Representing Topological Structures Using Cell-Chains

David Cardoze **Gary Miller** Todd Phillips Computer Science Department Carnegie Mellon University

> GMP 2006 July 27, 2006

Gary Miller Representing Topological Structures Using Cell-Chains

A *d*-cell is a region **homeomorphic** to the open *d*-ball

$$\mathcal{B}^d = \{ x \in \mathcal{R}^d : |x| < 1 \}$$

A *d*-cell is a region **homeomorphic** to the open *d*-ball

.

$$\mathcal{B}^d = \{x \in \mathcal{R}^d : |x| < 1\}$$

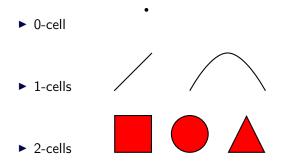
Gary Miller Representing Topological Structures Using Cell-Chains

A *d*-cell is a region **homeomorphic** to the open *d*-ball

$$\mathcal{B}^d = \{x \in \mathcal{R}^d : |x| < 1\}$$

A *d*-cell is a region **homeomorphic** to the open *d*-ball

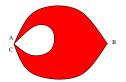
$$\mathcal{B}^d = \{x \in \mathcal{R}^d : |x| < 1\}$$

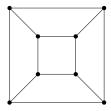


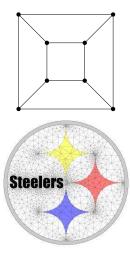
d-cell is a region **homeomorphic** to the open *d*-ball

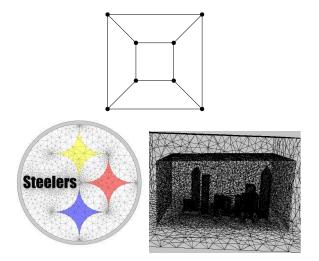
$$\mathcal{B}^d = \{ x \in \mathcal{R}^d : |x| < 1 \}$$

Pinched 2-cell:









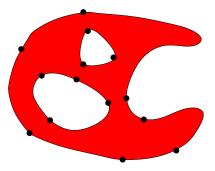
Basic Idea

 Represent a geometric domain decomposed into basic building blocks.



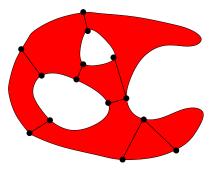
Basic Idea

 Represent a geometric domain decomposed into basic building blocks.



Basic Idea

 Represent a geometric domain decomposed into basic building blocks.



Well defined Semantics.

- Well defined Semantics.
- ► Easy to determine local structure of the Cell Complex.

- Well defined Semantics.
- ► Easy to determine local structure of the Cell Complex.
- Easy to test if the Complex is well formed.

- Well defined Semantics.
- ► Easy to determine local structure of the Cell Complex.
- Easy to test if the Complex is well formed.
- Cells are first class objects.

- Well defined Semantics.
- Easy to determine local structure of the Cell Complex.
- Easy to test if the Complex is well formed.
- Cells are first class objects.
- Works in any fixed dimension.

- Well defined Semantics.
- Easy to determine local structure of the Cell Complex.
- Easy to test if the Complex is well formed.
- Cells are first class objects.
- Works in any fixed dimension.
- ► Space and Time efficient.

Data Structures Galore

Data Structure	Represents
Arcs [Edmonds60]	2D Surfaces
Crosses [Tutte73]	2D Unoriented Surfaces
Winged-Edge [Bau75]	3-d Polyhedra
Doubly-Linked Edge List [MP78]	Planar Subdivisions
Quad-Edge [GS85]	2D Surfaces
Facet-Edge <i>[DL87]</i>	Pseudo-Manifold Complexes
Radial-Edge <i>[Wei88]</i>	Non-Manifold B-Reps
Cell-Tuple-Complex [Bri93]	Regular Manifolds
nG-maps [Lie94]	Cellular Quasi-Manifolds
Cell-Chain-Complex [CMP]	Pseudo-Regular Manifolds

Data Structures Galore

Data Structure	Represents
Arcs [Edmonds60]	2D Surfaces
Crosses [Tutte73]	2D Unoriented Surfaces
Winged-Edge [Bau75]	3-d Polyhedra
Doubly-Linked Edge List [MP78]	Planar Subdivisions
Quad-Edge [GS85]	2D Surfaces
Facet-Edge <i>[DL87]</i>	Pseudo-Manifold Complexes
Radial-Edge <i>[Wei88]</i>	Non-Manifold B-Reps
Cell-Tuple-Complex [Bri93]	Regular Manifolds
<i>n</i> G-maps <i>[Lie94]</i>	Cellular Quasi-Manifolds
Cell-Chain-Complex [CMP]	Pseudo-Regular Manifolds
Combinatorial Data Structures	

Data Structures Galore

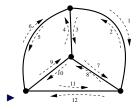
Data Structure	Represents
Arcs [Edmonds60]	2D Surfaces
Crosses [Tutte73]	2D Unoriented Surfaces
Winged-Edge <i>[Bau75]</i>	3-d Polyhedra
Doubly-Linked Edge List [MP78]	Planar Subdivisions
Quad-Edge [GS85]	2D Surfaces
Facet-Edge <i>[DL87]</i>	Pseudo-Manifold Complexes
Radial-Edge <i>[Wei88]</i>	Non-Manifold B-Reps
Cell-Tuple-Complex [Bri93]	Regular Manifolds
nG-maps [Lie94]	Cellular Quasi-Manifolds
Cell-Chain-Complex [CMP]	Pseudo-Regular Manifolds
Group Theoretic	,

► An abstract set A of arcs(two for each edge) and two permutations φ and R of A:

► An abstract set A of arcs(two for each edge) and two permutations φ and R of A:

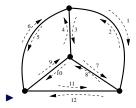


► An abstract set A of arcs(two for each edge) and two permutations φ and R of A:



• eg: $\phi = (2,3,7)(4,5,9)(8,10,11)(1,12,6)$ R = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)

► An abstract set A of arcs(two for each edge) and two permutations φ and R of A:



- eg: $\phi = (2,3,7)(4,5,9)(8,10,11)(1,12,6)$ R = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)
- $R^2 = id$ and fixed-point-free (fpf).

 $\blacktriangleright \phi$ traverses each face in CCW order

- $\blacktriangleright \phi$ traverses each face in CCW order
- ► *R* reverses each edge.

- $\blacktriangleright \phi$ traverses each face in CCW order
- R reverses each edge.
- The permutation $\phi^* = \phi R$ is the arcs with same tail in CW order.

 $\blacktriangleright \phi$ traverses each face in CCW order

- ► *R* reverses each edge.
- The permutation $\phi^* = \phi R$ is the arcs with same tail in CW order.

• ϕ traverses each face in CCW order

- R reverses each edge.
- ► The permutation φ^{*} = φR is the arcs with same tail in CW order.
- ► Edges = orbits(R) Faces = orbits(φ) Vertices = orbits(φ*) Connected Components = orbits(< φ, R >)
- This is an Implicit representation!

Implicit Models

▶ There is only one basic class of objects.

Implicit Models

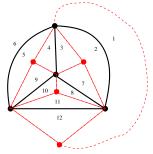
- ► There is only one basic class of objects.
- Faces are represented implicitly in terms of operations on these objects.

Modern View of Edmonds' Holistic View

We add a point to the "middle of each face and connect each face-vertex to vertices on the face.

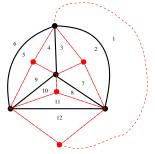
Modern View of Edmonds' Holistic View

We add a point to the "middle of each face and connect each face-vertex to vertices on the face.



Modern View of Edmonds' Holistic View

We add a point to the "middle of each face and connect each face-vertex to vertices on the face.



▶ The permutations now permute the new triangles.

Tutte's Representation of Surfaces

- An abstract set S of crosses and three permutations P, θ and φ of S satisfying:
- $\bullet \ \theta^2 = \phi^2 = I \text{ and } \theta \phi = \phi \theta.$
- X, θX , ϕX and $\theta \phi X$ are all distinct for all crosses X.

$$\blacktriangleright (P\theta)^2 = I.$$

• The orbits of X and θX under P are distinct for all crosses X.

Tutte's Representation of Surfaces

- An abstract set S of crosses and three permutations P, θ and φ of S satisfying:
- $\blacktriangleright \ \theta^2 = \phi^2 = I \text{ and } \theta \phi = \phi \theta.$
- X, θX , ϕX and $\theta \phi X$ are all distinct for all crosses X.

$$\blacktriangleright (P\theta)^2 = I.$$

- The orbits of X and θX under P are distinct for all crosses X.
- Modern View: Tutte had right group but wrong set of generators.

Group Theoretic Approach is fine but:

- Group Theoretic Approach is fine but:
- ► Cells should be "first class" objects.

- Group Theoretic Approach is fine but:
- ► Cells should be "first class" objects.
- ► Represent more than two-dimensional decompositions.

- Group Theoretic Approach is fine but:
- Cells should be "first class" objects.
- ► Represent more than two-dimensional decompositions.
- Rely on the same general principle; operators acting on very primitive objects.

The Cell-Complex Data Structure [Bri93]

Brisson: Barycentric Subdivisions

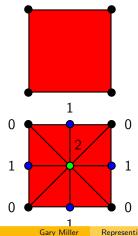
Creating a triangulation of the cell complex .

Add a new vertex interior to each edge and face. Connect two vertices if they are visible to each other.

Brisson: Barycentric Subdivisions

Creating a triangulation of the cell complex .

Add a new vertex interior to each edge and face. Connect two vertices if they are visible to each other.



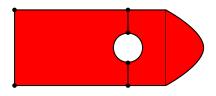
Representing Topological Structures Using Cell-Chains

The permutation will act on the simplices of the barycentric subdivision.

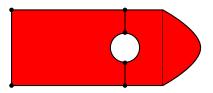
- The permutation will act on the simplices of the barycentric subdivision.
- Giving simple higher dimensional representations, Brisson.

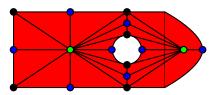
►

- The permutation will act on the simplices of the barycentric subdivision.
- Giving simple higher dimensional representations, Brisson.



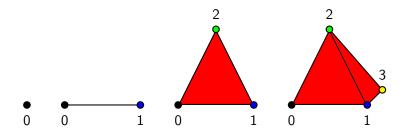
- The permutation will act on the simplices of the barycentric subdivision.
- Giving simple higher dimensional representations, Brisson.





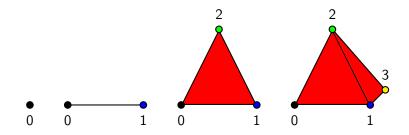
Numbered Simplices and Gluings

A numbered d-simplex is a simplex whose vertices are uniquely labeled with numbers between 0 and d.



Numbered Simplices and Gluings

► A numbered *d*-simplex is a simplex whose vertices are uniquely labeled with numbers between 0 and *d*.



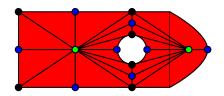
▶ Observe: The simplices in the Barycentric are numbered.

Numbered Simplicial Sets

► A numbered *d*-simplicial set is a collection numbered *d*-simplices glued along (*d* − 1)-faces with compatible labels.

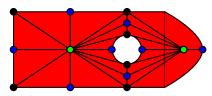
Numbered Simplicial Sets

► A numbered *d*-simplicial set is a collection numbered *d*-simplices glued along (*d* − 1)-faces with compatible labels.

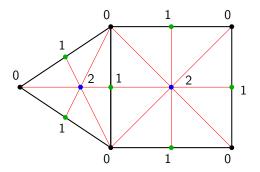


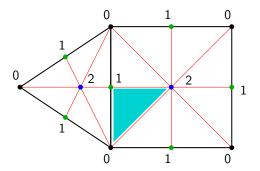
Numbered Simplicial Sets

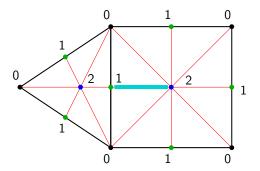
► A numbered *d*-simplicial set is a collection numbered *d*-simplices glued along (*d* − 1)-faces with compatible labels.

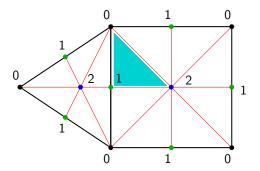


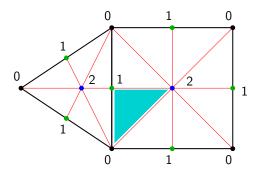
 The set of gluings with the same label/numbers can be viewed as matching or permutation(involution).



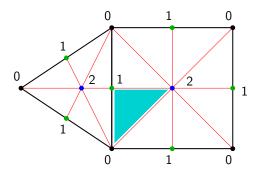




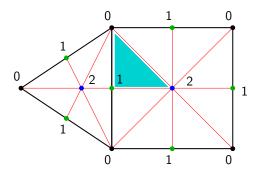




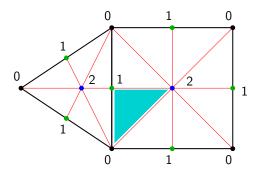
- Simplex Reflection. Remove a vertex, take the simplex on the other side.
- The reflection can be chosen based on vertex number.



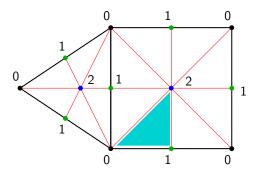
- Simplex Reflection. Remove a vertex, take the simplex on the other side.
- ► The reflection can be chosen based on vertex number.
- We will denote these permutations as α_i for i ∈ {0...d}. (aka switch_i)



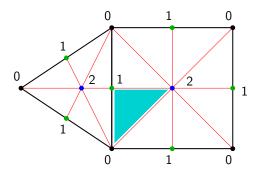
- Simplex Reflection. Remove a vertex, take the simplex on the other side.
- ► The reflection can be chosen based on vertex number.
- We will denote these permutations as α_i for i ∈ {0...d}. (aka switch_i)



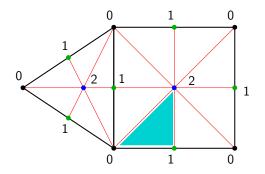
- Simplex Reflection. Remove a vertex, take the simplex on the other side.
- ► The reflection can be chosen based on vertex number.
- We will denote these permutations as α_i for i ∈ {0...d}. (aka switch_i)

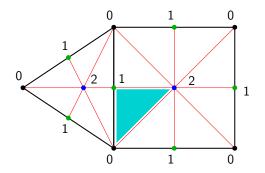


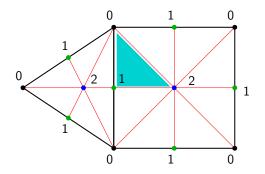
- Simplex Reflection. Remove a vertex, take the simplex on the other side.
- ► The reflection can be chosen based on vertex number.
- We will denote these permutations as α_i for i ∈ {0...d}. (aka switch_i)

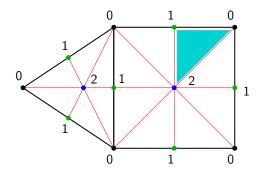


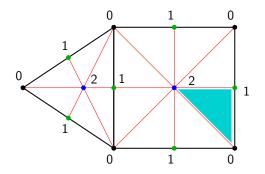
- Simplex Reflection. Remove a vertex, take the simplex on the other side.
- ► The reflection can be chosen based on vertex number.
- We will denote these permutations as α_i for i ∈ {0...d}. (aka switch_i)

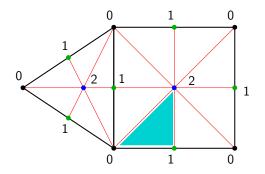


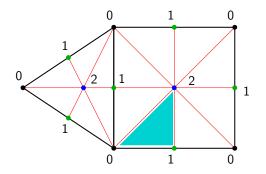








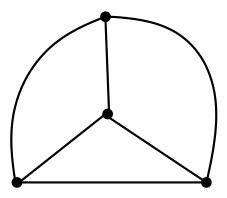




- Visit edges within a face? $\alpha_0 \alpha_1$
- Edges around a vertex? $\alpha_2\alpha_1$
- Faces around a face? $\alpha_2 \alpha_1 \alpha_0 \alpha_2$
- ► Lots more in 3+ dimensions . . .

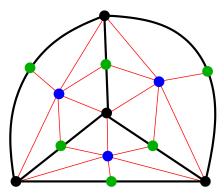
A Modern Viewpoint of Tutte

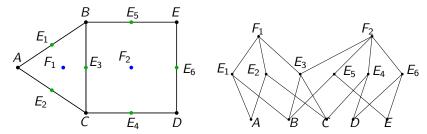
His group is just a group of reflections the Barycentric simplices



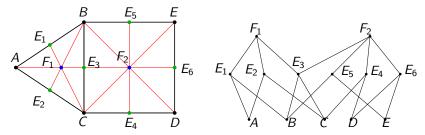
A Modern Viewpoint of Tutte

His group is just a group of reflections the Barycentric simplices

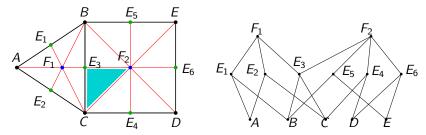




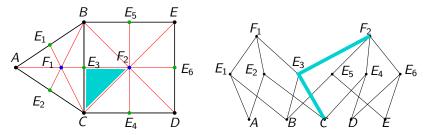
► The Incidence Graph (Incidence Poset)



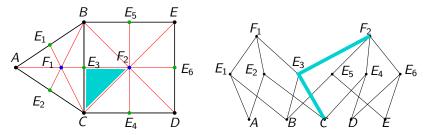
- ► The Incidence Graph (Incidence Poset)
- ► A Barycentric decomposition.



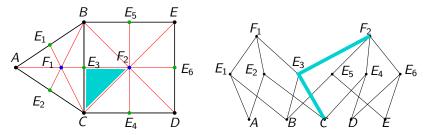
- ► The Incidence Graph (Incidence Poset)
- ► A Barycentric decomposition.
- ► A Barycentric Simplex S



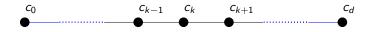
- ► The Incidence Graph (Incidence Poset)
- A Barycentric decomposition.
- A Barycentric Simplex S
- ► The labels on a *S* are a vertical **path** in the incidence graph.



- The Incidence Graph (Incidence Poset)
- A Barycentric decomposition.
- A Barycentric Simplex S
- ▶ The labels on a *S* are a vertical **path** in the incidence graph.
- **Cell-Tuple** given by $T = \langle C, E_3, F_2 \rangle$

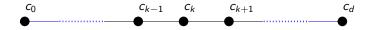


- The Incidence Graph (Incidence Poset)
- A Barycentric decomposition.
- A Barycentric Simplex S
- ► The labels on a *S* are a vertical **path** in the incidence graph.
- **Cell-Tuple** given by $T = \langle C, E_3, F_2 \rangle$
- Thm: Barycentric Simplices, Cell-Tuples, and Incidence Paths are all in a one-to-one correspondence.



• Suppose we have a tuple $T = \langle c_1, \ldots, c_d \rangle$

- Suppose we have a tuple $T = \langle c_1, \ldots, c_d \rangle$
- α_k only modifies the k^{th} entry in T (Simplex-Reflection).

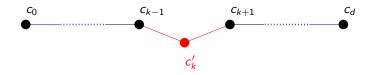


- Suppose we have a tuple $T = \langle c_1, \ldots, c_d \rangle$
- α_k only modifies the k^{th} entry in T (Simplex-Reflection).

$$\blacktriangleright \alpha_k[T] = \langle c_0, \ldots, c_{k-1}, c_k, c_{k+1}, \ldots, c_d \rangle$$

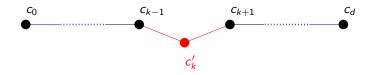
- Suppose we have a tuple $T = \langle c_1, \ldots, c_d \rangle$
- α_k only modifies the k^{th} entry in T (Simplex-Reflection).

$$\blacktriangleright \alpha_k[T] = \langle c_0, \ldots, c_{k-1}, *, c_{k+1}, \ldots, c_d \rangle$$



- Suppose we have a tuple $T = \langle c_1, \ldots, c_d \rangle$
- α_k only modifies the k^{th} entry in T (Simplex-Reflection).

$$\blacktriangleright \alpha_k[T] = \langle c_0, \ldots, c_{k-1}, c'_k, c_{k+1}, \ldots, c_d \rangle$$



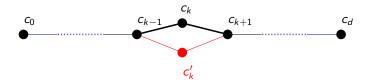
- Suppose we have a tuple $T = \langle c_1, \ldots, c_d \rangle$
- α_k only modifies the k^{th} entry in T (Simplex-Reflection).

$$\blacktriangleright \alpha_{k}[T] = \langle c_{0}, \ldots, c_{k-1}, \frac{c'_{k}}{c_{k+1}}, \ldots, c_{d} \rangle$$

Furthermore, α_k is well-defined on the local portion of the Cell-Tuple:

$$\alpha_{k}\Big[\langle c_{k-1}, c_{k}, c_{k+1}\rangle\Big] = \frac{c'_{k}}{c'_{k}}$$

Space savings using the switches α_k



One only stores all triples per switch.

We haven't yet formally characterized the cellular decomposition that is supposedly our input.

- We haven't yet formally characterized the cellular decomposition that is supposedly our input.
- ► [Bri93] proves all of these things for "Regular Manifolds"

- We haven't yet formally characterized the cellular decomposition that is supposedly our input.
- ▶ [Bri93] proves all of these things for "Regular Manifolds"
- Determining whether an input is a Regular Manifold is hard:

- We haven't yet formally characterized the cellular decomposition that is supposedly our input.
- ▶ [Bri93] proves all of these things for "Regular Manifolds"
- Determining whether an input is a Regular Manifold is hard:
 - *d*-Regular-Manifold reduces to (d 1)-Sphere-Recognition

- We haven't yet formally characterized the cellular decomposition that is supposedly our input.
- ▶ [Bri93] proves all of these things for "Regular Manifolds"
- Determining whether an input is a Regular Manifold is hard:
 - *d*-Regular-Manifold reduces to (d 1)-Sphere-Recognition
 - ► d ≤ 3: Easy Polynomial Time (Euler's Formula)
 - d = 4: In \mathcal{NP} , not known to be in \mathcal{P} .

- We haven't yet formally characterized the cellular decomposition that is supposedly our input.
- ▶ [Bri93] proves all of these things for "Regular Manifolds"
- Determining whether an input is a Regular Manifold is hard:
 - *d*-Regular-Manifold reduces to (d 1)-Sphere-Recognition
 - *d* ≤ 3: Easy Polynomial Time (Euler's Formula)
 - d = 4: In \mathcal{NP} , not known to be in \mathcal{P} .
 - ▶ *d* = 5: **Open**
 - $d \ge 6$: Undecidable [Markov 58]

- We haven't yet formally characterized the cellular decomposition that is supposedly our input.
- ► [Bri93] proves all of these things for "Regular Manifolds"
- Determining whether an input is a Regular Manifold is hard:
 - *d*-Regular-Manifold reduces to (d 1)-Sphere-Recognition
 - *d* ≤ 3: Easy Polynomial Time (Euler's Formula)
 - d = 4: In \mathcal{NP} , not known to be in \mathcal{P} .
 - ▶ *d* = 5: **Open**
 - $d \ge 6$: Undecidable [Markov 58]
- For decidable semantics either admit non-regular manifolds or reject some.

► So Far: Top-Down Approach

So Far: Top-Down Approach

Begin with a whole object (cellular decomposition)

► So Far: Top-Down Approach

- Begin with a whole object (cellular decomposition)
- Subdivide into primitives

So Far: Top-Down Approach

- Begin with a whole object (cellular decomposition)
- Subdivide into primitives
- Characterize 'nice' properties of the subdivision

So Far: Top-Down Approach

- Begin with a whole object (cellular decomposition)
- Subdivide into primitives
- Characterize 'nice' properties of the subdivision

 Problem: No guarantees because we can't recognize proper input.

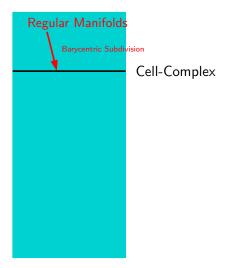
- So Far: Top-Down Approach
 - Begin with a whole object (cellular decomposition)
 - Subdivide into primitives
 - Characterize 'nice' properties of the subdivision
- Problem: No guarantees because we can't recognize proper input.
- Solution: Bottom-Up Approach

- So Far: Top-Down Approach
 - Begin with a whole object (cellular decomposition)
 - Subdivide into primitives
 - Characterize 'nice' properties of the subdivision
- Problem: No guarantees because we can't recognize proper input.
- Solution: Bottom-Up Approach
 - Begin with primitive pieces

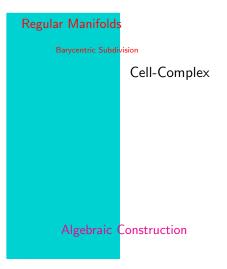
- So Far: Top-Down Approach
 - Begin with a whole object (cellular decomposition)
 - Subdivide into primitives
 - Characterize 'nice' properties of the subdivision
- Problem: No guarantees because we can't recognize proper input.
- **Solution:** Bottom-Up Approach
 - Begin with primitive pieces
 - Glue them together in ways that enforce nice properties

- So Far: Top-Down Approach
 - Begin with a whole object (cellular decomposition)
 - Subdivide into primitives
 - Characterize 'nice' properties of the subdivision
- Problem: No guarantees because we can't recognize proper input.
- **Solution:** Bottom-Up Approach
 - Begin with primitive pieces
 - Glue them together in ways that enforce nice properties
 - Characterize the class of cellular decompositions we can build.

Top-Down vs. Bottom-Up



Top-Down vs. Bottom-Up



Gary Miller Representing Topological Structures Using Cell-Chains

Recall: Permutation Group of a Set S

- ▶ Set of Permutation *G* of *S*.
- ▶ Closed: $\forall \alpha, \beta \in G, \alpha\beta \in G$
- ▶ Invertible: $\forall \alpha \in G$, $\exists \alpha^{-1} \in G$

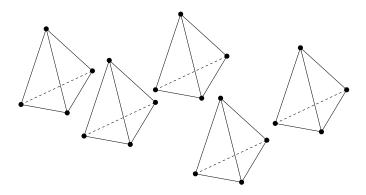
• Group G of Permuation operating on a Set S.

Bottom Up Approach

- ► Group *G* of Permuation operating on a Set *S*.
- G will be generated by $\langle \alpha_0, \ldots, \alpha_d \rangle$.

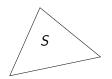
Bottom Up Approach

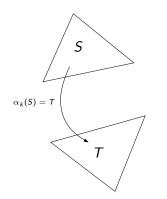
- Group G of Permuation operating on a Set S.
- G will be generated by $\langle \alpha_0, \ldots, \alpha_d \rangle$.
- ► *S* will be a set of numbered *d*-Simplices:



• α_k must be **Fixed-Point-Free**

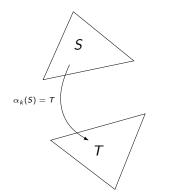
 $\alpha_k[s] \neq s$



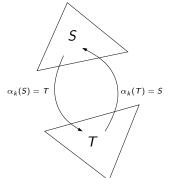


• α_k must be **Fixed-Point-Free**

 $\alpha_k[s] \neq s$

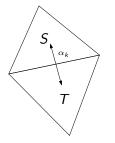


• α_k must be Fixed-Point-Free $\alpha_k[s] \neq s$ • α_k must be an Involution $\alpha_k^2 = id$



 α_k must be Fixed-Point-Free
 $\alpha_k[s] ≠ s$ α_k must be an Involution

$$\alpha_k^2 = id$$

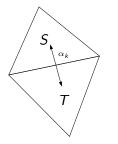


• α_k must be **Fixed-Point-Free**

 $\alpha_k[s] \neq s$

• α_k must be an **Involution**

$$\alpha_k^2 = id$$



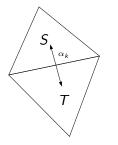
• α_k must be **Fixed-Point-Free**

 $\alpha_{\textit{k}}[\textit{s}] \neq \textit{s}$

• α_k must be an **Involution**

$$\alpha_k^2 = \mathit{id}$$

► A *d*-simplex has *d* + 1 sides, we have *d* + 1 gluing rules (*α*₀...*α*_d).



• α_k must be **Fixed-Point-Free**

 $\alpha_{\textit{k}}[\textit{s}] \neq \textit{s}$

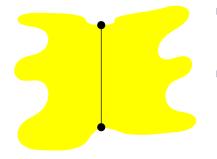
• α_k must be an **Involution**

$$\alpha_k^2 = \mathit{id}$$

- A *d*-simplex has *d* + 1 sides, we have *d* + 1 gluing rules (*α*₀ . . . *α*_{*d*}).
- These properties define a **Map**.

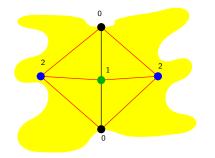
▶
$$\forall i, j \in 0 \dots d, j \ge i + 2$$

 $\alpha_i\alpha_j=\alpha_j\alpha_i$



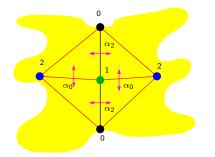
▶ $\forall i, j \in 0 \dots d, j \ge i + 2$

$$\alpha_i \alpha_j = \alpha_j \alpha_i$$



►
$$\forall i, j \in 0 \dots d, j \ge i + 2$$

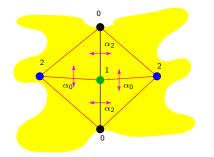
$$\alpha_i \alpha_j = \alpha_j \alpha_i$$



▶ $\forall i, j \in 0 \dots d, j \ge i + 2$

$$\alpha_i \alpha_j = \alpha_j \alpha_i$$

• e.g.
$$\alpha_0 \alpha_2 = \alpha_2 \alpha_0$$
.



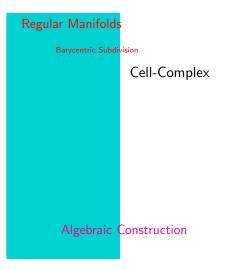
▶ $\forall i, j \in 0 \dots d, j \ge i + 2$

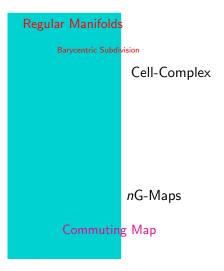
$$\alpha_i \alpha_j = \alpha_j \alpha_i$$

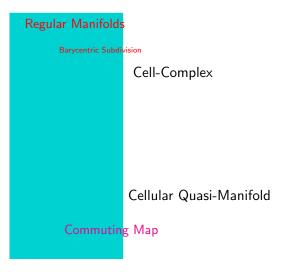
 Higher dimensional switches commute with lower dimensional switches.

• e.g.
$$\alpha_0 \alpha_2 = \alpha_2 \alpha_0$$
.

Also known as an nG-Maps [Lie94]



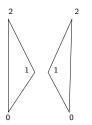




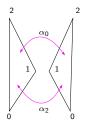
► *n*G-maps are often used in practice.

- ▶ *n*G-maps are often used in practice.
- Many lemmas can be proven at the level of commuting maps.

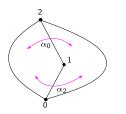
- ▶ *n*G-maps are often used in practice.
- Many lemmas can be proven at the level of commuting maps.
- A gap still exists: Barycentric Simplices, Incidence Paths, Cell-Tuples are not yet in correspondence



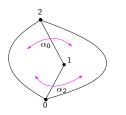
- ▶ *n*G-maps are often used in practice.
- Many lemmas can be proven at the level of commuting maps.
- A gap still exists: Barycentric Simplices, Incidence Paths, Cell-Tuples are not yet in correspondence



- ▶ *n*G-maps are often used in practice.
- Many lemmas can be proven at the level of commuting maps.
- A gap still exists: Barycentric Simplices, Incidence Paths, Cell-Tuples are not yet in correspondence



- ▶ *n*G-maps are often used in practice.
- Many lemmas can be proven at the level of commuting maps.
- A gap still exists: Barycentric Simplices, Incidence Paths, Cell-Tuples are not yet in correspondence



- ▶ *n*G-maps are often used in practice.
- Many lemmas can be proven at the level of commuting maps.
- A gap still exists: Barycentric Simplices, Incidence Paths, Cell-Tuples are not yet in correspondence
- We need more restrictions on the gluing rules.

Orthogonality Axiom

$$orall s \in S, \ k \in 1 \dots (d-1)$$

 $orall \ \alpha \in \langle lpha_0, \dots, lpha_{k-1}
angle, \ eta \in \langle lpha_{k+1}, \dots, lpha_d
angle,$
 $lpha eta(s) = s \longrightarrow lpha(s) = eta(s) = s$

Orthogonality Axiom

$$orall s \in S, \ k \in 1 \dots (d-1)$$

 $orall \ \alpha \in \langle \alpha_0, \dots, \alpha_{k-1} \rangle, \ \beta \in \langle \alpha_{k+1}, \dots, \alpha_d \rangle,$
 $lpha eta(s) = s \longrightarrow lpha(s) = eta(s) = s$

 Abstractly, higher and lower dimensional operators must not only commute, they must not interfere at all.

Orthogonality Axiom

$$orall s \in S, \ k \in 1 \dots (d-1)$$

 $orall \ \alpha \in \langle \alpha_0, \dots, \alpha_{k-1} \rangle, \ \beta \in \langle \alpha_{k+1}, \dots, \alpha_d \rangle,$
 $lpha eta(s) = s \longrightarrow lpha(s) = eta(s) = s$

- Abstractly, higher and lower dimensional operators must not only commute, they must not interfere at all.
- Captures the idea that α_k can only affect the k^{th} entry.

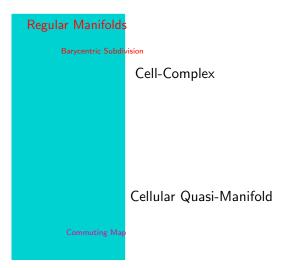
Orthogonality Axiom

$$orall s \in S, \ k \in 1 \dots (d-1)$$

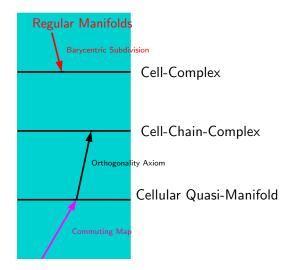
 $orall \ \alpha \in \langle \alpha_0, \dots, \alpha_{k-1} \rangle, \ \beta \in \langle \alpha_{k+1}, \dots, \alpha_d \rangle,$
 $lpha eta(s) = s \longrightarrow lpha(s) = eta(s) = s$

- Abstractly, higher and lower dimensional operators must not only commute, they must not interfere at all.
- Captures the idea that α_k can only affect the k^{th} entry.
- ► We call this a Cell-Chain-Complex.

Cell-Chain-Complex

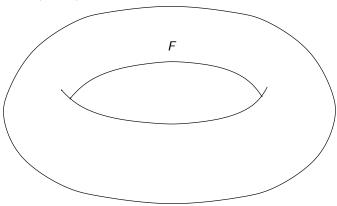


Cell-Chain-Complex

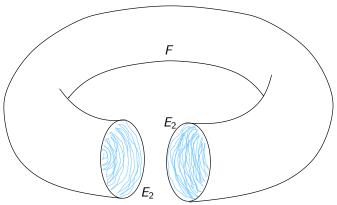


Rather than operate on paths in the incidence graph, allow for an incidence *multi*-graph.

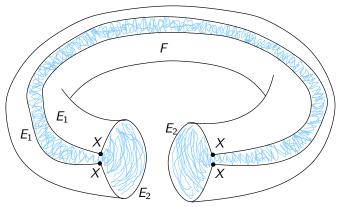
- Rather than operate on paths in the incidence graph, allow for an incidence *multi*-graph.
- ► Example (Torus):



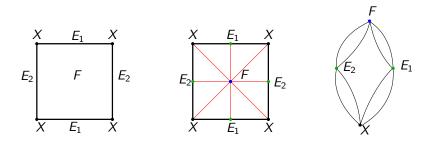
- Rather than operate on paths in the incidence graph, allow for an incidence *multi*-graph.
- ► Example (Torus):



- Rather than operate on paths in the incidence graph, allow for an incidence *multi*-graph.
- ► Example (Torus):

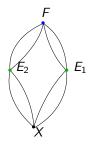


- Rather than operate on paths in the incidence graph, allow for an incidence *multi*-graph.
- ► Example (Torus):



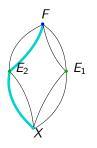
Edge Paths

► Incidence Edge-Path

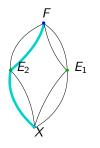


Edge Paths

► Incidence Edge-Path



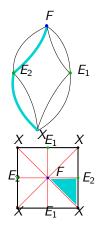
Edge Paths



- ► Incidence Edge-Path
- A Cell-Chain is a Cell-Tuple augmented with Edge Markers:

$$CC = \langle X, \mathbf{0}, E_2, \mathbf{1}, F \rangle$$

Edge Paths

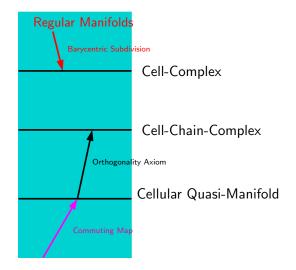


- Incidence Edge-Path
- A Cell-Chain is a Cell-Tuple augmented with Edge Markers:

 $CC = \langle X, \mathbf{0}, E_2, \mathbf{1}, F \rangle$

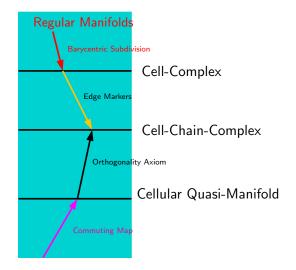
 Thm(CMP): In a Cell-Chain-Complex, Barycentric Simplices, Cell-Chains, and Incidence Edge-Paths are in one-to-one correspondence.

Bridging the Gap



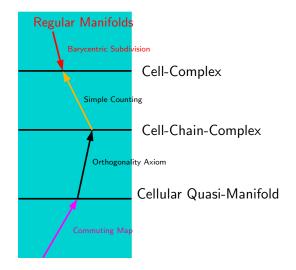
Gary Miller Representing Topological Structures Using Cell-Chains

Bridging the Gap



Gary Miller Representing Topological Structures Using Cell-Chains

Bridging the Gap



Gary Miller Representing Topological Structures Using Cell-Chains

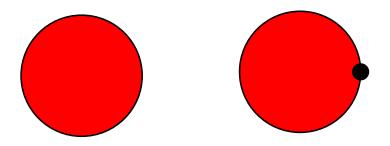
 The Barycentric Subdivision is a powerful tool for designing and understanding data structures.

- The Barycentric Subdivision is a powerful tool for designing and understanding data structures.
- A Cell-Complex presents an elegant all-purpose data structure for cellular decompositions.

- The Barycentric Subdivision is a powerful tool for designing and understanding data structures.
- A Cell-Complex presents an elegant all-purpose data structure for cellular decompositions.
- A Cell-Chain-Complex successfully bridges the gap between rigorous algebraic structures and well-designed data structures.

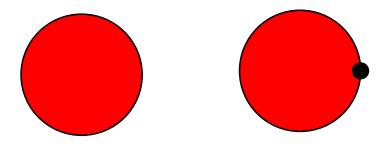
Question

• Can we have a precise semantics for more degenerate cells?



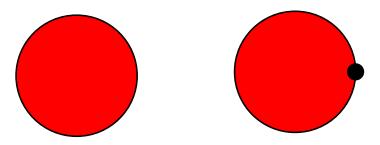
Question

- Can we have a precise semantics for more degenerate cells?
- ► In particular: A simple cycle has to include at least one point.



Question

- Can we have a precise semantics for more degenerate cells?
- ► In particular: A simple cycle has to include at least one point.
- ▶ Here we are modeling a 2D red blood cell.



Why a cycle should be point free.

The partial simulation of a 2D red blood red cell moving through a restriction. The boundary of the cell was given a simple closed loop containing one vertex. The vertex is on the right side of the image.