0); //
yellow
}

void draw()
{
 fill(200, 200, 0, 30);
 rect(0, 0, 200, 400);

 fill(200, 0, 0);
 ellipse(100, y, 20, 20);
 y = y + yChange;
 if (y < 0)
 {
 yChange = 5;
 }
}

The new variable goes here.

Set it to -5 so the circle moves up.

Add the variable to y. Remember
that adding a negative number is
the same as subtracting a positive
number.

When the circle gets to the top,
change the value of the variable to
move the circle down.

Code this and run it and see if it works.

It almost works. The circle moves up, and then down. AND, it disappears
past the bottom of the window… We have no code to send it back up.

What can we do?

Lets’ do the same thing we did to solve the problem of going past the top
of the window. Let’s ask if the circle is too far down. If it is, we can
change the value of the variable back to -5

Page 13 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

We can add this code:
 if(y > 400)
 {
 yChange = -5;
 }

Here is our completed code:
float y;
float yChange;
void setup()
{
 size(200, 400);
 noFill();
 y = 400;
 yChange = -5;
 background(200, 200, 0); // yellow
}
void draw()
{
 fill(200, 200, 0, 30);
 rect(0, 0, 200, 400);

 fill(200, 0, 0);
 ellipse(100, y, 20, 20);
 y = y + yChange;
 if (y < 0)
 {
 yChange = 5;
 }
 if(y > 400)
 {
 yChange = -5;
 }
}
Try it and see if it works.

NOW – add code to bounce the circle horizontally as well as vertically.

If you get this working, give the change variables different values.

Comment out the line of code that draws the rectangle and see the
results.

Page 14 of 14 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Here is a challenge for you. Below is the image on page 1 of this exciting
chapter. If you figure out how to bounce the circle both horizontally
and vertically, then you can modify your program to draw an image very
similar to this one with only one or two edits or changes to your code.

If you get this working, try other shapes, values for your variables, and
multiple shapes. This is a chance for your artistic self to peek out. We
are anxious to see what you come up with.

Good Programming…

