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Geometric Cells

A d-cell is a region homeomorphic to the open d-ball

B ={xeR: |x| <1}
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Geometric Cells

A d-cell is a region homeomorphic to the open d-ball

B ={xeR: |x| <1}

» O-cell

» 1-cells / /\
» 2-cells . ‘ A
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Geometric Cells

d-cell is a region homeomorphic to the open d-ball

B ={xeR: |x| <1}
Pinched 2-cell:
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What is a Cellular Decomposition?
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Basic ldea

» Represent a geometric domain decomposed into basic
building blocks.
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Our Data Structure

Well defined Semantics.
Easy to determine local structure of the Cell Complex.
Easy to test if the Complex is well formed.

Cells are first class objects.

vV v v.v Yy

Works in any fixed dimension.
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Our Data Structure

Well defined Semantics.

Easy to determine local structure of the Cell Complex.
Easy to test if the Complex is well formed.

Cells are first class objects.

Works in any fixed dimension.

vV v v vV VY

Space and Time efficient.
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Data Structures Galore

Data Structure Represents

Arcs [Edmonds60] 2D Surfaces

Crosses [Tutte73] 2D Unoriented Surfaces
Winged-Edge [Bau75] 3-d Polyhedra
Doubly-Linked Edge List [MP78] Planar Subdivisions
Quad-Edge [GS85] 2D Surfaces

Facet-Edge [DL87] Pseudo-Manifold Complexes
Radial-Edge [Wei88] Non-Manifold B-Reps
Cell-Tuple-Complex [Bri93] Regular Manifolds
nG-maps [Lie94] Cellular Quasi-Manifolds
Cell-Chain-Complex [CMP] Pseudo-Regular Manifolds
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Arcs [Edmonds60] 2D Surfaces

Crosses [Tutte73] 2D Unoriented Surfaces
Winged-Edge [Bau75] 3-d Polyhedra
Doubly-Linked Edge List [MP78] Planar Subdivisions
Quad-Edge [GS85] 2D Surfaces

Facet-Edge [DL87] Pseudo-Manifold Complexes
Radial-Edge [Wei88] Non-Manifold B-Reps
Cell-Tuple-Complex [Bri93] Regular Manifolds
nG-maps [Lie94] Cellular Quasi-Manifolds
Cell-Chain-Complex [CMP] Pseudo-Regular Manifolds

Combinatorial Data Structures
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Data Structures Galore

Data Structure Represents

Arcs [Edmonds60] 2D Surfaces

Crosses [Tutte73] 2D Unoriented Surfaces
Winged-Edge [Bau75] 3-d Polyhedra
Doubly-Linked Edge List [MP78] Planar Subdivisions
Quad-Edge [GS85] 2D Surfaces

Facet-Edge [DL87] Pseudo-Manifold Complexes
Radial-Edge [Wei88] Non-Manifold B-Reps
Cell-Tuple-Complex [Bri93] Regular Manifolds
nG-maps [Lie94] Cellular Quasi-Manifolds
Cell-Chain-Complex [CMP] Pseudo-Regular Manifolds

Group Theoretic
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1960 Edmonds': Graphs on Surface

» An abstract set A of arcs(two for each edge) and two
permutations ¢ and R of A:
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» An abstract set A of arcs(two for each edge) and two
permutations ¢ and R of A:

9)(8,10,11)(1 ,12 6)
7,8)(9, 10)(1 ,12)
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1960 Edmonds': Graphs on Surface

» An abstract set A of arcs(two for each edge) and two
permutations ¢ and R of A:

> eg: o= (27 3, 7)(47 5, 9)(87 10, 11)(17 12, 6)
R = (1,2)(3,4)(5.6)(7,8)(9, 10)(11,12)
» R? = id and fixed-point-free (fpf).
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Edmonds’ Graph on Surface

» ¢ traverses each face in CCW order
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Edmonds’ Graph on Surface

» ¢ traverses each face in CCW order

» R reverses each edge.

» The permutation ¢* = ¢R is the arcs with same tail in CW
order.

» Edges = orbits(R)
Faces = orbits(¢)

Vertices = orbits(¢™*)
Connected Components = orbits(< ¢, R >)
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Edmonds’ Graph on Surface

» ¢ traverses each face in CCW order
» R reverses each edge.
» The permutation ¢* = ¢R is the arcs with same tail in CW

order.

Edges = orbits(R)

Faces = orbits(¢)

Vertices = orbits(¢™*)

Connected Components = orbits(< ¢, R >)

v

v

This is an Implicit representation!
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Implicit Models

» There is only one basic class of objects.
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Implicit Models

» There is only one basic class of objects.

» Faces are represented implicitly in terms of operations on
these objects.
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Modern View of Edmonds’
Holistic View

» We add a point to the “middle of each face and connect each
face-vertex to vertices on the face.
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Modern View of Edmonds’
Holistic View

» We add a point to the “middle of each face and connect each
face-vertex to vertices on the face.

» The permutations now permute the new triangles.
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Tutte's Representation of Surfaces

» An abstract set S of crosses and three permutations P, 6 and
¢ of S satisfying:

> 02 =¢> =/ and ¢ = ¢0.

» X, 0X, X and 8¢X are all distinct for all crosses X.

> (PO)? = 1.

» The orbits of X and 8X under P are distinct for all crosses X.
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Tutte's Representation of Surfaces

» An abstract set S of crosses and three permutations P, 6 and
¢ of S satisfying:

> 02 =¢> =/ and ¢ = ¢0.

» X, 0X, X and 8¢X are all distinct for all crosses X.

> (PO)? = 1.

» The orbits of X and 8X under P are distinct for all crosses X.

» Modern View: Tutte had right group but wrong set of
generators.
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» Represent more than two-dimensional decompositions.

Gary Miller Representing Topological Structures Using Cell-Chains



Beyond 1960, 1970

Group Theoretic Approach is fine but:
Cells should be “first class”" objects.

Represent more than two-dimensional decompositions.

vV v v Yy

Rely on the same general principle; operators acting on very
primitive objects.
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The Cell-Complex Data Structure
[Bri93]
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Brisson: Barycentric Subdivisions

Creating a triangulation of the cell complex .

» Add a new vertex interior to each edge and face. Connect two
vertices if they are visible to each other.
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Brisson: Barycentric Subdivisions

Creating a triangulation of the cell complex .

» Add a new vertex interior to each edge and face. Connect two
vertices if they are visible to each other.

>
0 0
1 1
0 0

1
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Why Barycentric Subdivisions?

» The permutation will act on the simplices of the barycentric
subdivision.
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Why Barycentric Subdivisions?

» The permutation will act on the simplices of the barycentric
subdivision.

» Giving simple higher dimensional representations, Brisson.
>
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Numbered Simplices and Gluings

» A numbered d-simplex is a simplex whose vertices are
uniquely labeled with numbers between 0 and d.

2 2
A ,‘
[ J o—0
0 1 0 1

0 0 1
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Numbered Simplices and Gluings

» A numbered d-simplex is a simplex whose vertices are
uniquely labeled with numbers between 0 and d.

2 2
A ,‘
[ J o—0
0 1 0 1

0 0 1

» Observe: The simplices in the Barycentric are numbered.
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Numbered Simplicial Sets

» A numbered d-simplicial set is a collection numbered
d-simplices glued along (d — 1)-faces with compatible labels.
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Numbered Simplicial Sets

» A numbered d-simplicial set is a collection numbered
d-simplices glued along (d — 1)-faces with compatible labels.

>
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Numbered Simplicial Sets

» A numbered d-simplicial set is a collection numbered
d-simplices glued along (d — 1)-faces with compatible labels.

>

» The set of gluings with the same label/numbers can be
viewed as matching or permutation(involution).
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Moving Around

» Simplex Reflection. Remove a vertex, take the simplex on the
other side.
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» The reflection can be chosen based on vertex number.

» We will denote these permutations as «; for i € {0...d}.
(aka switch;)
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Moving Around

» Simplex Reflection. Remove a vertex, take the simplex on the
other side.

» The reflection can be chosen based on vertex number.

» We will denote these permutations as «; for i € {0...d}.
(aka switch;)

Gary Miller Representing Topological Structures Using Cell-Chains



Moving Around

» Visit edges within a face? agai
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Moving Around

» Visit edges within a face? agai
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Moving Around

» Visit edges within a face? agai
» Edges around a vertex? asag
» Faces around a face? asajapar

» Lots more in 3+ dimensions ...
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A Modern Viewpoint of Tutte

His group is just a group of reflections the Barycentric simplices
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A Modern Viewpoint of Tutte

His group is just a group of reflections the Barycentric simplices
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Incidence Graph and Cell-Tuples

B E E
E;

r i . B F2° Es
E;

C E, D

» The Incidence Graph (Incidence Poset)
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Incidence Graph and Cell-Tuples
B Es E

AR E;

C E, D

» The Incidence Graph (Incidence Poset)

» A Barycentric decomposition.
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Incidence Graph and Cell-Tuples

B E E
E;
E; |
C Es D

» The Incidence Graph (Incidence Poset)
» A Barycentric decomposition.

» A Barycentric Simplex S
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Incidence Graph and Cell-Tuples

B E E
E;
E; |

C Es D

» The Incidence Graph (Incidence Poset)
» A Barycentric decomposition.
» A Barycentric Simplex S

» The labels on a S are a vertical path in the incidence graph.
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Incidence Graph and Cell-Tuples
B Es E

E
AF

| E3 E,
E; |
C

Ey D

The Incidence Graph (Incidence Poset)

A Barycentric decomposition.

A Barycentric Simplex S

The labels on a S are a vertical path in the incidence graph.
Cell-Tuple given by T = (C, E3, F)

vV v.v. v .Yy
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Incidence Graph and Cell-Tuples

B E E
E F F>
AF\
F R Es EG E S E: 5 E, =
E; \
C E, D A B

The Incidence Graph (Incidence Poset)

A Barycentric decomposition.

A Barycentric Simplex S

The labels on a S are a vertical path in the incidence graph.
Cell-Tuple given by T = (C, E3, F)

Thm: Barycentric Simplices, Cell-Tuples, and Incidence Paths
are all in a one-to-one correspondence.

vV V. v v v .Y
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Operating on Cell-Tuples with ay

Co Ck—1 Ck Ck+1 Cd
@ @ o @ —— —@

» Suppose we have a tuple T = (c1,...,¢cq)
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Operating on Cell-Tuples with ay

Co Ck—1 Ck Ck+1 Cd

» Suppose we have a tuple T = (c1,...,¢cq)

» «y only modifies the k! entry in T (Simplex-Reflection).
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Operating on Cell-Tuples with ay

» Suppose we have a tuple T = (ci,...,¢cq)
» ay only modifies the k" entry in T (Simplex-Reflection).

> Oék[T]:<C0,...,Ck_1, ,Ck+1,...,Cd>
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Operating on Cell-Tuples with ay

» Suppose we have a tuple T = (ci,...,¢cq)
» ay only modifies the k" entry in T (Simplex-Reflection).

> ap[T] = (o, Ck—1s%, Ckt1s---,Cd)
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Operating on Cell-Tuples with ay

» Suppose we have a tuple T = (ci,...,¢cq)
» ay only modifies the k" entry in T (Simplex-Reflection).

> ak[T] = <C0,...,Ck_1,C;(,Ck+1,.. .,Cd>
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Operating on Cell-Tuples with ay

Co Ck—1 Ck+1 Cd
o T e
Ch

» Suppose we have a tuple T = (ci,...,¢cq)

» ay only modifies the k" entry in T (Simplex-Reflection).

> ak[T] = <C0, vy Ck—1, C;(, Chktly---> Cd>

» Furthermore, ay is well-defined on the local portion of the

Cell-Tuple:

ok | (Ch—1, k, Ckt1) | = i
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Space savings using the switches oy

Ck
(&) Ck—1 Ck+1 Cd

/
Ck

One only stores all triples per switch.
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For certain inputs ...

» We haven't yet formally characterized the cellular
decomposition that is supposedly our input.
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» [Bri93] proves all of these things for “Regular Manifolds”

» Determining whether an input is a Regular Manifold is hard:

» d-Regular-Manifold reduces to (d — 1)-Sphere-Recognition
» d < 3: Easy Polynomial Time (Euler’'s Formula)
» d =4: In NP, not known to be in P.
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For certain inputs ...

» We haven't yet formally characterized the cellular
decomposition that is supposedly our input.

» [Bri93] proves all of these things for “Regular Manifolds”
» Determining whether an input is a Regular Manifold is hard:

d-Regular-Manifold reduces to (d — 1)-Sphere-Recognition
d < 3: Easy Polynomial Time (Euler's Formula)

d =4: In NP, not known to be in P.

d =5: Open

d > 6: Undecidable [Markov 58]

\4
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For certain inputs ...

» We haven't yet formally characterized the cellular
decomposition that is supposedly our input.

» [Bri93] proves all of these things for “Regular Manifolds”
» Determining whether an input is a Regular Manifold is hard:

d-Regular-Manifold reduces to (d — 1)-Sphere-Recognition
d < 3: Easy Polynomial Time (Euler's Formula)

d =4: In NP, not known to be in P.

d =5: Open

d > 6: Undecidable [Markov 58]

» For decidable semantics either admit non-regular manifolds or
reject some.

\4

vV vyVvYyy
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How can we make it work?

» So Far: Top-Down Approach
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How can we make it work?
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» Begin with a whole object (cellular decomposition)
» Subdivide into primitives
» Characterize 'nice’ properties of the subdivision
» Problem: No guarantees because we can’t recognize proper
input.

Gary Miller Representing Topological Structures Using Cell-Chains



How can we make it work?

» So Far: Top-Down Approach
» Begin with a whole object (cellular decomposition)
» Subdivide into primitives
» Characterize 'nice’ properties of the subdivision
» Problem: No guarantees because we can’t recognize proper
input.
» Solution: Bottom-Up Approach

Gary Miller Representing Topological Structures Using Cell-Chains



How can we make it work?

» So Far: Top-Down Approach
» Begin with a whole object (cellular decomposition)
» Subdivide into primitives
» Characterize 'nice’ properties of the subdivision
» Problem: No guarantees because we can’t recognize proper
input.
» Solution: Bottom-Up Approach
» Begin with primitive pieces
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How can we make it work?

» So Far: Top-Down Approach
» Begin with a whole object (cellular decomposition)
» Subdivide into primitives
» Characterize 'nice’ properties of the subdivision
» Problem: No guarantees because we can’t recognize proper
input.
» Solution: Bottom-Up Approach
» Begin with primitive pieces
» Glue them together in ways that enforce nice properties
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How can we make it work?

» So Far: Top-Down Approach
» Begin with a whole object (cellular decomposition)
» Subdivide into primitives
» Characterize 'nice’ properties of the subdivision
» Problem: No guarantees because we can’t recognize proper
input.
» Solution: Bottom-Up Approach
» Begin with primitive pieces
» Glue them together in ways that enforce nice properties
» Characterize the class of cellular decompositions we can build.
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Top-Down vs. Bottom-Up

ision

Cell-Complex




Top-Down vs. Bottom-Up

ision

Cell-Complex

onstruction




Recall: Permutation Group of a Set S

» Set of Permutation G of S.
» Closed: Vo, B € G, af € G
» Invertible: Vae G, 3aleG
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Bottom Up Approach

» Group G of Permuation operating on a Set S.
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Bottom Up Approach

» Group G of Permuation operating on a Set S.

» G will be generated by (ap, ..., aq).
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Bottom Up Approach

» Group G of Permuation operating on a Set S.
» G will be generated by (ao, ..., aq).

» S will be a set of numbered d-Simplices:
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Basic Gluing Rules

» oy must be Fixed-Point-Free

akls] #s
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Basic Gluing Rules

» oy must be Fixed-Point-Free

akls] #s

ap(S)=T
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Basic Gluing Rules

» oy must be Fixed-Point-Free

akls] #s
» oy must be an Involution
ap(S)=T

o2 = id
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Basic Gluing Rules

» oy must be Fixed-Point-Free

akls] #s
» oy must be an Involution
ap(S)=T a(T) =S5

o2 = id
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Basic Gluing Rules

» oy must be Fixed-Point-Free

akls] #s
» oy must be an Involution

o2 = id
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Basic Gluing Rules

» oy must be Fixed-Point-Free
akls] #s

» oy must be an Involution
a3 = id

» A d-simplex has d + 1 sides, we have
d + 1 gluing rules (g . . . ag).
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Basic Gluing Rules

» oy must be Fixed-Point-Free
akls] #s

» oy must be an Involution
a3 = id

» A d-simplex has d + 1 sides, we have
d + 1 gluing rules (g . . . ag).
» These properties define a Map.
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A Commuting Map

>V ijE0...d j>i+2

Ck,'Oéj = ijOé,‘

» Higher dimensional switches
commute with lower dimensional
switches.
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A Commuting Map
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A Commuting Map

0 > Vi j€0...d j>i+2

Ct,'Oéj = ijOé,‘

commute with lower dimensional
switches.

2
{} » Higher dimensional switches
0

> e.g. ol = Q.
» Also known as an nG-Maps [Lie94]
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Commuting Maps (nG-Maps)

» nG-maps are often used in practice.

2 » Many lemmas can be proven at the
level of commuting maps.

» A gap still exists: Barycentric
Simplices, Incidence Paths, Cell-Tuples
are not yet in correspondence

0 » We need more restrictions on the
gluing rules.
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» Orthogonality Axiom
VseS kel...(d-1)
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Orthogonality Axiom [CMP]

» Orthogonality Axiom
VseS kel...(d-1)

Vaée <Ozo,...,04k,1>, CRS <Oék+1,... ,ad>,
af(s) =s — afs) = B(s) = s
» Abstractly, higher and lower dimensional operators must not
only commute, they must not interfere at all.
» Captures the idea that ay can only affect the k" entry.

» We call this a Cell-Chain-Complex.
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Back to Data Structures

» Rather than operate on paths in the incidence graph, allow for
an incidence multi-graph.

» Example (Torus):

F
X E; X X E X
E
Bl F & E Folg
X E X X E X
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Edge Paths

» Incidence Edge-Path
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» Incidence Edge-Path
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Edge Paths

» Incidence Edge-Path

F » A Cell-Chain is a Cell-Tuple augmented
with Edge Markers:

E; CC =(X,0,E,1,F)

Gary Miller Representing Topological Structures Using Cell-Chains



Edge Paths

F
E2 E1
X XE X
E E,

» Incidence Edge-Path

» A Cell-Chain is a Cell-Tuple augmented
with Edge Markers:

CC=(X,0,E,1,F)

» Thm(CMP): In a Cell-Chain-Complex,
Barycentric Simplices, Cell-Chains, and
Incidence Edge-Paths are in one-to-one
correspondence.
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Conclusions / Summary

» The Barycentric Subdivision is a powerful tool for designing
and understanding data structures.

» A Cell-Complex presents an elegant all-purpose data structure
for cellular decompositions.

» A Cell-Chain-Complex successfully bridges the gap between
rigorous algebraic structures and well-designed data structures.
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Question

» Can we have a precise semantics for more degenerate cells?
» In particular: A simple cycle has to include at least one point.

» Here we are modeling a 2D red blood cell.
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Why a cycle should be point free.

The partial simulation of a 2D red blood red cell moving through a
restriction. The boundary of the cell was given a simple closed loop
containing one vertex. The vertex is on the right side of the image.
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