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Abstract

Pointed pseudo-triangulations are planar minimally rigid graphs embedded in the plane with pointed vertices (ad-
jacent to an angle larger than π). In this paper we prove that the opposite statement is also true, namely that planar
minimally rigid graphs always admit pointed embeddings, even under certain natural topological and combinatorial
constraints. The proofs yield efficient embedding algorithms. They also provide the first algorithmically effective
result on graph embeddings with oriented matroid constraints other than convexity of faces. These constraints are
described by combinatorial pseudo-triangulations, first defined and studied in this paper. Also of interest are our
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two proof techniques, one based on Henneberg inductive constructions from combinatorial rigidity theory, the other
on a generalization of Tutte’s barycentric embeddings to directed graphs.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we bring together two classical topics in graph theory, planarity and rigidity, to answer
the question (posed in [46]) of characterizing the class of planar graphs which admit pointed pseudo-
triangular embeddings. Our main result is that this coincides with the class of all planar minimally
rigid graphs (planar Laman graphs). Furthermore we extend the result in several directions, attacking
the same type of question for other (not necessarily pointed) classes of pseudo-triangulations and for
combinatorial pseudo-triangulations, a new class of objects first introduced and studied in this paper.

Novelty. As opposed to traditional planar graph embeddings, where all the faces are designed to be
convex, ours have interior faces which are as non-convex as possible (pseudo-triangles). Planar graph
embeddings with non-convex faces have not been systematically studied. Our result links them to rigidity
theoretic and matroidal properties of planar graphs. We show how to adapt Tutte’s barycentric em-
beddings, designed for convex faces, to work for pointed pseudo-triangulations. To the best of our
knowledge, this is the first result holding for an interesting family of graphs on algorithmically effi-
cient graph embeddings with oriented matroid constraints other than convexity of faces. In contrast, the
universality theorem for pseudo-line arrangements of Mnëv [30] implies that the general problem of
embedding graphs with oriented matroid constraints is as hard as the existential theory of the reals.

Proof techniques and algorithmic results. We present two proof techniques of independent interest. The
first one is of a local nature, relying on incremental (inductive) constructions known in rigidity theory as
Henneberg constructions. The second one is based on a global approach making use of a directed version
of Tutte’s barycentric embeddings. Both proofs are constructive, yield efficient algorithms, emphasize
distinct aspects of the result and lead into new directions of further investigation: combinatorial versus
geometric embeddings, local versus global coordinate finding.

Laman graphs and pseudo-triangulations. LetG = (V ,E) be a graph with n vertices V = {1,2, . . . , n}
and m = |E| edges. G is a Laman graph if m = 2n − 3 and every subset of k ! 2 vertices spans at most
2k − 3 edges.6
An embedding G(P ) of the graph G on a set of points P = {p1, . . . , pn} ⊂ R2 is a mapping of the

vertices V to points in the Euclidean plane i $→ pi ∈ P . Throughout the paper, without any further
explicit reference, all the geometric objects (embeddings, polygons, convex hulls) reside in the Euclidean
plane R2. In general, it is not required that the points be distinct, but in this paper we will work only with
embeddings on sets of distinct points. The edges ij ∈ E are mapped to straight line segments pipj . We

6 This is called the definition by counts of Laman graphs. An equivalent definition via Henneberg constructions will be given
in Section 2.



R. Haas et al. / Computational Geometry 31 (2005) 31–61 33
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Fig. 1. (a) A pseudo-triangulation (necessarily non-pointed, since the underlying graph is a circuit, not a Laman graph) and
two embeddings of a planar Laman graph: (b) is a pointed pseudo-triangulation, (c) is not: the faces 2876 and 1548 are not
pseudo-triangles and the vertices 6 and 8 are not pointed.

say that the vertex i of the embedding G(P ) is pointed if all its adjacent edges lie (strictly) on one side
of some line through pi . Equivalently, some consecutive pair of edges adjacent to i (in the circular order
around the vertex) spans a reflex angle (strictly larger than π ). An embeddingG(P ) is non-crossing if no
pair of segments pipj and pkpl corresponding to non-adjacent edges ij, kl ∈ E, i, j /∈ {k, l} have a point
in common. A graph G is planar if it has a non-crossing embedding.
In a simple polygon, a vertex is convex if its interior angle is strictly between 0 and π and reflex if

strictly between π and 2π . Throughout the paper, all the angles incident to polygon vertices will be
convex or reflex (i.e., we will never encounter 0,π or 2π angles).
A pseudo-triangle is a simple polygon with exactly three convex vertices (and all the others reflex).

A pseudo-triangulation of a set of points in the plane is a non-crossing embedded graph G(P ) whose
outer face is the complement of the convex hull of the point set and whose interior faces are pseudo-
triangles. In a pointed pseudo-triangulation all the vertices are pointed. See Fig. 1.

Historical perspective. Techniques from Rigidity Theory have been recently applied to problems such
as collision-free robot arm motion planning [10,45], molecular conformations [25,49,53] or sensor and
network topologies with distance and angle constraints [16].
Laman graphs are the fundamental objects in 2-dimensional Rigidity Theory. Also known as isostatic

or generically minimally rigid graphs, they characterize combinatorially the property that a graph, em-
bedded on a generic set of points in the plane, is infinitesimally rigid (with respect to the induced edge
lengths). See [11,20,27,54].
Pseudo-triangulations are relatively new objects, introduced and applied in Computational Geome-

try for problems such as visibility [36,37,43], kinetic data structures [4] and motion planning for robot
arms [45]. They have rich combinatorial, rigidity theoretic and polyhedral properties [32,41,45], many
of which have only recently started to be investigated [1–3,6,7,26,38].
In particular, the fact that they are Laman graphs which become expansive mechanisms when one

of their convex hull edges is removed, has proven to be crucial in designing efficient motion planning
algorithms for planar robot arms [45]. Finding their 3-dimensional counterpart, which is perhaps the main
open question about pseudo-triangulations and expansive motions, may lead to efficient motion planning
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algorithms for certain classes of 3-dimensional linkages, with potential impact on understanding protein
folding processes.
Graph Drawing is a field with a distinguished history, and embeddings of planar graphs have re-

ceived substantial attention in the literature [9,13,17,19,42,50,51]. Extensions of graph embeddings from
straight-line to pseudo-line segments have been recently considered (see e.g. [35]). It is natural to ask
which such embeddings are stretchable, i.e. whether they can be realized with straight-line segments
while maintaining some desired combinatorial substructure. Indeed, the primordial planar graph embed-
ding result, Fáry’s Theorem [17], is just an instance of answering such a question. Graph embedding
stretchability questions have usually ignored oriented matroidal constraints, allowing for the free reori-
entation of triplets of points when not violating other combinatorial conditions. The notable exception
concerns the still widely open visibility graph recognition problem, approached in the context of pseudo-
line arrangements (oriented matroids) by [34]. In [44] it is shown that it is not always possible to realize
with straight-lines a pseudo-visibility graph, while maintaining oriented matroidal constraints.
In contrast, this paper gives the first non-trivial stretchability result on a natural graph embedding

problem with oriented matroid constraints, other than convexity. It adds to the already rich body of
surprisingly simple and elegant combinatorial properties of pointed pseudo-triangulations by proving a
natural connection.

Main Result. We are interested in planar Laman graphs. Not all Laman graphs fall into this category.
For example,K3,3 is Laman but not planar. But the underlying graphs of all pointed pseudo-triangulations
are planar Laman. We prove that the converse is always true:

Theorem 1 (Main theorem). Every planar Laman graph can be embedded as a pointed pseudo-triangu-
lation.

The following characterization follows then from well known properties of Laman graphs:

Corollary 1. Given a planar graph G, the following conditions are equivalent:

(1) G is a Laman graph.
(2) Generically, G is minimally rigid.
(3) G can be embedded as a pointed pseudo-triangulation.

We prove in fact several stronger results, stated later in the paper after introducing the appropriate def-
initions. They allow the a priori choice of the facial structure (Theorem 2) and even of the combinatorial
information regarding which vertices are convex in each face (Theorem 6). This last result needs the ap-
paratus of combinatorial pseudo-triangulations, first introduced and studied in this paper, and developed
further in [33].
Finally, we answer a natural question related to the underlying matroidal structure of planar rigidity

and extend the result to planar rigidity circuits, which are minimal dependent sets in the rigidity matroid,
where the bases (maximally independent sets) are the Laman graphs. By adding edges to a pointed
(minimum) pseudo-triangulation while maintaining planarity, the graph has increased dependency level
(in the rigidity matroid) and can no longer be realized with all vertices pointed, but it can always be
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realized with straight edges. Our concern is to maintain the minimum number of non-pointed vertices,
for the given edge count. For circuits, this number is one, and we show that it can be attained.

Overview. The paper is organized as follows. In Section 2 we give the basic terminology and definitions
needed for an independent reading of Section 3. For increased readability, additional technical definitions
are later included in the sections that use them. The first proof of the Main Theorem is presented in Sec-
tion 3, which is further devoted to all the proofs (combinatorial or geometric) making use of the inductive
Henneberg technique: planar Laman graphs, combinatorial pseudo-triangulations, pointed pseudo-trian-
gulations and Laman-plus-one combinatorial and geometric pseudo-triangulations. Section 4 is devoted
to combinatorial pseudo-triangulations and to the perfect matching technique for assigning combinator-
ial pseudo-triangular labellings to plane graphs. Section 5 focuses on the second proof technique based
on Tutte embeddings and contains our most general result on plane graph embeddings compatible with
given combinatorial pseudo-triangulations. We conclude in Section 6 with a list of further directions of
research and open questions.

2. Preliminaries

For the standard graph and rigidity theoretical terminology used in this paper we refer the reader to [20]
and [55]. For relevant facts about pointed pseudo-triangulations, see [45]. In this section we continue what
we started in the introduction and give most of the definitions needed for reading Sections 3 and 4. The
technically denser Section 5 contains its own additional concepts.

Notation and abbreviations. Throughout the paper we will abbreviate counter-clockwise as ccw. To
emphasize that a graph has n vertices we may denote it by Gn. We will occasionally abbreviate combi-
natorial pseudo-triangulation as cpt and pointed combinatorial pseudo-triangulation as pointed cpt.

Plane graphs. A non-crossing embedding of a connected planar graphG partitions the plane into faces
(bounded or unbounded), edges and vertices. Their incidences are fully captured by the vertex rotations:
the ccw circular order of the edges incident to each vertex in the embedding. A spherical graph refers
to a choice of a facial structure (and thus of a system of rotations) in a graph which has some planar
embedding (not necessarily unique), and is oblivious of an “outer” face. It is well known (Whitney [56])
that a 3-connected planar graph induces a unique facial structure (or set of rotations, modulo reorienta-
tion), but 2-connected ones may induce several. A plane graph is a spherical graph with a choice of a
particular face as the outer face. Every simple plane graph can be realized with straight-line edges in the
plane (Fáry’s Theorem [17]).
A (combinatorial) angle (incident to a vertex or a face in a plane graph) is a pair of consecutive edges

(consecutive in the order given by the rotations) incident to the vertex or face.

Pseudo-triangulations. We have defined pseudo-triangles, pseudo-triangulations and pointed pseudo-
triangulations in the introduction. In addition, we will use the following related concepts. The corners of
a pseudo-triangle are its three convex angles, and its side chains are the pieces of the boundary between
two corners (vertices and edges). The extreme edges of a pointed vertex are the two edges incident with
its unique incident reflex angle.
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(a) (b)

Fig. 2. Illustration of the two types of steps in a Henneberg sequence, with vertices labelled in the construction order. The
shaded part is the old graph, to which the black vertex is added. (a) Henneberg I for vertex 5, connected to old vertices 2 and 4.
(b) Henneberg II for vertex 6, connected to old vertices 1, 4 and 5.

Minimally rigid (Laman) graphs and Henneberg constructions. Besides the definition by counts given
in the introduction, Laman graphs can be characterized in a variety of ways. In particular, a Laman graph
on n vertices has an inductive construction as follows (see [23,54]). Start with an edge for n = 2. At each
step, add a new vertex in one of the following two ways:

• Henneberg I (vertex addition): the new vertex is connected via two new edges to two old vertices.
• Henneberg II (edge splitting): a new vertex is added on some edge (thus splitting the edge into two
new edges) and then connected to a third vertex. Equivalently, this can be seen as removing an edge,
then adding a new vertex connected to its two endpoints and to some other vertex.

See Fig. 2, where we show drawings with crossing edges, to emphasize that the Henneberg construc-
tions work for general, not necessarily planar Laman graphs.
We will make heavy use of the following result, essentially stated by Henneberg [23], and of its proof,

due to Tay and Whiteley [48].

Lemma 2. A graph is Laman if and only if it has a Henneberg construction.

The proof of Lemma 2 proceeds inductively to show that there always exists a vertex of degree 2 or 3
which can be removed in the reverse order of a Henneberg step while maintaining the Laman property. It
is instructive to give a slightly more general proof. We will make use of it in Section 3.

Lemma 3. A Laman graph has a Henneberg construction starting from any prescribed subset of two
vertices. Moreover, if there are three vertices of degree 3 mutually connected in a triangle, then we can
prescribe them as the first three vertices of the Henneberg construction.

Proof. Let Gn = (V ,E) be a Laman graph on n = |V | vertices and let V2 ⊂ V be any subset of two
vertices. We show that as long as n > 2 we can always remove a vertex not in V2 in the opposite direction
of a Henneberg step. In the actual Henneberg construction this amounts to starting the induction from
this prescribed pair.
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Vertices of degree 0 or 1 do not exist in Laman graphs, otherwise the Laman property would be
violated on a subset of n − 1 vertices. Since Gn has 2n − 3 edges, a simple count shows that there are at
least three vertices of degree at most 3, hence either of degree 2 or 3. At least one of them (call it v) is
not in V2. This will be the vertex we choose to remove, in a backwards application of a Henneberg step.
If v has degree 2, we remove v and its incident edges: the resulting graph on n − 1 vertices and

2(n − 1) − 3 edges is clearly Laman. If v has degree 3, let its neighbors be v1, v2 and v3. The removal of
v and of its three adjacent edges produces a graphG′

n−1 with a deficit of one edge: n−1 vertices but only
2(n − 1) − 4 edges. We must put back one edge joining one of the three pairs of vertices in v1, v2, v3.
Consider the rigid components of G′

n−1: maximal subsets of some k vertices spanning 2k − 3 edges. The
three endpoints v1, v2 and v3 cannot belong to the same rigid component (otherwise the Laman count
would be violated in Gn on the subset consisting of this component and v). Two rigid components share
at most one vertex, otherwise their union would be a larger Laman subgraph. Suppose that v1 and v2 are
not in a common rigid component. Then adding an edge between v1 and v2 doesn’t violate the Laman
condition on any subset and completes G′

n−1 to a Laman graph Gn−1.
If Gn contains a subset V3 of three degree 3 vertices connected in a triangle, then a similar counting

argument shows that there is an additional vertex of degree at most 3. This fourth vertex can be removed
in such a way that the invariant (of having three vertices of degree 3 connected in a triangle) is maintained.
Hence the vertices of V3 may be prescribed as the three starting vertices. To finish, let us show that the
invariant is maintained. Let G′ be the subgraph induced on the vertices in V \ V3: if it contains more
than two vertices, then it spans 2n − 3− 6= 2(n − 3) − 3 edges, hence it is Laman. Let N(V3) be the
neighbors of V3 in Gn: none of these vertices can be of degree 2, otherwise G′ would not be Laman. If
there is a vertex v′ of degree 3 in N(V3) which is removed at some Henneberg step, one must put back an
edge incident to two of its neighbors, and one of them must be in V3: otherwise, the induced subgraphG′

on V \ V3 (after performing the reverse Henneberg step) would violate the Laman counts. Since at any
reverse Henneberg step we remove either vertices of degree 2 (which are not incident to V3) or of degree
3, which do not change the degree of their neighbors in V3, it follows that the vertices in V3 maintain
their degrees and the property of being connected in a triangle throughout the construction (in fact, until
n = 5, from which point it is easy to see that V3 can still be prescribed). !

Laman-plus-one graphs and rigidity circuits. A Laman-plus-one graph is a Laman graph with one
additional edge. It has 2n − 2 edges and every subset of k vertices spans at most 2k − 2 edges. A rigidity
circuit (shortly, a circuit) is a graph with the property that removing any edge produces a Laman graph.
It is therefore a special Laman-plus-one graph. In a rigidity circuit G with n vertices, the number n of
vertices is at least 4, the number m of edges is 2n − 2 and every subset of k < n vertices spans at most
2k −3 edges. Moreover, the minimum degree in a circuit is 3. It is straightforward to prove that a Laman-
plus-one graph contains a unique rigidity circuit: take the maximal subgraph satisfying the circuit counts.
It is unique, because otherwise the union of two circuits would violate the Laman-plus-one counts.
These concepts are motivated by the matroid view of Rigidity Theory, see [20]: Laman graphs corre-

spond to bases (maximal independent sets of edges) in the generic rigidity matroid, while the circuits are
the minimally dependent sets.
It has been proven recently in [5] that 3-connected rigidity circuits admit an inductive (Henneberg-

type) construction (using only Henneberg II steps and starting from K4), where all intermediate graphs
are themselves circuits. All rigidity circuits are 2-connected, hence they can be obtained by making use
of Tutte’s Theorem on the structure of 2-connected graphs in terms of 3-blocks, see [15,52].
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We show now (and use later) that Laman-plus-one graphs also admit a simple Henneberg construction.
This type of inductive proof (much easier than [5] because of a simpler inductive invariant) will be used
in Section 3 to show stretchability of planar Laman-plus-one graphs, and thus of planar rigidity circuits.

Lemma 4. A graph G is Laman-plus-one if and only if it has a Henneberg construction starting from
a K4.

Proof. The proof is similar to that of Lemma 2 and uses the 2n − 2 counts. Vertices of degree 2 are
outside the circuit and are removed just as in the Laman case. Thus we assume for the remainder of the
proof that there are no vertices of degree 2. Then there are at least four vertices of degree 3.
Let C = (Vc,Ec) be the unique induced subgraph which is the circuit of G, Vo = V \ Vc the vertices

outside the circuit and Vb ⊂ Vc the boundary of Vc, i.e., the set of vertices in Vc adjacent to a vertex in Vo.
Let v be a vertex of degree 3. If v ∈ Vo, we show that we can always carry out a reverse Henneberg II

step. The three neighbors of v cannot all belong to the circuit, because otherwise the subgraph induced
on Vc ∪ {v} would violate the 2n − 2 counts. Remove (temporarily) an edge ab of G from inside C: the
resulting graph is Laman, containing C without this edge as a rigid block (subset on which the Laman
count is satisfied with equality). By Lemma 3 there is a well-defined way of removing v and placing
back an edge to perform a Henneberg II step in reverse: the added edge is not between two vertices of
Vc. Therefore we can put back the temporarily removed edge ab to get a Laman-plus-one graph.
If v ∈ Vc, note first that it cannot be on the boundary Vb, otherwise its degree in C would be at most

2, contradicting the fact that C is a circuit. So all its three neighbors v1, v2 and v3 are in Vc. Removing
v and its incident edges produces a Laman graph. Either all of the edges v1v2, v1v3, v2v3 are present
in G or not. If not (say, v1v2 is missing), then we add v1v2, get a Laman-plus-one graph and continue
the induction. Otherwise, the circuit C is a K4. If there are no vertices outside the circuit, we are done.
Otherwise, since the graph is connected, there must be some edge from Vc to Vo, increasing the degree
of at least one vertex in the circuit K4 to at least 4. Since there are in total at least four vertices of degree
3, at least one of them must be in Vo. We will perform the Henneberg step on this vertex (and thus not
touch K4 until the end). !

Combinatorial pseudo-triangulations. Let G be a plane 2-connected graph.7 A combinatorial pseudo-
triangulation (cpt) of G is an assignment of labels big (or reflex) and small (or convex) to the angles of
G such that:

(1) Every face except the outer face gets three vertices marked small. These will be called the corners of
the face.

(2) The outer face gets only big labels (has no corners).
(3) Each vertex is incident to at most one angle labeled big. If it is incident to a big angle, it is called

pointed.
(4) A vertex of degree 2 is incident to one angle labeled big.

7 The definition is valid in a more general setting than what we use in this paper, and works even with multiple edges, vertices
of degree one and loops. In such a case, a vertex of degree one is incident to a unique angle, labeled big.



R. Haas et al. / Computational Geometry 31 (2005) 31–61 39

By analogy with pseudo-triangulations, we also define extreme edges, side chains and non-pointed ver-
tices of combinatorial pseudo-triangulations.
Combinatorial pseudo-triangulations share many properties with pseudo-triangulations. The following

lemma follows easily from the definition.

Lemma 5. A combinatorial pseudo-triangulation on n vertices has at least 2n − 3 edges. If a cpt has
m ! 2n − 3 edges, then it contains exactly m − (2n − 3) non-pointed vertices.

Proof. Let VK be the set of non-pointed vertices. Let m be the number of edges, f the number of faces,
k the size of VK and dv the degree of a vertex v. We count the number of small angles in two ways;
summing over the faces we get 3(f − 1), summing over vertices we get

∑
v /∈VK

(dv − 1) + ∑
v∈VK

dv =∑
v∈V dv − (n − k) = 2m − n + k. Applying Euler’s formula gives m = 2n − 3 + k and proves the

statement. !

A cpt with exactly 2n − 3 edges will have all vertices pointed: we’ll call it a pointed combinatorial
pseudo-triangulation (pointed cpt). Another case of interest in this paper is when exactly one vertex is
combinatorially non-pointed, i.e., has no incident big angle: we call it a pointed-plus-one cpt. Note that
in this case the non-pointed vertex has degree at least 3, is interior, i.e., not incident to the outer face and
that the cpt has 2n − 2 edges.
In Section 3 we will prove that all planar Laman graphs and all planar Laman-plus-one graphs have cpt

assignments. The previous lemma implies that such cpt assignments must be pointed for Laman graphs,
respectively pointed-plus-one for Laman-plus-one graphs.

Pointed-plus-one and circuit pseudo-triangulations. A pointed-plus-one pseudo-triangulation is a
pseudo-triangulation with precisely one non-pointed vertex. It is easy to see that it has 2n−2 edges, and is
in fact just a planar Laman-plus-one graph embedded as a pseudo-triangulation. A pseudo-triangulation
circuit is a planar rigidity circuit embedded as a pseudo-triangulation. Recall that by a pseudo-triangu-
lation we mean any decomposition into pseudo-triangles, which may not be pointed. In fact, any such
pseudo-triangulation with more than 2n − 3 edges is necessarily non-pointed by Lemma 5, or, alter-
natively, because pointed pseudo-triangulations are maximal pointed sets of edges on any planar set of
points and must have exactly 2n − 3 edges (cf. [45]). See Fig. 1 for an example.

3. Main result: inductive proof via Henneberg construction

We are now ready to give our first proof of the Main Theorem, in the following slightly more general
form, and extend it to planar Laman-plus-one graphs.

Theorem 2. Any plane Laman graph has a pointed pseudo-triangular embedding.

Theorem 3. Any plane Laman-plus-one graph has a pointed-plus-one pseudo-triangular embedding.

Both proofs have the same structure (based on an inductive Henneberg construction) and are divided
into three steps: topological, combinatorial and geometric. To avoid a cluttered proof with too many
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details at once, we have chosen to present them as separate entities: once the reader has understood the
Laman case, the Laman-plus-one follows naturally. The common theme of this section is centered around
the Henneberg technique, and to emphasize it we have included two additional Lemmas (8 and 12) which
will find applications in the next section.

3.1. Pseudo-triangular embeddings of plane Laman graphs

The proof of Theorem 2 is a consequence of the four lemmas stated and proven below. Lemma 6
reduces the construction to the case when the outer face is a triangle. Lemma 7 provides the framework
for a Henneberg induction on plane graphs. This is then used in Lemma 8 to compute a combinatorial
pseudo-triangulation assignment and in Lemma 9 to realize the same thing geometrically. Theorem 2
follows from Lemma 9. We remark that Lemma 8 is not needed for the proof of Theorem 2. It is however
natural to include it here because it makes use of the same Henneberg technique (ubiquitous in this
section). It also gives a better intuition about the combinatorial structure of the many possibilities involved
in a complete proof by case analysis of Lemma 9.

Lemma 6 (Fixing the outer face). Embedding a plane Laman graph as a pseudo-triangulation reduces
to the case when the outer face is a triangle.

Proof. Let G be a plane Laman graph with an outer face having more than three vertices. We construct
another Laman graph G′ of n + 3 vertices by adding 3 vertices in the outer face and connecting them to
a triangle containing the original graph in its interior. Then we add an edge from each of the three new
vertices to three distinct vertices on the exterior face of G. See Fig. 3. We now realize G′ as a pseudo-
triangulation with the new triangle as the outer face. The graph G, as a subgraph of G′, must be realized
with its outer face convex by the following argument. The three new interior edges of G′ provide two
corners each at their end-point incident to the outer face and at least one corner in the interior one. Since
the three faces incident to them have nine corners in total, the boundary of G provides no corner to the
three new interior faces of G′. !

Note that a plane Laman graph (on n vertices) always has at least two triangular faces: the dual plane
graph has n − 1 vertices (including the vertex corresponding to the outer face) and 2(n − 1) − 1 edges,

Fig. 3. Reducing to an embedding with a triangular outer face.
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hence there are at least two of degree three. The construction in the previous lemma makes it possible
to use the stronger invariant of the Henneberg construction from Lemma 3 and to start any geometric
embedding with a triangular outer face, then to insert only on interior faces. This feature is not needed in
the proof of the topological or combinatorial lemmas below.

Lemma 7 (The topological lemma). Every plane Laman graph has a plane Henneberg construction in
which:

(1) All intermediate graphs are plane.
(2) At each step, the topology is changed only on edges and faces involved in the Henneberg step: either

a new vertex is added inside a face of the previous graph (Henneberg I), or inside a face obtained by
removing an edge between two faces of the previous graph (Henneberg II).

In addition, if the outer face of the plane graph is a triangle, we may perform the Henneberg construc-
tion starting from that triangle. The Henneberg steps will never insert vertices on the outer face.

Proof. We follow the structure of the basic Henneberg construction from Lemma 3. See Fig. 4 for an
illustration. Find an appropriate vertex of degree 2 or 3. Removing it, and its incident edges, merges two
(respectively three) faces into one. The other endpoints of the removed edges are incident to this face,
hence the added edge in the Henneberg II step simply splits this face and maintains the planarity of the
embedding. !

Lemma 8 (The combinatorial lemma). Every plane Laman graph admits a combinatorial pseudo-trian-
gulation assignment.

Fig. 4. A plane Henneberg construction. Top row: Gn, to which a new vertex will be added. Middle row: Henneberg I on the
outer, respectively an interior face. Bottom row: Henneberg II on the outer, respectively an interior face.
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Fig. 5. Extending a combinatorial pseudo-triangulation in a Henneberg I step. Top left: the combinatorial face is represented as
a circle with its three corners, denoted by white vertices, marked small (a small black dot). Top right, a representative situation:
the two endpoints of the newly added edges (in black) are distributed on two distinct side chains of the face. Two distinct
labellings are possible in this case (bottom row): the newly created angles after the insertion of the new vertex (grey) are labeled
with a small black dot for small (or convex) and with a large arc for big (or reflex).

Proof. LetGn be a plane Laman graph on n vertices. We may assume that the outer face is a triangle. We
proceed with a plane Henneberg construction guaranteed by Lemma 7, which will insert only on interior 8
faces. The base case is a triangle and has a unique cpt labeling. At each step we have, by induction, a cpt
labeling which we want to extend. The proof will guarantee that each one can be extended (so there is no
need to backtrack).
In a Henneberg I step, the new vertex v is inserted on a face T (already labeled as a pseudo-triangle),

and joined to two old vertices v1 and v2. The new edges vv1 and vv2 partition the face F and its three
corners into two. The following cases may happen. If neither v1 nor v2 is a corner of F , the three corners
can be split between the two new faces, either as 2+ 1 or 3+ 0. It can happen that one of the corners of
F is split by a new edge (say v1 is a corner) and the other two are either both in the same new face or are
separated; otherwise, two corners are split, and the third corner is in one of the two newly created faces.
In either case, the assignment of big and small labels is what one would expect: a small angle is split into
two small angles, a big angle is split into a big and a small angle, and the new point gets exactly one big
angle. We illustrate one representative case in Fig. 5 and omit the rest of the straightforward details of
this case analysis.
In a Henneberg II step, an edge v1v2 is first removed, merging two faces labeled as combinatorial

pseudo-triangles into one face T . In this process, some angles are merged into one: their labels must be
reassigned, but we make no changes to the labels of the other angles. The rules for assigning labels to
merged angles are simple, mimicking what one would expect to happen in a straight-line situation: if one
old angle was big, the merged angle is marked big, otherwise small. The face T thus gets exactly four
small angles. Its boundary is separated by the vertices v1 and v2 into two chains: each contains at least

8 This is just a technical simplification reducing the size of our case analysis. The Henneberg steps would work just as well
for insertions on the outer face.
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Fig. 6. Merging two faces into one: a representative case for the analysis of a combinatorial Henneberg II step. The markings
of small and big angles follow the conventions from Fig. 5. The black vertices are the endpoints of the removed edge v1v2.

Fig. 7. Extending a combinatorial pseudo-triangulation in a Henneberg II step. Top: a representative case of a combinatorial
face with four corners. Left: two (out of three) possible placements of the third vertex. Right: the possible labellings of the
induced faces as combinatorial pseudo-triangles.

one corner. Four cases may happen: v1 and v2 are both small (corners), separating the other two corners;
only one is small (say, v1), and the other corners are distributed as 1-2 on the chains; or both v1 and v2
are big, and the four corners are distributed as either 2-2 or 1-3. See Fig. 6 for a representative case. Note
that it is impossible to have all four corners on only one chain induced by v1 and v2.
The new vertex v is now inserted inside this face T , and joined to the old vertices v1 and v2, and to

some other vertex v3 on T . The new edges vv1, vv2 and vv3 partition the face T and its four corners into
three parts, which can be assigned the labels in several ways. See Fig. 7 for a representative case: the
systematic verification of all the cases is straightforward. !

Note that in general the pointed combinatorial pseudo-triangulation guaranteed by Lemma 8 is not
unique. The lemma allows to generate many different cpts. We next prove that at least one of them is
realizable with straight-lines via a similar Henneberg extension technique.
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Lemma 9 (The geometric lemma). Every plane Laman graph G can be embedded as a pseudo-triangu-
lation.

Proof. Let Gn be a plane Laman graph on n vertices with a triangular outer face. Assume we have a
plane Henneberg construction for Gn starting with the outer face and adding vertices only on interior
faces. We basically follow the same analysis as in Lemma 8. This time, however, we will not choose the
big/small labels of the angles, but rather show that there exists a way of placing a point pn inside a face
which realizes a compatible partitioning of the face into pseudo-triangles as prescribed by the Henneberg
step on the vertex vn of degree 2 or 3.
As in Lemma 8, the Henneberg I step is straightforward on an interior face (which is what we do here).

As an exercise pointing out the difference between the combinatorial and the geometric case, we leave it
to the reader to verify that this is not the case on an outer face, where the placement of a vertex at step
n + 1 may be constrained by the realization up to step n, and thus may not directly allow an embedding
with a certain prescribed outer face.
The analysis of a Henneberg II step is identical to that performed in the combinatorial lemma, and

leads to several cases to be considered. We illustrate here only a representative case (but have verified
them all). The important fact is that it is always possible to realize with straight-lines at least one of the
possible Henneberg II combinatorial pseudo-triangular extensions.
Consider the (embedded) interior face F with four corners obtained by removing an interior edge

pipj , and let pk be a vertex on the boundary of F . We must show that there exists a point p inside F

which, when connected to pi , pj and pk partitions it into three pseudo-triangles and is itself pointed. The
three line segments ppi , ppj and ppk must be tangent to the side chains of F . We define the feasibility
region of an arbitrary point pa on the boundary of F as the (single or double) wedge-like region inside
F from where tangents to the boundary of F at pa can be taken. The feasibility region of several points
is the intersection of their feasibility regions. An important fact is that the feasibility region of pi and pj

always contains part of the supporting line of the removed edge pipj , and that the feasibility region of
any other vertex pk cuts an open segment on it. In fact, the feasibility region of pk intersects the feasibility
region of pi and pj in a non-empty feasible 2-dimensional region on one side or the other (or both) of
this segment. One can easily see that not only is this region non-empty, but it contains a subregion where
a placement of p as a pointed vertex is possible (we call that a pointed-feasible region). We skip the rest
of the straightforward details. See Fig. 8 for a representative case. !

Fig. 8. Henneberg II step on an interior face. One sees that the feasible region of pk (light grey) intersects the feasible region of
the two endpoints pi and pj (dark grey) of the removed edge. We show the two feasible regions (of the pair pi,pj , respectively
pk ), the final pointed-feasible region and a placement of a pointed vertex p and its three tangents.
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Proof of Theorem 2. LetG be a plane Laman graph. If its outer face is not a triangle, apply Lemma 6 to
get a new graph Gn which will contain G in its embedding. Follow the plane geometric Henneberg con-
struction described in Lemma 9 to embed Gn starting from a triangle and always inserting new vertices
in some interior face. !

Algorithmic analysis. The proof of Theorem 2 can be turned into an efficient polynomial time al-
gorithm. Given a Laman graph, verifying its planarity and producing a plane embedding (stored as a
quad-edge data structure [21] with face information) can be done in linear time [24]. One then chooses
an outer face and in linear time one can perform the construction from Lemma 6 to get a triangular outer
face. For producing a topological Henneberg construction, we’ll keep an additional field in the vertex data
structure, storing the degree of the vertex. We will keep the vertices in a min-heap on the degree field.
To work out the Henneberg steps in reverse we need to do efficiently the following operations: (a) detect
a vertex of minimum degree (which will be 2 or 3), (b) if the minimum degree is 3, corresponding to a
vertex v, we must find an edge e that will be put back in after the removal of the neighbors of v, and
(c) restore the quad-edge data structure. Step (a) can be done in O(logn) time. Step (c) can be done in
constant time. Step (b) requires deciding which of the three possibilities for e among v1v2, v1v3 and v2v3
(where v1, v2 and v3 are the neighbors of the vertex removed in a reverse Henneberg II step) produces
a Laman graph. Testing for the Laman condition on a graph with 2n − 3 edges can be done by several
algorithms (the algorithms of Imai and Sugihara, via reductions to network flow or bipartite matching, or
via matroid (tree) decompositions, see [55] and the references given there), and takes O(n2). Therefore
the time for performing a reverse Henneberg step is dominated by (b), which gives a total running time
of O(n3).
The embedding is done now by performing the Henneberg steps, starting with the outer triangular face

embedded on an arbitrary initial triple of points. It is straightforward to see that each step takes constant
time to determine a position for the new vertex, and the whole embedding takes linear time once the
Henneberg sequence is known.

3.2. Pseudo-triangular embeddings of plane Laman-plus-one graphs

We now turn to a proof of Theorem 3 using Henneberg constructions for plane Laman-plus-one graphs.
It is very similar to the proof of Theorem 2. It is instructive though to see the differences, which lie in the
combinatorial (and hence also geometric) pseudo-triangulation assignment, where we must keep track
of the non-pointed vertex. We have two items which may in principle be prescribed: the outer face and
the vertex to become the unique non-pointed one. The non-pointed vertex may only be interior to the
circuit. In a Henneberg construction, we will see that it is easy to prescribe either the outer face or the
interior vertex to be non-pointed, but the analysis becomes more complicated for the prescription of both.
In Section 4 we use a different, global argument to do the simultaneous prescription of the outer face and
of the non-pointed vertex, in the case of a rigidity circuit.
The next two lemmas are straightforward extensions of the Laman case.

Lemma 10 (Fixing the outer face). Embedding a plane Laman-plus-one graph as a pseudo-triangulation
reduces to the case when the outer face is a triangle.
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One subtle but important difference between Laman-plus-one graphs and rigidity circuits is that for
any degree three vertex v in a Laman-plus-one graph there is a Henneberg construction whose last step
is the addition of v, while for circuits this need not be the case, i.e., performing a reverse Henneberg II
step on a vertex of degree 3 of a circuit does, in general, not result in another circuit. This means that if
we want to restrict our attention to circuits, our technique of not touching the outer triangular face during
the Henneberg construction may not always work simultaneously with maintaining the circuit property.

Lemma 11 (The topological lemma). Every plane Laman-plus-one graph has a plane Henneberg con-
struction.

A planar Laman-plus-one graph (on n vertices) always has at least two triangular faces: the dual planar
graph has n vertices (including the vertex corresponding to the outer face) and 2n − 2 edges, hence there
are at least two of degree three. The previous construction allows us to prescribe the outer face in a
geometric embedding, should we want to do so, and is not needed in the proof of the combinatorial
lemma below.

Lemma 12 (The combinatorial lemma). Every plane Laman-plus-one graph admits a pointed-plus-one
combinatorial pseudo-triangulation assignment.

Proof. The proof has the same basic structure (but more cases to analyze) as Lemma 8, and relies on
the details of the Henneberg construction from Lemma 4. The base case is K4 which has a unique cpt
assignment for a choice of an outer face. It is easy to see that Henneberg I steps cause no problem, and
the Henneberg II steps work as before when the vertex of degree 3 is not inside the circuit, is not the
pointed vertex, and it is not incident to it.
Let vivj be the removed edge and vk the third vertex involved in the Henneberg II step. The only

problematic case is when the edge vivj is incident to the unique non-pointed vertex. In this case, the
resulting face after the removal of vivj is a pseudo-triangle: it has three, not four corners. We must argue
that in at least one combinatorial pseudo-triangulation compatible with the information so far, the three
vertices vi , vj and vk cannot lie all three on the same side chain of this face, otherwise the extension to a
cpt is impossible.
There is a way around this, which would guarantee that both the outer face and the non-pointed vertex

could be prescribed. We will describe this, in a more general setting, in a forthcoming paper. For the time
being, it suffices to notice that if this happens during the Henneberg construction, we can always pick up
one of the other three vertices guaranteed to have degree three (when there are no degree two vertices),
and continue from there. Note that this may change the outer face assignment, though. !

Lemma 13 (The geometric lemma). Every plane Laman-plus-one graphG can be embedded as a pseudo-
triangulation.

This proof, and the proof of Theorem 3 are now straightforward extensions of those done for the
Laman case. Notice that it may not be possible in general to guarantee a certain outer face or non-pointed
vertex.

Remarks. The inductive technique described in this section works in fact for rigid graphs on n vertices
and fewer than 2n edges (i.e., Laman graphs with at most two extra edges). Indeed, the only ingredient
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that is needed is the existence of a vertex of degree at most 3 whose removal either leaves a rigid graph
or a graph with one degree of freedom. Given a rigid graph with a combinatorial pseudo-triangula-
tion assignment we can add edges and combinatorially assign the big and small labels to the angles,
preserving at each step the property that every face has exactly three small angles and every vertex has
at most one big angle and the outside face has only big angles. However, not all of these combinatorial
angle assignments are geometrically realizable.
The algorithmic analysis is similar to the case of plane Laman graphs.

4. Combinatorial pseudo-triangulations

In this section, we will extend the results from Section 3 on pointed and pointed-plus-one combinato-
rial pseudo-triangulations. We present a global, non-inductive technique for generating cpt assignments
for planar Laman graphs and planar circuits. It is based on a reduction to finding perfect matchings in a
certain associated bipartite graph. By showing that Hall’s condition is satisfied, we are guaranteed to have
a solution (and hence a cpt) for both plane Laman graphs and circuits. We also show that the existence of
a pointed combinatorial pseudo-triangulation assignment is not restricted to plane Laman graphs: it also
works for certain (connected, multi-) graphs with 2n − 3 edges.
LetG = (V ,E,F ) be a connected plane graph with vertices V , edges E and faces F . Assume |V | = n

and |E| = 2n − 3. Euler’s relation implies that |F | = n − 1. Denote by F ′ the set of interior faces and
by fo the outer face (with h vertices, possibly appearing with multiplicities), F = F ′ ∪ {fo}. We define
a bipartite graph H with the two sets of the bipartition labeled V and W . V stands for the set of vertices
G and has n elements. The set of face nodes W corresponds to the faces F of G taken with certain
multiplicities. For an interior face f ∈ F ′ of degree (number of edges on the face, possibly appearing with
multiplicities) df , we will put df − 3 nodes in W . For the outer face fo we will put h = dfo nodes inW .
The total number of elements inW is thus

∑
f ∈F ′(df − 3) + h = ∑

f ∈F df − 3|F ′| = 2|E| − 3(n − 2) =
2(2n − 3) − 3(n − 2) = n.
A vertex v ∈ V is connected in H to the nodes in W corresponding to the interior faces f of degree

larger than 3 to which it belongs in G, and to the nodes corresponding to the outer face (if it belongs to
it). Hence if v belongs to the faces f1, f2, . . . , and these faces have multiplicities d1, d2, . . . in W , then
v is connected to d1 copies of the node for f1, d2 copies for f2, etc. See Fig. 9. The 6 vertices and 5

Fig. 9. Left: a plane graph with n = 6 vertices (labeled A to F ), 2n − 3 = 9 edges and 5 faces (labeled 1 to 5). Right: the
associated bipartite graph H .
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(a) (b)

Fig. 10. (a) A plane graph with 2n − 3 edges and no combinatorial pseudo-triangulation assignment. (b) A plane non-Laman
graph with a cpt assignment.

faces of degrees 3 (outer face 1), 3 (faces 2 and 3), 4 (face 5) and 5 (face 4) lead to the bipartition sets
V = {1,2,3,4,5,6} and W = {1a,1b,1c,4a,4b,5a}, connected by edges as in the figure.
The connections (edges) in the bipartite graph H represent potential assignments of big angles, where

an angle is viewed as a pair (vertex, face). Since each vertex must receive a big angle, we want a perfect
matching. Since each interior face receives all but three big angles, and the outer face receives all big
angles, the choice of multiplicities reflects just that. These considerations lead to the following lemma.

Lemma 14. There is a one-to-one correspondence between the combinatorial pseudo-triangulations of
a plane graph G with n vertices and 2n − 3 edges and the perfect matchings in the associated bipartite
graph H .

In general, plane graphs satisfying the conditions of the previous lemma may or may not have com-
binatorial pseudo-triangulation assignments. See Fig. 10 for examples. But for Laman graphs, we are
guaranteed a solution. The main result of this section is:

Theorem 4. IfG is a Laman graph, thenH has a perfect matching. HenceG has a pointed combinatorial
pseudo-triangulation.

Proof. We will check Hall’s condition (see [14, Theorem 2.1.2, p. 31]) to guarantee the existence of
a perfect matching. Let A ⊂ V be a subset of vertices. Hall’s condition requires that the number of
face nodes in the bipartite graph H which are adjacent to the nodes corresponding to A is at least |A|.
Let FA be the set of faces incident to the vertices in A, and let D = ∑

f ∈FA
df . We need to show that

|A| " D − 3|FA|. In fact, when the outer face belongs to FA, it would be sufficient to prove |A| "
D − 3(|FA| − 1), but we will prove the stronger inequality, unless FA contains all faces, in which case
the desired relation |A| " D − 3(|FA| − 1) follows trivially from |A| " n.
It suffices to carry out the analysis on different face-connected components of FA separately, see

Fig. 11. From now on, let us assume that FA is face-connected. We consider the plane graph GA con-
sisting of all vertices and edges which are incident to faces of FA. Suppose GA has mI interior edges
and mB boundary edges, being incident to faces of FA on both sides and on one side, respectively. We
have D = 2mI + mB . Similarly, let nI and nB denote the number of interior vertices, which are com-
pletely surrounded by faces of FA, and of remaining (boundary) vertices, respectively. Since every vertex
of A is an interior vertex, we have |A| " nI . We denote by fI = |FA| the number of “interior” faces of
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Fig. 11. The analysis in the proof of Theorem 4: it suffices to analyze separately the face-connected components of FA (two in
this case, shaded differently).

GA, and by fX ! 1 the number of remaining “exterior” faces, including the unbounded face if it does not
belong to FA. Thus, in order to establish |A| " D − 3|FA|, it is sufficient to prove

nI + 3fI " D.

We apply Euler’s relation to the subgraph of boundary vertices and edges and obtain mB + (fX + 1) !
nB + 2. (We only have inequality here, since the graph need not be connected.) Thus,

fX − 1! nB − mB. (1)
Euler’s relation for the whole graph GA gives (nI + nB) + (fI + fX) = (mI + mB) + 2. Hence

fI = mI − nI + 2+ mB − nB − fX.

Laman’s condition implies mI + mB " 2(nI + nB) − 3, hence mI " 2nI + 2nB − mB − 3. Now to show
nI + 3fI " D we need nI + 3(mI − nI + 2 + mB − nB − fX) " 2mI + mB , i.e., mI " 2nI − 6 +
3nB − 2mB + 3fX. Since we know mI " 2nI + 2nB − mB − 3, it remains to show 2nB − mB − 3 "
3nB − 2mB + 3fX − 6, i.e., mB − nB " 3(fX − 1), which follows directly from (1) since fX ! 1. !

The result of Theorem 4 extends to the case of plane circuits. Moreover, we will be able to show in
this case a more general version of Lemma 11, by being able to prescribe both the outer face and the
non-pointed vertex (which may be chosen as any vertex non-incident to the outer face). In this case, the
associated bipartite graph is slightly different: the set V contains all vertices but one, namely the vertex
prescribed to be the non-pointed one. The set W has the same description, but its size now is n − 1
(because the number of faces is n).

Theorem 5. If G is a plane circuit, then H has a perfect matching. Hence G has a pointed-plus-one
combinatorial pseudo-triangulation with a prescribed outer face and prescribed non-pointed vertex.

Proof. The analysis from proof of Theorem 4 still holds, because in the case of a circuit, the condition on
subsets of size k < n is exactly the same as for Laman graphs: they span at most 2k − 3 edges. Therefore
the analysis works whenever FA does not cover the whole polygon. Since at least one vertex is missing
from A (the vertex prescribed to be non-pointed), this is always the case. !

Algorithmic analysis. To check whether a graph admits a combinatorial pseudo-triangulation (and to
compute one) we will use the O(n3/2) time algorithm for the maximum flow problem of Dinits (see [47])
to solve the bipartite matching problem described above.
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Remark. This set of degree-constrained subgraphs of a bipartite graph can be modelled as a network
flow problem. Thus the set of combinatorial pseudo-triangulations of a given graph (with a given planar
embedding, including a specification of the outer face) is in one-to-one correspondence with the vertices
of a polytope, given by the equations and inequalities of the network flow.

5. Stretching combinatorial pseudo-triangulations

We have seen in the previous sections two proofs of the fact that every plane Laman graph can be
assigned a combinatorial pseudo-triangulation labeling. The technique from Section 3 does not realize
geometrically every such possible combinatorial structure. In this section we give the strongest version
of the main result by proving the following theorem.

Theorem 6. For any plane Laman graph G and for any of its combinatorial pseudo-triangular assign-
ments, there is a compatible straight-line embedding, and it can be found efficiently. The same holds for
plane circuit graphs.

The proof is a consequence of two general results of independent interest. We first give in Theorem 7
two characterizations of stretchable combinatorial pseudo-triangulations. The stretchability proof relies
on a directed version of Tutte’s Barycentric Embedding Theorem (Theorem 8). Finally, we show that the
characterization in Theorem 7 is satisfied for Laman (Theorem 9) and circuit plane graphs (Theorem 10)
with cpt assignments.

5.1. Two characterizations of stretchability

In this section we give two combinatorial characterizations of stretchability of combinatorial pseudo-
triangulations in terms of the number of corners of planar subcomplexes and in terms of 3-connectivity
properties of an associated directed graph.
Let G = (V ,E) be a plane graph with a combinatorial pseudo-triangulation labeling. We do not im-

pose any restrictions on its number of non-pointed vertices or rigidity properties. As a plane graph, every
subgraph GS = (S,ES) induced by a subset of vertices S ⊂ V has an induced plane embedding and a
well-defined unbounded region. The boundary of the unbounded region consists of cycles of vertices and
edges, with one cycle for each connected component ofGS . Some edges and/or vertices may be repeated
in these cycles. For example, if GS is a tree then every edge appears twice.

Corners of boundary cycles. We have defined corners in combinatorial pseudo-triangulations as being
the angles marked small. We extend the concept to the vertices on boundary cycles of induced subgraphs
GS by looking at the labels of angles in G incident to v on the outer face of GS . We call v a corner of
type 1 if it contains a big label on the outer face, or a corner of type 2 when v is non-pointed in G but
contains two consecutive small labels on the outer face.
The following simple counting lemma will be useful later.

Lemma 15. Let GS be a subgraph of a cpt induced by the subset S ⊂ V . Assume that GS is connected
and that it contains all edges lying in the interior of its boundary cycle. Let GS have e edges, k pointed
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vertices, l non-pointed vertices, c1 corners of type 1 (with big angles in the outer boundary), and a
boundary cycle of length b. Then

e = 2k + 3l − 3− b + c1.

In this statement a vertex in GS is called pointed if and only if it was pointed in G.

Proof. Let f be the number of interior pseudo-triangles. The number of interior angles in GS is 3f +
k − c1, because there are 3f small interior angles and k − c1 interior big angles. But the number of
interior angles also equals 2e − b (since the total number of angles in any plane graph equals 2e). Hence,
2e − b = 3f + k − c1, or

3(e − f ) = e + k + b − c1.

Finally, Euler’s formula applied to GS (as it contains all its interior edges) is (k + l) + (f + 1) = e or
e − f = k + l − 1, which implies 3k + 3l − 3= e + k + b − c1 and thus the desired statement. !

The partially directed auxiliary graph D of a combinatorial pseudo-triangulation G. A partially di-
rected graph D = (V ,E, )E) is a graph (V ,E) together with an assignment of directions to some of its
edges, in such a way that edges are allowed to get two directions, one direction only, or remain undirected.
A plane embedding of a partially directed graph (V ,E, )E) is 3-connected to the boundary if from

every interior vertex p there are at least three vertex-disjoint directed paths in )E ending in three different
boundary vertices. Equivalently, if for any interior vertex p and for any pair of forbidden vertices q and
r there is a directed path from p to the boundary not passing through q or r .

Lemma 16. For every combinatorial pseudo-triangulation G, there is a partially directed graph D sat-
isfying the following conditions:

(1) D is planar and contains the underlying graph of G.
(2) The vertices on the outer face have no out-neighbors.
(3) Every interior vertex v which is pointed has three out-neighbors: its two neighbors in G along ex-

treme edges and a neighbor along the interior of the pseudo-triangle containing the big angle at v.
(3) For every non-pointed vertex v of G its out-neighbors in D are exactly its neighbors in G.

Proof. We extend the underlying graph ofG to a (topological) triangulation by triangulating the pseudo-
triangles ofGwith more than three vertices in such a way that every big angle ofG is dissected by at least
one new edge. This can be achieved by recursively dissecting each face with an edge joining a pointed
vertex on the face to the opposite corner. Then the edges are oriented as required by the statement. See
Fig. 12 for an illustration of how a face is triangulated and how the edges incident to big angles are
oriented. !

The main result of this section can now be stated.

Theorem 7. For a combinatorial pseudo-triangulation G with non-degenerate (simple polygonal) faces
the following are equivalent:
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Fig. 12. Left: a combinatorial pseudo-triangular face, with a small black dot indicating a small angle (big angles are not marked).
Middle: a compatible triangulation of the face. Right: the edges of the auxiliary directed graph.

(1) G can be stretched into a compatible pseudo-triangulation.
(2) Every subgraph of G with at least three vertices has at least three corners.
(3) Every partially directed graph satisfying the requirements of Lemma 16 is 3-connected to the bound-

ary.

5.2. Proof of Theorem 7

The implication from part 1 to part 2 is trivial. If G is embedded as a pseudo-triangulation, there is no
loss of generality in assuming that the embedding is in general position, so that every subgraph with at
least three vertices has at least three convex hull vertices. And all convex hull vertices of a subgraph of
G will be corners according to our definition.

Proof of 2⇒ 3 in Theorem 7. To prove 3-connectedness, we will show that from every interior vertex
a there is a directed path in D going to the boundary and not passing through two arbitrary (but fixed)
vertices b and c.
Let us consider A, the directed connected component of vertex a, defined as the set of all vertices and

directed edges ofD that can be reached from v without passing through b or c. We define this component
as not containing the forbidden points b and c, but it may contain edges arriving at them. Our goal is
to prove that A contains a vertex on the boundary of D. We argue by contradiction. Suppose that all the
vertices of A are interior to D.
For each interior pointed vertex v, let Tv be the unique pseudo-triangle ofG containing the big angle at

v. Thus v is in an edge-chain of Tv containing also the two extreme adjacent edges of v. LetGS = (S,ES)
be the graph enclosing all the pseudo-triangles Tv associated to the pointed vertices v of A and all the
pseudo-triangles incident to the non-pointed vertices. ClearlyGS contains A: indeed, every directed edge
of G is contained in a pseudo-triangle associated to its source vertex.
It is easy to prove that GS has at least three corners. Indeed, consider the original vertex v, which is

certainly in A. If v is pointed, then GS contains at least the pseudo-triangle containing the big angle at
v. If v is not pointed, then GS contains at least v and all its neighbors in G. One has to prove that in the
latter case v cannot have a single neighbor. If it did, consider the (unique) pseudo-triangle T containing
v. As a subgraph ofG it has at least three vertices, hence it has at least three corners. But its corners must
be corners of T as a pseudo-triangle. This is impossible because v itself is one of the three corners of the
pseudo-triangle and is not a corner of the subgraph.



R. Haas et al. / Computational Geometry 31 (2005) 31–61 53

We now use the fact that GS has at least three corners. We claim that at least one of them, d , belongs
to A. This gives the contradiction, because then there is an edge of D \ G jumping out of that corner
d (by the conditions imposed on the partial orientation in D), which means that the pseudo-triangle(s)
corresponding to d should have been contained in GS and hence d is not a corner of GS anymore.
To prove the claim, let v1, . . . , vk be the corners ofGS which are not in A. We want to prove that k " 2.

For this let T1, . . . , Tk be pseudo-triangles inGS , each having the corresponding vi as a corner (there may
be more than one valid choice of the Ti’s; we just choose one). By definition, some non-corner pointed
vertex or some corner non-pointed vertex of each Ti is in the component A. Were there no forbidden
points, from a non-corner pointed vertex we could arrive to the three corners of Ti by three disjoint paths:
two of them along the concave chain containing the initial point and the third starting with an edge of
D \ G. From a non-pointed corner vertex we could arrive to the other two corners by two disjoint paths:
moving out from the vertex to the two neighbors in the incident side chains and then following along
them. In particular, since vi is not in A, one of the forbidden points must obstruct one of these paths,
which implies that either vi equals one of the forbidden points b and c or that Ti is the pseudo-triangle
of one of the two forbidden points. And, clearly, each of the two forbidden points contributes to only one
of the indices i (either as a corner of GS or via its associated pseudo-triangle if it is not a corner, but not
both). This shows that k " 2 and completes the proof. !

Tutte’s equilibrium condition. To prove 3⇒ 1 we use a directed version of Tutte’s Theorem on barycen-
tric embeddings of graphs.
An embedding D(P ) of a partially directed graph D = (V ,E, )E) on a set of points P = {p1, . . . , pn},

together with an assignment w : )E → R of weights to the directed edges is said to be in equilibrium at a
vertex i ∈ V if

∑

(i,j)∈ )E
wij (pi − pj) = 0. (2)

Theorem 8 (Directed Tutte Theorem). Let D = ({1, . . . , n},E, )E) be a partially directed plane graph,
3-connected to the boundary, whose boundary cycle has no repeated vertices. Let (k + 1, . . . , n) be the
ordered sequence of vertices in this boundary cycle and let pk+1, . . . , pn be the ordered vertices of a
convex (n − k)-gon. Let w : )E′ → R be an assignment of positive weights to the internal directed edges.
Then:

(i) There are unique positions p1, . . . , pk ∈ R2 for the interior vertices such that all of them are in
equilibrium in the embedding D(P ), P = {p1, . . . , pn}.

(ii) In this embedding, all cells of D are realized as non-overlapping convex polygons.

Proof. Part (i) is essentially Lemma 9 in [9]. Since the proof is not long, we reproduce it here. For
simplicity, let us represent the position of each point as one complex number pi (instead of a pair of
real coordinates). The equilibrium conditions become then a linear system of k equations in k complex
unknowns, the positions p1, . . . , pk . We prove that the square matrix M of this system is non-singular.
Hence the system has a unique solution for any choice of pk+1, . . . , pn. We will use only the fact that D
is connected (not 3-connected) to the boundary.
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Note that each diagonal entry mii inM equals the sum
∑

j +=i wij . Each non-diagonal entry mij equals
the negative of the corresponding wij . In particular, if y = (y1, . . . , yk) is an element in the kernel ofM ,
then for every i we have the equation

(
n∑

j=1
wij

)

yi =
k∑

j=1
wijyj .

In this equation we implicitly take wii = 0, as well as wij = 0 whenever ij is not a directed edge in D.
Consider an entry yi of y of maximum absolute value. We prove now that yi = 0, and hence y =

(0, . . . ,0). If yi is not zero, the maximality of |yi | (together with the above equation) implies that wij = 0
for all j > k and yj = yi whenever wij += 0. The second condition, recursively, implies that yj = yi (and
hence yj has maximum absolute value, too) for every vertex j that can be reached from i by a directed
path in D. The first condition implies that no vertex whose coordinate in y has maximum absolute value
is joined to the boundary. These two assertions contradict the fact that D is connected to the boundary.
For part (ii), the proof of Tutte’s Theorem given in [39, Theorem 12.2.2, pp. 123–132] works with only

minor modifications. First, in the definition of good representation (Definition 12.2.6, p. 126), each point
pi is required to be in the relative interior of its out-neighbors, since this is what the directed equilibrium
condition gives. Second, Claim 1 on p. 126 proves that in a good representation it is not possible for
a vertex p that p and all its neighbors lie in a certain line ", using 3-connectedness. The proof can be
adapted to use 3-connectedness to the boundary as follows: consider three vertex disjoint paths from p
to the boundary. Call q any of the three end-points, assumed not to lie in the line ". Complete the other
two paths to end at q using boundary edges in opposite directions. This produces three vertex-disjoint
paths from p to a vertex q not lying on ". The rest needs no change. !

Note that edges of E which don’t have a representative in )E have no weight w and don’t appear
at all in the system (2). Their presence or absence has no influence on the locations of the points pi .
Nevertheless, the whole graph D is planar. This is less surprising than it may seem at first sight, since
the subgraph of edges in )E already has convex faces (by statement (ii) of the theorem), and therefore the
additional edges can just be added into these faces.

Proof of 3⇒ 1 in Theorem 7. Construct an auxiliary partially directed graph D in the conditions of
Lemma 16, choose arbitrary positive weights for its directed edges, and apply the Directed Tutte Theorem
to it. Since all weights are positive, the equilibrium condition on an interior vertex p, together with the
convexity of faces that comes from Tutte’s Theorem, implies that every interior vertex is in the relative
interior of the convex hull of its out-neighbors. The conditions on D then imply that the straight-line
embedding of G so obtained has big and small angles distributed as desired. !

Time analysis. Suppose that we are given a cpt that can be stretched. Tutte’s Theorem actually gives
an algorithm to find a stretching: construct the auxiliary graph D of Lemma 16, choose coordinates for
the boundary cycle in convex position and arbitrary positive weights for the directed edges, and then
compute the equilibrium positions.
Everything can be done in linear time, except for the computation of the equilibrium position for the

interior vertices. In this computation one writes a linear equation for each interior vertex, which says that
the position of the vertex is the average of its (out-)neighbors. The position of the boundary vertices is
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fixed. It has been observed [8, Section 3.4] that the planar structure of this system of equations allows
it to be solved in O(n3/2) time, using the

√
n-separator theorem for planar graphs in connection with

the method of Generalized Nested Dissection (see [28,29] or [40, Section 2.1.3.4]), or even in time
O(M(

√
n)), whereM(n) =O(n2.375) is the time to multiply two n × n matrices.

The above complexity estimate assumes the unit-cost arithmetic model of computation. If we special-
ize and set all weights wij = 1, the algorithm is polynomial in the bit complexity model as well, because
all input coefficients are small integers. Indeed, each row of the coefficient matrix of the system (2) above
has a diagonal entry equal to the outdegree and at most one non-zero entry for each outgoing edge, which
is equal to −1. The right-hand sides are the coordinates of the boundary vertices, which form a convex
polygon. Setting pk+i = (i, i2), for example, yields coordinates between 0 and n2. Gaussian elimination
is polynomial in the bit complexity model, and thus our algorithm is polynomial in the bit complexity
model as well.
More specifically, since the matrix is diagonally dominant, the determinant cannot exceed the product

of the diagonal entries, and hence it can be bounded by 6n, using the fact that the sum of the degrees
is at most 6n (cf. Richter-Gebert [39] for the corresponding calculation in the case of the original Tutte
Theorem). This determinant is a common denominator for all elements of the solution. Thus, if we scale
the resulting embedding by this factor, the resulting pseudo-triangulation is embedded on an integer grid
of side length n26n. For pointed pseudotriangulations, the outdegree of every vertex in the auxiliary graph
is 3, and hence we get an improved bound of n23n.

5.3. Laman and circuit combinatorial pseudo-triangulations can be stretched

Not all combinatorial pseudo-triangulations can be stretched: see for instance the second example in
Fig. 10. Its non-stretchability can be proved either by showing that the graph is not Laman (while the
graph of every pointed pseudo-triangulation must be so) or by applying the characterization given in
Theorem 7 and finding a subgraph with fewer than three corners.
Our next goal is to prove that if the underlying graph of a combinatorial pseudo-triangulation is Laman

(or is a rigidity circuit) then it can be stretched. The proof uses the Laman counting condition to show
that every subgraph has at least three corners. We recall that both Laman graphs and circuits have the
property that a subgraph induced on a subset of k,2 " k " n − 1, vertices spans at most 2k − 3 edges.
The complementary set of n−k vertices is therefore incident to at leastm− (2k −3) edges, wherem, the
total number of edges, is m = 2n − 3 for Laman graphs and m = 2n − 2 for circuits. This is equivalent
to saying that:

• In a Laman graph with n vertices, every subset of k " n − 2 vertices is incident to at least 2k edges.
• In a rigidity circuit graph with n vertices, every subset of k " n − 2 vertices is incident to at least
2k + 1 edges.

We use this rephrased Laman property to prove the following theorem.

Theorem 9. Every subgraph GS of a Laman combinatorial pseudo-triangulation G has at least 3 cor-
ners. Therefore G can be stretched.
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Proof. We show first that there is no loss of generality in assuming that GS is simply connected (i.e., it
is connected and contains all the edges of G interior to its contour) and that no edge appears twice in the
boundary cycle.
IfGS has an edge which appears twice on the boundary cycle, its removal does not change the number

of corners; indeed, each end-point of such an edge that is a corner after the removal must be a corner
before as well. If GS is not connected, either some connected component has at least three vertices or
all the vertices of GS are corners. If GS is connected but not simply connected, then adding to GS the
pseudo-triangles, edges and vertices of G that fill in the holes does not change the number of corners.
We now observe that since G is pointed, the equation in Lemma 15 becomes

e = 2k − 3− b + c,

ifGS has e edges, k vertices, b boundary edges, and c corners. Let b0 be the number of boundary vertices
of GS (which may be smaller than b, if a boundary vertex appears twice in the boundary cycle). We now
consider the set of edges incident to vertices in the interior ofGS . Since there are k − b0 interior vertices,
the (rephrased) Laman property tells us that there are at least 2(k − b0) such edges. On the other hand,
these edges are all interior to GS , and the total number of interior edges in GS is e − b. Hence,

2k − 2b0 " e − b = 2k − 3− 2b + c,

which implies the desired relation c ! 3+ 2b − 2b0 ! 3. !

Theorem 10. Every subgraph GS of a rigidity circuit cpt G has at least 3 corners. Hence, G can be
stretched.

Proof. As in Theorem 9 we may assume without loss of generality thatGS is connected, contains all the
edges of G enclosed by its boundary cycle and its boundary cycle has no repeated edges.
Let GS have e edges, k pointed vertices, l non-pointed vertices, and b boundary edges. By Lemma 15

we have

e = 2k + 3l + c1 − b − 3. (3)

IfGS has no interior edge then the statement is trivial: eitherGS contains no pseudo-triangle and then all
its vertices are corners, or it contains only one pseudo-triangle and the three corners of it are corners of
GS . We show that if GS has at least one interior edge then

e ! 2k + 2l − b + 1. (4)

Indeed, let A ⊂ S be the set of vertices interior to GS , so that its cardinality is k + l − b0, where b0 " b
is the number of boundary vertices in GS . If A is empty then b0 = k + l " b and our inequality (4) is
equivalent to e ! b + 1− 2(b − b0), which holds by the existence of at least one interior edge. If A is
not empty we apply the Laman condition to GA, which says that the number of interior edges of GS is
at least 2(k + l − b0) + 1, hence the total number of edges in GS is at least 2(k + l − b0) + 1 + b !
2(k + l − b) + 1+ b = 2k + 2l − b + 1.
Formulas (3)–(4) imply l + c1 ! 4 and, since l " 1 (because there is only one non-pointed vertex in

G), c1 ! 3. !

With this, the proof of Theorem 6 has been completed.
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(a) (b) (c)

Fig. 13. (a) An embedding of the pseudo-triangle of Fig. 12. (b) A different embedding of the same pseudo-triangle with the
same weights for the interior edges. (c) A pseudo-triangle which is not affinely equivalent to (a) and (b).

5.4. Specifying the shape of pseudo-triangles

When one analyzes the system of equilibrium equations (2) for our directed graph D, one sees that
for the vertices interior to the side chains of some pseudo-triangle t , all their out-neighbors lie on t , see
Fig. 13(a). The only way to “leave” t is by one of the corners. It follows that we can apply an affine
transformation to t without destroying equilibrium in the vertices of the side chain, see Fig. 13(b).
This observation can be used to gain some control over the shape of pseudo-triangles. Suppose that we

have some desired shape of a pseudo-triangle t . After drawing t in the plane, we triangulate it and select
the additional directed interior edges in the process of Lemma 16 in such a way that every vertex on a side
chain lies in the convex hull of its three out-neighbors. Then we choose positive weights for the outgoing
edges of every vertex on a side chain in such a way that equilibrium holds. (This choice is unique for
every vertex up to a scalar factor; this scalar factor only multiplies one equation of the system (2) by a
constant and hence does not change the solution.)
It follows from these considerations that, for any choice of the remaining weights, the shape of t will

be an affine image of the given shape: the vertices of the side chain will always have the same barycentric
coordinates with respect to the three corners.
If we call an equivalence class of shapes under affine transformations an affine shape, we may say that

we can independently control the affine shape of each pseudo-triangle. Of course, for a triangle, specify-
ing the affine shape is no restriction: all triangles have the same affine shape. For a k-gon, specifying its
affine shape reduces the degrees of freedom by 2(k − 3). See Fig. 13(c) for an example of different affine
shape.
Together with the fact that the exterior polygon can be chosen freely, this gives the following strength-

ening of Theorem 6.

Theorem 11. Let G be a plane Laman graph or circuit graph with a combinatorial pseudo-triangular
assignment. For any positions of the exterior vertices as a convex polygon and for any given set of pseudo-
triangle shapes there is a straight-line embedding in which each pseudo-triangle is an affine image of the
given shape.
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This embedding is unique for Laman graphs (but not for circuit graphs). In fact, there is even a one-to-
one correspondence between all embeddings of a given Laman graph with a cpt and a (n − k)-gon as an
outer face and the set of shape specifications. In this context, a shape specification consists of a convex
(n − k)-gon in the plane together with an affine shape for each pseudo-triangle.

6. Conclusions and open problems

We have shown that any combinatorial pseudo-triangulation of a plane Laman graph or of a plane
rigidity circuit is stretchable. In the latter case, we may even prescribe the non-pointed vertex. In addition,
Laman-plus-one graphs are also stretchable, although we may not in general be able to prescribe the outer
face or the non-pointed vertix.
The Main Result stated in the introduction has thus been extended along several lines, leading to

interesting combinatorial objects to study and several open questions, some solved in this paper, some
left for the future. We end with a listing of the main directions for further investigations.

Embeddability of planar generically rigid graphs as pseudo-triangulations. The goal here is the clar-
ification of the connection between minimum (pointed) pseudo-triangulations of a planar point set and
triangulations (maximal planar graphs embedded on the same point set). Triangles are pseudo-triangles,
and every triangulation is a pseudo-triangulation, but some or all of the vertices of the embedding may not
be pointed. All planar graphs containing a Laman graph are rigid (although not minimally so). Stratifying
by the number of additional edges (besides a minimally rigid substructure) added to a Laman graph, we
want to investigate realizability as triangulations with some prescribed number of non-pointed vertices.
In this paper, we solved the case of one additional edge (via the special case of rigidity circuits). We leave
open the question of completing the characterization for the whole hierarchy. Such an investigation will
shed light into new intrinsic properties of planar triangulations, some of the best studied and still elusive
objects in Combinatorial Geometry. We make the following conjecture.

Conjecture 17. 9 Given a plane graph G, the following conditions are equivalent:

(1) G is generically rigid.
(2) G can be straightened as a pseudo-triangulation.

Combinatorial pseudo-triangulations and embeddings on oriented matroids (pseudolines). We have
seen that not all planar graphs admitting combinatorial pointed pseudo-triangular labellings are Laman
graphs. But those which are Laman also have straight-line realizations. A further direction of research
emerging from our work is to study the connection between the combinatorial pseudo-triangulations and
realizations in the oriented matroid sense (on pseudo-configurations of points).

Grid size of pseudo-triangular embeddings. Every planar graph can be embedded on a grid of size
O(n) ×O(n), see for example [18,19,42]. As mentioned at the end of Section 5.2, pseudo-triangulations
can be embedded on a grid of exponential side length, roughly 6n. Here is a natural remaining problem.

9 Noke (added in proof). Conjecture 17 was recently settled in [33].
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Open Problem 1. Can a planar Laman graph be embedded as a pseudo triangulation on a O(nk)×O(nk)
size grid? What is the smallest such k?

Reciprocal duals of pseudo-triangulations. Planar graphs have combinatorial duals, obtained by replac-
ing faces with vertices and vice-versa. Moreover, when an embedded planar graph supports a self-stress,
it has a geometric dual, the so-called reciprocal diagram of Maxwell [12]. A natural question (which
will be answered in a subsequent paper) concerns the connection between stressed pseudo-triangulations
(necessarily not minimal) and the planarity of their reciprocal duals, see [31].

Algorithmic questions. We conjecture that our embedding algorithm from Section 5 can be improved
from O(n3/2) to O(n logn) time. This includes the construction of a cpt for a given planar Laman graph
(analyzed at the end of Section 4), and the stretchability via Tutte’s embeddings (analyzed at the end of
Section 5).
The time complexity of the first embedding algorithm, presented in Section 3, would be improved by

a positive answer to the following open questions:

Open Problem 2. Is it possible to decide the Laman condition in linear time for a planar graph?

Open Problem 3. Is it possible to decide, faster than by testing the Laman condition, which edge to put
back in a Henneberg II step for a planar graph? For a combinatorial pseudo-triangulation?
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