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Geometric Cells

A d-cell is a region homeomorphic to the open d-ball

Bd = {x ∈ Rd : |x | < 1}
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Geometric Cells

A d-cell is a region homeomorphic to the open d-ball

Bd = {x ∈ Rd : |x | < 1}

◮ 0-cell

◮ 1-cells

◮ 2-cells
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Geometric Cells

d-cell is a region homeomorphic to the open d-ball

Bd = {x ∈ Rd : |x | < 1}

Pinched 2-cell:

A
B

C
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What is a Cellular Decomposition?
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Basic Idea

◮ Represent a geometric domain decomposed into basic
building blocks.
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Our Data Structure

◮ Well defined Semantics.
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Our Data Structure

◮ Well defined Semantics.

◮ Easy to determine local structure of the Cell Complex.

◮ Easy to test if the Complex is well formed.

◮ Cells are first class objects.

◮ Works in any fixed dimension.

◮ Space and Time efficient.
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Data Structures Galore

Data Structure Represents

Arcs [Edmonds60] 2D Surfaces
Crosses [Tutte73] 2D Unoriented Surfaces
Winged-Edge [Bau75] 3-d Polyhedra
Doubly-Linked Edge List [MP78] Planar Subdivisions
Quad-Edge [GS85] 2D Surfaces
Facet-Edge [DL87] Pseudo-Manifold Complexes
Radial-Edge [Wei88] Non-Manifold B-Reps
Cell-Tuple-Complex [Bri93] Regular Manifolds
nG-maps [Lie94] Cellular Quasi-Manifolds
Cell-Chain-Complex [CMP] Pseudo-Regular Manifolds
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Data Structures Galore

Data Structure Represents

Arcs [Edmonds60] 2D Surfaces
Crosses [Tutte73] 2D Unoriented Surfaces
Winged-Edge [Bau75] 3-d Polyhedra
Doubly-Linked Edge List [MP78] Planar Subdivisions
Quad-Edge [GS85] 2D Surfaces
Facet-Edge [DL87] Pseudo-Manifold Complexes
Radial-Edge [Wei88] Non-Manifold B-Reps
Cell-Tuple-Complex [Bri93] Regular Manifolds
nG-maps [Lie94] Cellular Quasi-Manifolds
Cell-Chain-Complex [CMP] Pseudo-Regular Manifolds

Combinatorial Data Structures
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Data Structures Galore

Data Structure Represents

Arcs [Edmonds60] 2D Surfaces
Crosses [Tutte73] 2D Unoriented Surfaces
Winged-Edge [Bau75] 3-d Polyhedra
Doubly-Linked Edge List [MP78] Planar Subdivisions
Quad-Edge [GS85] 2D Surfaces
Facet-Edge [DL87] Pseudo-Manifold Complexes
Radial-Edge [Wei88] Non-Manifold B-Reps
Cell-Tuple-Complex [Bri93] Regular Manifolds
nG-maps [Lie94] Cellular Quasi-Manifolds
Cell-Chain-Complex [CMP] Pseudo-Regular Manifolds

Group Theoretic
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1960 Edmonds’: Graphs on Surface

◮ An abstract set A of arcs(two for each edge) and two
permutations φ and R of A:
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1960 Edmonds’: Graphs on Surface

◮ An abstract set A of arcs(two for each edge) and two
permutations φ and R of A:

◮ 12

1

234
5

6

9

10
7

8

11

◮ eg: φ = (2, 3, 7)(4, 5, 9)(8, 10, 11)(1, 12, 6)
R = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)
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1960 Edmonds’: Graphs on Surface

◮ An abstract set A of arcs(two for each edge) and two
permutations φ and R of A:

◮ 12

1

234
5

6

9

10
7

8

11

◮ eg: φ = (2, 3, 7)(4, 5, 9)(8, 10, 11)(1, 12, 6)
R = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

◮ R2 = id and fixed-point-free (fpf).
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Edmonds’ Graph on Surface

◮ φ traverses each face in CCW order
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Edmonds’ Graph on Surface

◮ φ traverses each face in CCW order

◮ R reverses each edge.

◮ The permutation φ∗ = φR is the arcs with same tail in CW
order.

◮ Edges = orbits(R)
Faces = orbits(φ)
Vertices = orbits(φ∗)
Connected Components = orbits(< φ,R >)
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Edmonds’ Graph on Surface

◮ φ traverses each face in CCW order

◮ R reverses each edge.

◮ The permutation φ∗ = φR is the arcs with same tail in CW
order.

◮ Edges = orbits(R)
Faces = orbits(φ)
Vertices = orbits(φ∗)
Connected Components = orbits(< φ,R >)

◮ This is an Implicit representation!
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Implicit Models

◮ There is only one basic class of objects.
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Implicit Models

◮ There is only one basic class of objects.

◮ Faces are represented implicitly in terms of operations on
these objects.

Gary Miller Representing Topological Structures Using Cell-Chains



Modern View of Edmonds’
Holistic View

◮ We add a point to the “middle of each face and connect each
face-vertex to vertices on the face.
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Modern View of Edmonds’
Holistic View

◮ We add a point to the “middle of each face and connect each
face-vertex to vertices on the face.

12

1

234
5

6

9

10
7

8

11

◮◮ The permutations now permute the new triangles.
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Tutte’s Representation of Surfaces

◮ An abstract set S of crosses and three permutations P, θ and
φ of S satisfying:

◮ θ2 = φ2 = I and θφ = φθ.

◮ X , θX , φX and θφX are all distinct for all crosses X .

◮ (Pθ)2 = I .

◮ The orbits of X and θX under P are distinct for all crosses X .
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Tutte’s Representation of Surfaces

◮ An abstract set S of crosses and three permutations P, θ and
φ of S satisfying:

◮ θ2 = φ2 = I and θφ = φθ.

◮ X , θX , φX and θφX are all distinct for all crosses X .

◮ (Pθ)2 = I .

◮ The orbits of X and θX under P are distinct for all crosses X .

◮ Modern View: Tutte had right group but wrong set of
generators.
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Beyond 1960, 1970

◮ Group Theoretic Approach is fine but:

◮ Cells should be “first class” objects.

◮ Represent more than two-dimensional decompositions.

◮ Rely on the same general principle; operators acting on very
primitive objects.
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The Cell-Complex Data Structure
[Bri93]
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Brisson: Barycentric Subdivisions

Creating a triangulation of the cell complex .

◮ Add a new vertex interior to each edge and face. Connect two
vertices if they are visible to each other.
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Brisson: Barycentric Subdivisions

Creating a triangulation of the cell complex .

◮ Add a new vertex interior to each edge and face. Connect two
vertices if they are visible to each other.

◮

0 0

0 0
1

1

1 1

2
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Why Barycentric Subdivisions?

◮ The permutation will act on the simplices of the barycentric
subdivision.
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Why Barycentric Subdivisions?

◮ The permutation will act on the simplices of the barycentric
subdivision.

◮ Giving simple higher dimensional representations, Brisson.

◮

◮
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Numbered Simplices and Gluings

◮ A numbered d-simplex is a simplex whose vertices are
uniquely labeled with numbers between 0 and d .

0 0 1 0 1

2

0 1

2

3
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Numbered Simplices and Gluings

◮ A numbered d-simplex is a simplex whose vertices are
uniquely labeled with numbers between 0 and d .

0 0 1 0 1

2

0 1

2

3

◮ Observe: The simplices in the Barycentric are numbered.
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Numbered Simplicial Sets

◮ A numbered d-simplicial set is a collection numbered
d-simplices glued along (d − 1)-faces with compatible labels.

Gary Miller Representing Topological Structures Using Cell-Chains



Numbered Simplicial Sets

◮ A numbered d-simplicial set is a collection numbered
d-simplices glued along (d − 1)-faces with compatible labels.

◮
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Numbered Simplicial Sets

◮ A numbered d-simplicial set is a collection numbered
d-simplices glued along (d − 1)-faces with compatible labels.

◮

◮ The set of gluings with the same label/numbers can be
viewed as matching or permutation(involution).
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Moving Around

0 0

00

0 1

1

1

1

1

1
2 2

◮ Simplex Reflection. Remove a vertex, take the simplex on the
other side.
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◮ Simplex Reflection. Remove a vertex, take the simplex on the
other side.

◮ The reflection can be chosen based on vertex number.
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(aka switchi )

Gary Miller Representing Topological Structures Using Cell-Chains



Moving Around

0 0

00

0 1

1

1

1

1

1
2 2

◮ Simplex Reflection. Remove a vertex, take the simplex on the
other side.

◮ The reflection can be chosen based on vertex number.

◮ We will denote these permutations as αi for i ∈ {0 . . . d}.
(aka switchi )

Gary Miller Representing Topological Structures Using Cell-Chains



Moving Around

0 0

00

0 1

1

1

1

1

1
22

◮ Simplex Reflection. Remove a vertex, take the simplex on the
other side.

◮ The reflection can be chosen based on vertex number.

◮ We will denote these permutations as αi for i ∈ {0 . . . d}.
(aka switchi )

Gary Miller Representing Topological Structures Using Cell-Chains



Moving Around

0 0

00

0 1

1

1

1

1

1
22

◮ Simplex Reflection. Remove a vertex, take the simplex on the
other side.

◮ The reflection can be chosen based on vertex number.

◮ We will denote these permutations as αi for i ∈ {0 . . . d}.
(aka switchi )

Gary Miller Representing Topological Structures Using Cell-Chains



Moving Around

0 0

00

0 1

1

1

1

1

1
22

◮ Simplex Reflection. Remove a vertex, take the simplex on the
other side.

◮ The reflection can be chosen based on vertex number.

◮ We will denote these permutations as αi for i ∈ {0 . . . d}.
(aka switchi )

Gary Miller Representing Topological Structures Using Cell-Chains



Moving Around
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◮ Visit edges within a face? α0α1
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Moving Around

0 0

00

0 1

1

1

1

1

1
22

◮ Visit edges within a face? α0α1

◮ Edges around a vertex? α2α1

◮ Faces around a face? α2α1α0α2

◮ Lots more in 3+ dimensions . . .
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A Modern Viewpoint of Tutte

His group is just a group of reflections the Barycentric simplices
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A Modern Viewpoint of Tutte

His group is just a group of reflections the Barycentric simplices
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Incidence Graph and Cell-Tuples

A

B

C D

E

F1
F2

E1

E2

E3

E4

E5

E6

A B C D E

F1 F2

E1 E2
E3

E4E5 E6

◮ The Incidence Graph (Incidence Poset)
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C D
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F1
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E4

E5
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E1 E2
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E4E5 E6

◮ The Incidence Graph (Incidence Poset)

◮ A Barycentric decomposition.
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Incidence Graph and Cell-Tuples
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◮ A Barycentric decomposition.

◮ A Barycentric Simplex S
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Incidence Graph and Cell-Tuples

A

B

C D

E

F1
F2

E1

E2

E3

E4

E5
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A B C D E

F1 F2

E1 E2
E3

E4E5 E6

◮ The Incidence Graph (Incidence Poset)

◮ A Barycentric decomposition.

◮ A Barycentric Simplex S

◮ The labels on a S are a vertical path in the incidence graph.
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Incidence Graph and Cell-Tuples
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◮ The Incidence Graph (Incidence Poset)

◮ A Barycentric decomposition.

◮ A Barycentric Simplex S

◮ The labels on a S are a vertical path in the incidence graph.

◮ Cell-Tuple given by T = 〈C , E3, F2〉
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Incidence Graph and Cell-Tuples

A

B

C D

E

F1
F2

E1

E2

E3

E4

E5

E6

A B C D E

F1 F2

E1 E2
E3

E4E5 E6

◮ The Incidence Graph (Incidence Poset)

◮ A Barycentric decomposition.

◮ A Barycentric Simplex S

◮ The labels on a S are a vertical path in the incidence graph.

◮ Cell-Tuple given by T = 〈C , E3, F2〉

◮ Thm: Barycentric Simplices, Cell-Tuples, and Incidence Paths
are all in a one-to-one correspondence.
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Operating on Cell-Tuples with αk

c0 ck−1 ck ck+1 cd

◮ Suppose we have a tuple T = 〈c1, . . . , cd〉
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Operating on Cell-Tuples with αk

c0 ck−1 ck ck+1 cd

◮ Suppose we have a tuple T = 〈c1, . . . , cd〉

◮ αk only modifies the kth entry in T (Simplex-Reflection).
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Operating on Cell-Tuples with αk

c0 ck−1 ck ck+1 cd

◮ Suppose we have a tuple T = 〈c1, . . . , cd〉

◮ αk only modifies the kth entry in T (Simplex-Reflection).

◮ αk [T ] = 〈c0, . . . , ck−1, ck , ck+1, . . . , cd〉
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Operating on Cell-Tuples with αk

c0 ck−1 ck+1 cd

◮ Suppose we have a tuple T = 〈c1, . . . , cd〉

◮ αk only modifies the kth entry in T (Simplex-Reflection).

◮ αk [T ] = 〈c0, . . . , ck−1, ∗, ck+1, . . . , cd〉
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Operating on Cell-Tuples with αk

c0 ck−1 ck+1 cd

c ′

k

◮ Suppose we have a tuple T = 〈c1, . . . , cd〉

◮ αk only modifies the kth entry in T (Simplex-Reflection).

◮ αk [T ] = 〈c0, . . . , ck−1, c
′

k , ck+1, . . . , cd〉
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Operating on Cell-Tuples with αk

c0 ck−1 ck+1 cd

c ′

k

◮ Suppose we have a tuple T = 〈c1, . . . , cd〉

◮ αk only modifies the kth entry in T (Simplex-Reflection).

◮ αk [T ] = 〈c0, . . . , ck−1, c
′

k , ck+1, . . . , cd〉

◮ Furthermore, αk is well-defined on the local portion of the
Cell-Tuple:

αk

[

〈ck−1, ck , ck+1〉
]

= c ′k
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Space savings using the switches αk

c0 ck−1

ck
ck+1 cd

c ′

k

One only stores all triples per switch.
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For certain inputs . . .

◮ We haven’t yet formally characterized the cellular
decomposition that is supposedly our input.
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For certain inputs . . .

◮ We haven’t yet formally characterized the cellular
decomposition that is supposedly our input.

◮ [Bri93] proves all of these things for “Regular Manifolds”

◮ Determining whether an input is a Regular Manifold is hard:
◮ d-Regular-Manifold reduces to (d − 1)-Sphere-Recognition
◮ d ≤ 3: Easy Polynomial Time (Euler’s Formula)
◮ d = 4: In NP, not known to be in P.
◮ d = 5: Open
◮ d ≥ 6: Undecidable [Markov 58]

◮ For decidable semantics either admit non-regular manifolds or
reject some.
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How can we make it work?

◮ So Far: Top-Down Approach
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◮ So Far: Top-Down Approach
◮ Begin with a whole object (cellular decomposition)
◮ Subdivide into primitives
◮ Characterize ’nice’ properties of the subdivision

◮ Problem: No guarantees because we can’t recognize proper
input.

◮ Solution: Bottom-Up Approach
◮ Begin with primitive pieces
◮ Glue them together in ways that enforce nice properties
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How can we make it work?

◮ So Far: Top-Down Approach
◮ Begin with a whole object (cellular decomposition)
◮ Subdivide into primitives
◮ Characterize ’nice’ properties of the subdivision

◮ Problem: No guarantees because we can’t recognize proper
input.

◮ Solution: Bottom-Up Approach
◮ Begin with primitive pieces
◮ Glue them together in ways that enforce nice properties
◮ Characterize the class of cellular decompositions we can build.
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Top-Down vs. Bottom-Up

Cell-Complex

Barycentric Subdivision

Regular Manifolds
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Top-Down vs. Bottom-Up

Algebraic Construction

Cell-Complex

Barycentric Subdivision

Regular Manifolds
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Recall: Permutation Group of a Set S

◮ Set of Permutation G of S .

◮ Closed: ∀ α, β ∈ G , αβ ∈ G

◮ Invertible: ∀ α ∈ G , ∃ α−1 ∈ G
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◮ Group G of Permuation operating on a Set S .
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Bottom Up Approach

◮ Group G of Permuation operating on a Set S .

◮ G will be generated by 〈α0, . . . , αd〉.

◮ S will be a set of numbered d-Simplices:

Gary Miller Representing Topological Structures Using Cell-Chains



Basic Gluing Rules

S

◮ αk must be Fixed-Point-Free

αk [s] 6= s
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Basic Gluing Rules

S

T

αk

◮ αk must be Fixed-Point-Free

αk [s] 6= s

◮ αk must be an Involution

α2
k = id
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Basic Gluing Rules

S

T

αk

◮ αk must be Fixed-Point-Free

αk [s] 6= s

◮ αk must be an Involution

α2
k = id

◮ A d-simplex has d + 1 sides, we have
d + 1 gluing rules (α0 . . . αd).
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Basic Gluing Rules

S

T

αk

◮ αk must be Fixed-Point-Free

αk [s] 6= s

◮ αk must be an Involution

α2
k = id

◮ A d-simplex has d + 1 sides, we have
d + 1 gluing rules (α0 . . . αd).

◮ These properties define a Map.
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A Commuting Map

◮ ∀ i , j ∈ 0 . . . d , j ≥ i + 2

αiαj = αjαi

◮ Higher dimensional switches
commute with lower dimensional
switches.
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A Commuting Map

0

0

1
2 2

◮ ∀ i , j ∈ 0 . . . d , j ≥ i + 2

αiαj = αjαi

◮ Higher dimensional switches
commute with lower dimensional
switches.
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A Commuting Map

0

0

1
2 2

α0α0

α2

α2

◮ ∀ i , j ∈ 0 . . . d , j ≥ i + 2

αiαj = αjαi

◮ Higher dimensional switches
commute with lower dimensional
switches.

◮ e.g. α0α2 = α2α0.
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A Commuting Map

0

0

1
2 2

α0α0

α2

α2

◮ ∀ i , j ∈ 0 . . . d , j ≥ i + 2

αiαj = αjαi

◮ Higher dimensional switches
commute with lower dimensional
switches.

◮ e.g. α0α2 = α2α0.

◮ Also known as an nG-Maps [Lie94]
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Commuting Maps (nG-Maps)

Algebraic Construction

Cell-Complex

Barycentric Subdivision

Regular Manifolds
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Commuting Maps (nG-Maps)

Commuting Map

Cell-Complex

Barycentric Subdivision

Regular Manifolds

nG-Maps
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Commuting Maps (nG-Maps)

Commuting Map

Cell-Complex

Barycentric Subdivision

Regular Manifolds

Cellular Quasi-Manifold
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Commuting Maps (nG-Maps)

◮ nG-maps are often used in practice.
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◮ Many lemmas can be proven at the
level of commuting maps.

◮ A gap still exists: Barycentric
Simplices, Incidence Paths, Cell-Tuples
are not yet in correspondence
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Commuting Maps (nG-Maps)

0

1

2

α0

α2

◮ nG-maps are often used in practice.

◮ Many lemmas can be proven at the
level of commuting maps.

◮ A gap still exists: Barycentric
Simplices, Incidence Paths, Cell-Tuples
are not yet in correspondence

◮ We need more restrictions on the
gluing rules.

Gary Miller Representing Topological Structures Using Cell-Chains



Orthogonality Axiom [CMP]

◮ Orthogonality Axiom

∀ s ∈ S , k ∈ 1 . . . (d − 1)

∀ α ∈ 〈α0, . . . , αk−1〉, β ∈ 〈αk+1, . . . , αd〉,

αβ(s) = s −→ α(s) = β(s) = s
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Orthogonality Axiom [CMP]

◮ Orthogonality Axiom

∀ s ∈ S , k ∈ 1 . . . (d − 1)

∀ α ∈ 〈α0, . . . , αk−1〉, β ∈ 〈αk+1, . . . , αd〉,

αβ(s) = s −→ α(s) = β(s) = s

◮ Abstractly, higher and lower dimensional operators must not
only commute, they must not interfere at all.

◮ Captures the idea that αk can only affect the kth entry.

◮ We call this a Cell-Chain-Complex.
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Cell-Chain-Complex

Commuting Map

Cell-Complex

Barycentric Subdivision

Regular Manifolds

Cellular Quasi-Manifold
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Cell-Chain-Complex

Commuting Map

Cell-Complex

Barycentric Subdivision

Regular Manifolds

Cellular Quasi-Manifold

Orthogonality Axiom

Cell-Chain-Complex
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Back to Data Structures
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Back to Data Structures

◮ Rather than operate on paths in the incidence graph, allow for
an incidence multi-graph.
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◮ Rather than operate on paths in the incidence graph, allow for
an incidence multi-graph.

◮ Example (Torus):
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Back to Data Structures

◮ Rather than operate on paths in the incidence graph, allow for
an incidence multi-graph.

◮ Example (Torus):

E2

E2

F
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Back to Data Structures

◮ Rather than operate on paths in the incidence graph, allow for
an incidence multi-graph.

◮ Example (Torus):

X

X

X

X
E1

E1
E2

E2

F
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Back to Data Structures

◮ Rather than operate on paths in the incidence graph, allow for
an incidence multi-graph.

◮ Example (Torus):

XX

X XXX

XX XE1

E1 E1

E1

E1

E2

E2
E2 E2 E2

F

F

F
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Edge Paths

X

E1E2

F

◮ Incidence Edge-Path
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Edge Paths

X

E1E2

F

◮ Incidence Edge-Path
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Edge Paths

X

E1E2

F

◮ Incidence Edge-Path

◮ A Cell-Chain is a Cell-Tuple augmented
with Edge Markers:

CC = 〈X , 0, E2, 1, F 〉
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Edge Paths

X

E1E2

F

X X

XX E1

E1

E2E2
F

◮ Incidence Edge-Path

◮ A Cell-Chain is a Cell-Tuple augmented
with Edge Markers:

CC = 〈X , 0, E2, 1, F 〉

◮ Thm(CMP): In a Cell-Chain-Complex,
Barycentric Simplices, Cell-Chains, and
Incidence Edge-Paths are in one-to-one
correspondence.
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Bridging the Gap

Commuting Map

Cell-Complex

Barycentric Subdivision

Regular Manifolds

Cellular Quasi-Manifold

Orthogonality Axiom

Cell-Chain-Complex
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Bridging the Gap

Commuting Map

Cell-Complex

Barycentric Subdivision

Regular Manifolds

Cellular Quasi-Manifold

Orthogonality Axiom

Cell-Chain-Complex

Edge Markers
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Bridging the Gap

Commuting Map

Cell-Complex

Barycentric Subdivision

Regular Manifolds

Cellular Quasi-Manifold

Orthogonality Axiom

Cell-Chain-Complex

Simple Counting
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Conclusions / Summary
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Conclusions / Summary

◮ The Barycentric Subdivision is a powerful tool for designing
and understanding data structures.
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Conclusions / Summary

◮ The Barycentric Subdivision is a powerful tool for designing
and understanding data structures.

◮ A Cell-Complex presents an elegant all-purpose data structure
for cellular decompositions.

◮ A Cell-Chain-Complex successfully bridges the gap between
rigorous algebraic structures and well-designed data structures.
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Question

◮ Can we have a precise semantics for more degenerate cells?
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Question

◮ Can we have a precise semantics for more degenerate cells?

◮ In particular: A simple cycle has to include at least one point.

◮ Here we are modeling a 2D red blood cell.
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Why a cycle should be point free.

The partial simulation of a 2D red blood red cell moving through a
restriction. The boundary of the cell was given a simple closed loop
containing one vertex. The vertex is on the right side of the image.
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