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Gus XIA                                            RESEARCH STATEMENT 
As both a computer scientist and a musician, I design intelligent systems to understand and extend 
human musical expression. To understand means to model the musical expression conveyed through 
acoustic, gestural, and emotional signals. To extend means to use this understanding to create 
expressive, interactive, and autonomous agents, serving both amateur and professional musicians. 
Such systems provide intimate human-computer interaction and further blur the boundary between 
humans and machines. 

Intelligent systems have already reached the level of human capabilities for many tasks, including 
chess and board games, driving aircraft and vehicles, and even speech and face recognition. However, 
these tasks are very functional; for the tasks requiring an understanding of inner human expression, 
computers are still far behind. I believe that the study of musical intelligence, being one of the most 
profound aspects of humanity, will be the next frontier of artificial intelligence.  

To understand and extend musical expression, which is implicit and abstract, we need to create 
artificial musicianship. My work combines music domain knowledge with computational techniques, 
especially machine learning algorithms, for machine music understanding. Furthermore, I apply 
tools of human-computer interaction and robotics to extend human musical expression. The systems 
I create offer new ways for computers to participate in live performance. Such systems include: 1) an 
interactive artificial performer built on the understanding of music timing and dynamics, 2) an 
autonomous dancing robot built on the understanding of beat and music emotion, and 3) a smart 
music display as a bi-directional interface built on the understanding of music notation. 

Interactive Artificial Performers  
I create interactive artificial performers [1,2] that are able to perform expressively in concert with 
humans by learning musicianship from rehearsal experience. This study unifies machine learning and 
knowledge representation of music structure and performance skills in an HCI framework. The 
solution is inspired from my own rehearsal experience, where musicians become familiar with one 
another’s performance styles in order to achieve better prediction and interaction on stage. 

In particular, I consider pitch, timing, and dynamics features of musical expression and model these 
features across different performers as co-evolving time series that vary jointly with hidden (mental) 
states. Then, I apply spectral learning, a state-of-the-art machine learning technique, to learn how the 
time series evolve over the course of a performance. The spectral method first computes empirical 
moments of the high-dimensional features, then applies singular value decomposition on these 
moments to learn a compact representation of the hidden states, and finally recovers the model 
parameters using their relationship with the hidden states. For such a complex time-series learning 
task, the spectral method provides two benefits as compared to maximum likelihood estimation: it is 
computationally efficient and free of local optima. 

Based on the trained model, the artificial performer generates an expressive rendition of a given score 
by interacting with human musicians. Compared with the baseline, my approach improves the 
timing prediction by 50 milliseconds and the dynamics (loudness) prediction by 8 MIDI velocity 
units on average, trained on only 4 to 8 rehearsals of the same piece of music (Figure 1).  
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Figure 1. A comparison of the cross-validation results between the baseline and my method trained on only 4 rehearsals (smaller 

number is better). 
This is a very significant improvement, as listeners can easily perceive asynchronous notes that differ 
by 30 milliseconds and dynamics differences of 4 MIDI velocity units. The baseline we compared 
with is a rule-based approach, which assumes that local tempo and dynamics are steady and the 
synchronization is perfect. This baseline model has been used in automatic accompaniment systems 
for over 30 years! Now, my work has demonstrated that this model is inadequate: local deviations in 
timing and dynamics, also known as musical nuance, play an important role in expressive musical 
interaction. Remarkably, seemingly irregular musical nuance is related to predictable hidden states, 
and computers are able to learn this relationship from a small number of rehearsals. An audio demo 
is available at http://www.cs.cmu.edu/~gxia/demo1.pptx. 

Even when learning from the rehearsals of different pieces in similar music styles, my approach can 
still outperform the baseline. This indicates that expressive musical interaction, which involves 
musical nuance, follows universal patterns. In addition, computers are capable of generalizing what 
they have learned and applying it in new situations. 

Musical expression extends beyond sound. Recently, I collaborated 
with world-leading humanoid music robots and extended artificial 
musical expression to incorporate facial expression and body 
gestures (Figure 2). The macro-level body gestures are designed to 
reflect phrase structures, while the micro-level facial expressions are 
designed to reflect musical nuance. A video demo is available at 
https://youtu.be/AAC7wI64aBM. As far as we know, this is the first 
collaborative performance between a human and a humanoid music 
robot with facial and gestural expression.  

In summary, I have created interactive artificial performers, which 
are able to learn musicianship from rehearsals and extend human 
musical expression by playing collaboratively and reacting to musical nuance with facial and body 
gestures. This is a big step towards artificial musical interaction at a professional level. 

Autonomous Dancing Robots 
Dance is another way to convey and extend musical expression, which (once again) involves issues in 
sensing, planning, executing, and representation. While most robot dances are still designed for a 
particular piece of music, I developed an autonomous dancing robot driven by music [3]. 

A successful robot dance performance should achieve three goals: first, the choreography should be 
synchronized to the beat and further reflect music emotions; second, the dance should be smooth, 
interesting, and non-deterministic; and third, the choreography should be safe to execute. To meet 
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Figure 2. Human-robot music inter-
action between the saxophone robot 
and the flutist (myself). 
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these criteria, the autonomous dancing robot is designed with three major parts: listen, plan, and 
maintain safety. The listen part uses an autocorrelation function to extract the beats and uses support 
vector regression to extract music emotion by projecting the high-dimensional acoustic features onto a 
2D activation-valence emotion space. The plan part is the most important. It takes the beats and 
emotion as input guides and adopts a Markov model to generate smooth dance movements 
stochastically. The maintain safety part examines the balance and speed of the planned motions and 
prunes any dangerous movements. A video demo is available at https://youtu.be/mlsVL-OtBaE. 

Smart Music Displays 
Intelligent systems can also enhance musical expression by removing traditional obstacles in musical 
interaction. An example where such a system is useful relates to traditional sheet music notation, 
which requires too much attention from musicians. For example, musicians have to hurriedly turn 
the page while performing an intensive part. Even when their parts are silent, they sometimes have to 
count the beat throughout an entire session (musicians hate counting).  

To free musicians from this tedious labor, I designed a smart 
music display [4,5] which automatically keeps track of the most 
current score location and turns pages during a performance 
(Figure 3). The system has three major parts: read, listen, and 
display. The read part maps a conventional score (with repeats 
and other structures) to a sequence of notes; the listen part 
computes the local tempo and predicts the timing of the next 
note and page turn; and the display part renders the sequence of 
notes on a screen in real time, using a cursor to indicate the 
current score location.  

Moreover, the smart music display is a bi-directional user 
interface. Users can click on a score location and access 
recordings or other media files that are automatically aligned 
with the score [6]. This function helps musicians quickly 
connect notation with actual performance. 

Future Research Directions 
I aim to empower intelligent systems with more profound artificial musicianship through wider 
interdisciplinary efforts. Such systems will be able to serve people not only through music 
performance but also through music education and music therapy. This section outlines three future 
directions; each requires a progressively deeper understanding of music and provides a larger 
potential impact on people’s daily lives. 

Automated improvisation built on the understanding of composition  
Current systems can understand music notation, beat, emotion, and musical nuance. A natural 
extension is to understand music composition in order to improvise (compose while performing) a 
collaborative part on top of a human performance in real time. To achieve this, we need more 
sophisticated machine learning techniques to address pitch, rhythm, and harmony, simultaneously. I 
have partly achieved this in one of my ongoing projects in collaboration with our school of music, in 
which I adopted a neural network to generate a piano part offline. A video demo is available at 
https://youtu.be/1GWHuzRLcbc. 

Figure 3. The smart music display. “START” 
shows the starting point for the playback; the 
vertical red cursor shows the current location. 
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With the ability to improvise and add musical nuance and gestures expressively, a robot musician 
can serve as a personal music partner. We can further generalize this idea and imagine a personal 
robot orchestra, with which even amateur musicians can hold solo concerts easily. This is one future 
direction for music performance. 

Self-trained artificial performers built on a taste in music 
One step further toward a profound music understanding is taste, the core part of human 
musicianship. An intelligent system with a taste in music will be able to train itself by learning from 
examples selectively, rather than through a passive and fully-supervised procedure. By using semi-
supervised learning, especially active learning, a system can learn basic musicianship from a small 
number of labeled human performances and then improve itself automatically through its own 
experience or a vast amount of unlabeled data collected by music information retrieval techniques [7]. 

Self-trained systems will require minimal programming and calibration from humans. They will be 
able to use feedback to adapt their collaborative performances to different human musicians, 
instrument qualities, and acoustic environments. A special application is to just “copy” a 
performance from a concert hall and later adaptively “paste” it to our home. In other words, we can 
listen to “live” symphonies at home using a robot orchestra. This is one future direction for music 
appreciation.  

Music education and therapy built on intelligent supervision of musicianship  
Today, humans design algorithms to develop artificial musicianship; tomorrow, machines can help 
teach music to humans. An artificial music teacher can give us feedback at any time, making music 
training a lot easier and potentially much cheaper. In addition, human-robot musical interaction 
enables us to explore how different teaching strategies affect the way students learn, since the robot 
behaviors can be easily configured by a set of parameters. Each step in music training has three 
components: 1) an accurate judgment of the current level of musicianship, 2) a reachable next-level 
target, and 3) a tailored plan to reach that target. Though solving all three problems autonomously is 
a longer-term goal, we can combine machine learning with human computation (crowdsourcing) to 
design a music education curriculum jointly with machines.  

My vision for unifying music education and therapy is inspired by Eurhythmics, a traditional music 
training method that focuses on the intrinsic relationship between body movements and musical 
expression. For example, a Eurhythmics instructor plays a tricky music segment on the piano; 
students are asked to step on the downbeats while clapping on the upbeats to show their mastery of a 
certain rhythm. This procedure (of training rhythmic feeling) can be turned easily into a human-
computer interaction, where intelligent systems can play the piano part while evaluating the 
movements of the students. Moreover, this method can be adapted to physical therapy. Compared 
with current approaches in physical therapy for Parkinson’s disease where doctors still use 
metronomes to help patients recover their ability to walk smoothly, an interactive process involving 
musical expression will be a huge improvement. 

In summary, I design intelligent systems that “think” about music like humans — to utilize past 
experiences and to interact with unexpected and changing environments. I look forward to carrying 
on my research on music intelligence and sharing ideas on further evolving musical expression with 
brilliant colleagues. Let’s envision a more expressive, interactive, and musical world, and make it so. 
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