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Given a subspace X G Rd and a jinite set S G Rd, we in-
troduce the Delaunay simplicial complex, DX, restricted
by X. Its simplices are spanned by subsets T ~ S for
which the common intersection of Voronoi cells meets X
in a non-empty set. By the nerve theorem, ~Dx and X
are homotopy equivalent if all such sets are contractible.
This paper shows that ~ DX and X are homomorphic
if the sets can be further subdivided in a certain way so
they form a regular CW complex.

1 Int roduct ion

This paper studies the problem of constructing simpli-
cial complexes that represent or approximate a geomet-
ric object in some finite-dimensional Euclidean space,
Rd. We refer to the geometric object as a topological
space or subspace of Rd. This problem arises in geo-
metric modeling and finite element analysis, and it is
a special case of the grid generation problem [21]. It
is special because we only consider grids or complexes
made up of simplices. The problem can be divided into
two questions:

How do we choose the points or vertices of the
grid?

How do we connect the vertices using edges,
triangles, and higher-dimensional simplices?
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In this paper we concentrate on the second question.
In particular, given a subspace and a finite point set in
f?d, we give an unambiguous rule for constructing a sim-
plicial complex representing the subspace. Topological
properties of this simplicial complex, such as whether
its domain is homotopy equivalent or homomorphic to
the subspace, can be studied based on local interactions
between the subspace and the Voronoi neighborhoods
of the points. This leads us back to the first questio,n:
additional points can be chosen so they improve the
local interaction patterns. How this can be done in a
concrete, possibly three-dimensional setting ought to be
the subject of future investigations.

Simplicial complexes and triangulations. An
affinely independent point set T ~ Rd defines the sim-
plex VT = conv T. Its dimension is k =: dim UT =
card T – 1, and it is also referred to as a k-simplex. The
points of T are the vertices of UT. A simplicia[ com-
plex, K, is a finite collection of simplices that satisfies
the following two properties: if CT1’G K and U ~ T
then urJ C ~, and if UT, uv E ~ then cl’ n (7v = UTnV.
The first property implies 0 G K, and the first and
second properties combined imply OT n crv 6 K. The
vertex set of K is vert K = lJoTcx T, the dimension
is dim K = maxOEK dim U, and the underlying space is
UK= U06K u. A subcompiex of K is a simplicial com-
plex L ~ K.

A particular simplicial complex defined by a non-
degenerate finite set S g F!d is the Delaunay simplicial
comp~ez, D = DS [6]. It consists of all simplices ~Z’,
T G S, for which there exists an open bidl, B, with
S n cIB = T and S rl B = 0. Given S, 12 is unique,
dimZl = min{cl, card S – 1}, and UD = conv S. In
computational geometry, ‘D is usually referred to as the
Delaunay ‘triangulation’ of S [7, 18]. To avoid confu-
sion with the topology notion of a trianguli~tion, which
is adopted in this paper, we choose to call D a simpli-
cial complex. Following the tradition in cclmbinatorial
topology, a triangulation of a topological space X is a
simplicial complex X together with a homomorphism
between X and UK [17, 19]. If there exists a simplicial
complex X such that IJ K is homomorphic to X, then
X is triangulable.
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Outline. Our approach to constructing a simplicial
complex that represents a topological space X ~ Ii!d is
based on a finite set S ~ Rd and the Delaunay simplicial
complex of this set, ‘D = D,s. Section 2 introduces the
concept of a Delaunay simplicial complex Dx restricted
by X, which is a subcomplex of D. This concept is a
common generalization of ideas developed by Martinetz
and Schulten [15], Chew [4], and Edelsbrunner [8]. DX

is defined for every X G F!d and every non-degenerate
finite S ~ Rd. If S satisfies the assumptions of the
nerve theorem, see section 2, then U Dx and X are ho-
motopy equivalent. Section 3 presents some topological
concepts and discusses the meaning of non-degeneracy
in detail. Sections 4 and 5 study conditions on S that
guarantee U Ox be homomorphic to X. An explicit
construction of a homeomorphism is also given. Sec-
tion 6 mentions directions for further research.

2 Restricted Delaunay Simpli-
cial Complexes

Coverings and nerves. Let X ~ Rd be a topological
space and S ~ Rd a finite point set. We assume non-
degenerate position of the points in S, which generically
means that anything vanishing under a slight perturba-
tion of the points is precluded. For example, we require
that T G S be affinely independent if card T < d + 1,
and that no d + 2 points of S be cospherical. Further
particulars of this assumption will be discussed in sec-
tion 3. The Voronoi cell of p G S is

where Iyz I denotes the Euclidean dist ante between
points y, z G F?d. The collection of Voronoi cells is
V = V,S= {VP I p E S} [22]. The Voronoi cell restricted
to x of p ~ S is VP,X = X n VP, and the collection of
restricted Voronoi cells is VX = VS,X = {VP,X I p c S}.
For a subset T ~ S we have corresponding subsets VT =
{VPlp CT}q Vand V~,x={L,xlp ET} GVX.
We will consider their common intersections, n VT and
nVT,x=XnfiVT.
A coveting of X is a collection C of subsets of X so

that X = UC. It is a closed (open) covering if each
set in C is closed (open), and it is a finite covering if
C is finite. For a subset D ~ C consider the common
intersection, fl D. The nerve of a finite covering C is

nerve C = {D CCln D#O}.

We remark that the nerve can be defined for a finite
covering of any abstract set, not just for subsets of Rd.
A geometric realization of nerve C is a simplicial com-
plex, K, together with a bijection ,L3between C and the

vertex set of K, so that D e nerve C iff the simplex
spanned by /3(D) is in K.
Observe that the collection of Voronoi cells restricted

to X, Vx, is a finite closed covering of X. The Delaunay
samplicial complex restricted by X, Dx = Ds,x, is the
geometric realization of nerve Vx defined by ~(VP) = p,
for all p E S. That is, 9X = {C7T I T ~ S, f’)V~,x #
0}. Note that DX is a subcomplex of the Delaunay
simplicial complex ~ = v~d of S. See figure 2.1 for an
example. The nerve theorem of combinatorial topology

(a) (b)

Figure 2.1: (a) The Voronoi cells of ten points decompose
three spaces, Xl, X2, and X3. (b) The three correspond-
ing Delaunay simplicial complexes consist of an edge, a
cycle of three edges, and two triangles sharing an edge,
respectively.

[2, 13, 23] sheds some light on the relationship between
X, Vx, and Dx. See section 3 for a formal definition of
homotopy equivalence and contractibility.

THEOREM (nerve). Let C be a finite closed covering
of a triangulable space X ~ F!d so that for every
D ~ C, n D is either empty or contractible. Let K
be a geometric realization of nerve C. Then X and
UK are homotopy equivalent.

In particular, if n D is empty or contractible for every
D ~ Vx then X and U Dx are homotopy equivalent.
Related earlier work. Martinetz and Schulten [15]
study neural nets modeling a topological space X. In ge-
ometric language, a neural net consists of finitely many
points and edges between them. The algorithm in [15]
constructs the net by choosing a finite set S ~ X and se-
lecting edges based on points sampled from X found in
Voronoi cells associated with point pairs. A cell is asso-
ciated with every pair {p, q} ~ S for which VPn Vq # 0,
see [7, 18]. This cell can be interpreted as a “thick-
ened” version of the face common to VP and Vf, and
a point of X sampled in this cell is taken as evidence
that X n VP n Vq # 0. Martinetz and Schulten call the
resulting net the induced Delaunay triangulation of S
and X; in the limit it is the same as the edge-skeleton
of Dx .
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Chew [4] introduces a method for constructing a sim-
plicial complex approximating a (two-dimensional) sur-
face in f?3. Let X be such a surface and S ~ X a finite
point set. Three points p, q, r c S span a triangle in
the approximating complex if they lie on the bound-
ary of an open ball B G R3 with center in X so that
S (1 B = 0. Assuming non-degeneracy, such a ball B
exists iff X n VPn Vq n V. # 0. Chew’s method can thus
be seen as a special case of our definition of restricted
Delaunay simplicial complexes.
Finally, Edelsbrunner [8] defines the dual complex of

a union of balls in Rd. Consider the case where all balls
are equally large. Let S ~ Rd be a finite point set, and
define X = {z G F!d I minPes [*PI s p}, for some fixed
positive p E R. The Voronoi cells of S decompose X into
c!osed convex regions, and the dual complex is defined
as the nerve of these regions, geometrically realized by
the map p(VP,x) = P, for all p E S. We see that it
is the same as the Delaunay simplicial complex, Dx,
restricted by X. The common intersection of any subset
of these regions is convex and therefore contractible, so
the nerve theorem implies that the underlying space of
the dual complex is homotopy equivalent to X,

3 Some Topological Concepts

Neighborhoods, homot opies, homeomorphisms,
and manifolds. An open ball in lRd is a set B =
B(z, p) = {Y c Rd \ Iyzl < p} for some point z G R~
and some positive p c R; x is the center and p the ra-
dius of B. For Y ~ X, a neighborhood of Y in X is an
open subset of X that contains Y.
Let X and Y be two topological spaces. Two maps

f, g : X - Y are homotopic if there is a continuous map
h : Xx[O, 1] ~ Y with h(z, O) = f(x) and h(z, 1) = g(z)
for all z 6 X. The two spaces, X and %’, are homotopy
equivalent if there are continuous maps f : X ~ Y and
~ : Y d X so that g o f is homotopic to the identity
map in X and f o g is homotopic to the identity map
in Y. X is contractible if it is homotopy equivalent to a
point.
Topological spaces X and Y are homomorphic, writ-

ten X w Y, if there is a bijective map p : X d Y so that
p and p-l are continuous. p is a homomorphism be-
tween X and Y, and X and Y are homeomorphs of each
other. Homeomorphs of open, half-open, and closed
balls of various dimensions play an important role in
the forthcoming discussions. For k ~ O, let o be the
origin of Rk and define

I-lk = {z= ((l,..., <k) E @ I (k 2 0},
@ = {z E 5!~ I Izol < 1}, and

Sk-1 = {z G R’ I Icol = 1}.

For convenience, we define Rk = I-lk = Elk = Sk = 0 if
k <0. An open k-ball is a homeomorph c~fRk, a half-
open k-ball is a homeomorph of Hk, a closed k-ball is
a homeomorph of Bk, and a (k – 1)-sphere is a homeo-
morph of Sk-1, For k > 1 these are disjoint classes of
spaces, that is, open ba~s, half-open balls, closed balls,
and spheres are pairwise non-homeomorphic. This is
not true for k = O: open, half-open, and closed O-balls
are points, and a O-sphere is a pair of points.
Our first theorem is about topological spaces that are

manifolds, with or without boundary. X ~ Rd is a k-
manifold without boundary if each x E X has an open
k-ball as a neighborhood i’n X. X ~ Rd is a k-manifold
with boundary if each x E X has an open or half-open
k-ball as a neighborhood in X, and there is at least one
x c X that has no open k-ball aa a neighborhood. The
set of points without open k-ball neighborhood forms
the boundary, bd X, of X. Note that the boundary of a
half-open k-ball is an open (k – 1)-ball, which is there-
fore without boundary. From this it follows that the
boundary of a k-manifold with boundary is a (k – l)-
manifold without boundary. The interior of a manifold
X is int X = X – bd X; it is the set of points with open
k-ball neighborhoods. Note that our definition distin-
guishes between manifolds with and without boundary,
which is somewhat non-standard as the set of manifolds
without boundary is usually considered a subset of the
set of manifolds with boundary. A manifold X is com-
pact if every open covering of X has a finite sub covering,
or equivalently, if it is closed and bounded. A manifold
Y G X is a submanifold of X.
Non-degeneracy. In section 4, we are interested in
the intersection between manifolds and afline flats. An
l-manifold F ~ Rd is an Y-flat if it is the affine hull of
/+1 points, or equivalently, it is the intersection of d–l
hyperplanes, or linear functional. Let X ~ U3dbe an
m-manifold. Intuitively, a point z c I?d has d degrees of
freedom, and it looses d – m of them if it is constrained
to lie in X. Similarly, z looses d – / degrees if it is
constrained to lie in F. So if x ~ X n F then z should
have lost 2d – m – 1 degrees of freedom. Hence, X n F
should beempty ifd–(2d–m–1) =rn+l–d <O. In
general, we expect x to have m+l – d degrees of freedom
and XnF to be an (m+l–d)-manifold. Algorithmically,
such a non-degeneracy assumption can be simulated by
conceptual perturbation techniques, see e.g. [9, 24].
This intuitive argument can be formalized for smooth

or piecewise smooth manifolds. We need some def-
initions from differential topology. For an open set
X ~ Rm, a map f : X ~ R“ is smooth if it has contin-
uous partial derivatives of all orders and at all points
of X. For arbitrary X ~ FW, f is smooth if for all
x c X there exists an open ball B = B(z, e) ~ Rm and
a smooth map g : B + R’ so that g equals f on X(1 B.
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Topological spaces X ~ f?m and Y s R“ are diffeomor-
phic if there exists a homeomorphism p : X ~ Y so
that p and p-l are smooth. An m-manifold X with
or without boundary is smooth if each x c X haa a
neighborhood diffeomorphic to Rk or Hk.
Now, let X be a smooth m-manifold, and let j : X +

R be a smooth map. Then y 6 R is a regular value off
if for every c c ~-1(y) some partial derivative of ~ at z
is non-zero; otherwise, y is a critical value off. By the
preimage theorem in differential topology, the preimage
of any regular value is a smooth submanifold of X with
dimension m – 1, and by Sard’s theorem, the set of crit-
ical values haa measure Oin f?, see e.g. [10, 11]. This im-
plies that with probability y 1, the intersection between a
smooth m-manifold X and a hyperplane with prescribed
normal direction is a smooth (m – 1)-manifold. Hence,
with probability 1, the intersection between X and an
/-flat F with prescribed normal (d – 1)-flat is a smooth
(m+ /– d)-manifold. By non-degenerate position of F
we mean that this is indeed the case, and it is reason-
able to assume non-degenerate position because F just
needs to avoid a measure zero set in Rd-~.
One of the conditions necessary for our results is

the non-degeneracy of the intersection between Voronoi
cells and the manifold. We thus extend the above no-
tions to Voronoi cells and their intersections. An in-
tersection of Voronoi cells is the common intersection
of finitely many closed half-spaces, and thus a convex
polyhedron. Let P be a convex polyhedron and let X be
a manifold without boundary. We say that P intersects
X generically if X n P = 0 or X n P has the right dimen-
sion and X n int P = int (X n P). If X is a manifold with
boundary, then P intersects X generically if P intersects
int X and bd X generically. By non-degenerate position
of P we mean that P intersects X generically. Again,
this is a reasonable assumption to make.

4 Triangular ing Compact Mani-
folds

We are now ready to state conditions under which the
restricted Delaunay simplicial complex is a triangula-
tion of X. These conditions will be applied only when
X is a compact manifold. To avoid any confusion, we
note that our results do not settle the open question
whether or not all compact manifolds are triangulable.
The closed ball property. Throughout this section
we assume non-degenerate position of flats and discrete
point sets. Let m > 0 and let X ~ ‘Rd be a compact
m-manifold with or without boundary. Let S ~ IId
be a finite point set. WJesay that S has the generic
intersection property for X if for every subset T ~ S,
(1 VT intersects X generically. We say that S has the

closed ball property for X if for every 1 s m and every
subset T ~ S with card T = m + 1 —.4, the following
two conditions hold:

(Bl) (1 V~,x is either empty or a closed l-ball, and

(B2) (l VT,MX is either empty or a closed (1 - 1)-ball.

In section 3, we argued that it is reasonable to ex-
pect X n (1 VT be an .&manifold, if X is a smooth m-
manifold. This is reflected in condition (B 1). A similar
non-degenerate position assumption is implied by (B2)
for the boundary of X. We will see that the closed ball
property guarantees that dimension is preserved. As an
example consider X1 and Dxl in figure 2.1. Condition
(B2) is violated by the common edge of the two Voronoi
cells intersecting X1. Indeed, U 22X~ # X1 because the
dimension of X1 is two and that of U Dxl is one.
Two technical lemmas. Before proving the firts the-
orem we establish two facts about the closed ball prop-
erty. The first says that the closed bail property pre-
serves dimension locally, and the second is a statement
about the way Voronoi cells intersect a compact mani-
fold and its boundary. We work with arbitrary, that is,
possibly non-smooth m-manifolds since we do not need
any smoothness properties for our proofs. A simplex
uT E Dx is a principal simplex if there is no proper su-
perset U o T with au E Dx. The first fact is formalized
in the following lemma.

LEMMA 4.1 (preservation of dimension). Let m ~ 1, let
X ~ I?d be a compact m-manifold with or without
boundary, and let S c F!d be a non-degenerate fi-
nite set of points that has the generic intersection
property for X. If S has the closed ball property
for X then every principal simplex of Dx is an m-
simplex.

PROOF. Let CT c 9X be a principal simplex, and define
F’ = fiV~ and F = (l VT,X. By condition (Bl), F =
X n F’ is a closed t-ball, with 1 = m+ 1– card T. Since
CT E Dx, we have F # 0, which implies 1 ~ O and
therefore card T ~ m+l. If card T = m+l then ~T is an
m-simplex and we are done. So suppose card T < m+ 1.
Since (72’ is a principal simplex, it follows that F ~
int F’, for otherwise there is a proper face G’ = (l Vu
of F’, so T c U, with X n G’ # 0. If foHows that
au G 29X, which contradicts the principality of uT.
Finally, we show that F ~ int F’ also leads to a con-

tradiction. As mentioned above, F is a closed t-ball
and hence bd F is an (.?– 1)-sphere. This (t – 1)-sphere
is cent ained in int F), so it must lie in bd X. Indeed,
bd F = bd X n F’. This contradicts condition (B2),
which requires bd X n F’ be a closed (1 – 1)-ball. ❑

For the next lemma we need a classic result on sub-
divisions of a certain type of complex. A closed ball is



called a cell, or a k-cell if its dimension is k. A finite
collection of non-empty cells, X?, is a regular CW com-
piez if the cells have pairwise disjoint interiors, and the
boundary of each cell is the union of other cells in ??.
A subset of 73 is a chain if its elements can be ordered
so that each contains its predecessors and is contained
in its successors. Let CR be the set of chains in 7? and
note that nerve Cn is well defined. The result men-
tioned is that any geometric realization of nerve Cz is
homomorphic to U 7?. It can be found in [5, chapter
V] and [14, chapter III] and also in [3] where it is ap-
plied to manifolds subdivided by the cells of a regular
CW complex. Another classic result needed is the weak
Schonflies theorem, see e.g. [20, chapter 3], which im-
plies that if A is a piecewise linear k-sphere and B C A
is a piecewise linear closed k-ball then A – int B is also
a closed k-ball.

LEMMA 4.2 (complimentary closed ball property). Let
m, X, and S be as in lemma 4.1. Let T ~ S be so
that G = (_)VT,bdx # 0, and define F = (1 VT,X
and 1 = m – card T. If S has the closed ball prop-
erty for X then bd F – int G is a closed l-ball.

PROOF. By condition (B2), F is a closed (1+ 1)-ball,
and thus an (1+ I )-manifold with boundary. Let 7? con-
sist of all sets (1 VU,X and n vu,bd x over all U ~ S with
T ~ U. Assuming S has the closed ball property for X,
these sets are cells, so ‘R is a regular CW complex and
F = U%?. Let K be a geometric realization of nerve CR
and let v : F ~ U K be a homeomorphism; it exists be-
cause of the homomorphism result mentioned above.
Note that p(bd F) = bd U K is the underlying space of
a subcomplex of K, and similarly, P(G) = U L for a
sub complex L ~ X. By construction, bd U K is a piece-
wise linear t-sphere and U 1 c bd U K is a piecewise
linear closed l-ball. The weak Schonflies theorem im-
plies that bd U K –int U 1 is a closed l-ball. Since q is a
homeomorphism, p-l(bd U K – int U X) = bd F – int G
is also a closed l-ball, as claimed. ❑

Theorem for manifolds. We need a few additional
definitions. The barycentric coordinates of a point
z with respect to a simplex UT, T = {VO, ..., v~},
are real numbers Co,. . ., Ck so that ~~=o (~ = 1 and
X~eO &vi z X; they are unique and non-negative if
z E ~T. Let K and C be two simplicial complexes, and
let $: vert K ~ vert Z take the vertices of any simplex
in K to the vertices of a simplex in L. The simpbcial
map implied by ~ is g : U K ~ U L, which maps a point
zEaT, T={~o, ..., ~~}, to 9(Z) = Z~=o &i~(vi). We
will use the fact that if f is a bijection then g is ~ homo-
morphism. The barycenter of CT is bz’ = Dino &,
and the barycentric subdivision of K is

sdK={conv{bT IT EC} ICGCK}.

Figure 4.1 (c) shows the barycentric subdivision of the
simplicial complex in 4.1 (b). Note that sd K can be

(a) (b) (c) (d)

Figure 4.1: (a) The space X is a closed 2-ball in the form
of a boomerang. It is covered by the restricted Voronoi
cells of six points, which define a regular CVV complex 7?
with (JR = X. (b) The Delaunay simplicial complex, ‘Dx,
consists of four triangles connecting six points. (c) The
barycentric subdivision, sd Px, has the same underlying
space as ‘DX. (d) A geometric realization of nerve CZ
consists of a simplicially homomorphic copy of sd~x (not
shaded), surrounded by a collar of triangles (shaded).

constructed inductively by connecting b~ to all sim-
plices subdividing the proper faces of al’. The star of
avertex vGXisstv={u6Klv Ca}.
We will use these tools to show our first result stated

in theorem 4.3 below. The proof constructs a homo-
morphism between X and U Dx one step at a time.
In this process, the pasting lemma of point set topol-
ogy [16, 19] is employed. It can be stated as follows.
Ift:A-Yandg: B a Y are cent inuous maps
that agree on A fl B and A, 1? are closed in A U B, then
h : A U B - Y, which agrees with f on A and with g
on B is continuous.

THEOREM 4.3 Let X ~ F!d be a compact manifold,
with or without boundary, and let S z Rd be a
non-degenerate finite point set that has the generic
intersection property for X. If S has the closed ball
property for X then U Dx m X.

PROOF. For each i, define Vi = {(l VT,X I card T =
m + 1 – i} and note that because of the closed ball
property all elements in Vi are closed i-balls. We in-
ductively construct simplicial complexes Ki and homo-
morphisms qi : U Vi ~ U K~, so that K~- 1 c & and
pi agrees with pi_ 1 on U Vi-1. When we arrive at
K = Km and P = pm we show there is a simplicial
homeomorphism between K and sd ‘Dx. The result fol-
lows because X=UV~ =UK %UsdDx =(JDx.
To start the induction, let each T C S correspond

to a point WT in R’. Let e be large enough and
choose the points in F!e so that any collection of sim-
plices of dimension up to m spanned by these points
satisfy the properties of a simplicial complex. Define



KII={vT ITs S, card T=na+l, flVT,x #O}. At
this stage the homeomorphism V. : VO~ XO defined by
PO((l VT,X) = VT is just a bijection between two finite
point sets.
Suppose O ~ j ~ m– 1 and Xj and ~j : ~Vj +

U Kj are constructed. Let i = j + 1 and initialize
X~=Kj. Let T~Swith card T=m+l– iso
that F = n VT,X # g and vl’ is not yet in Xi. Define
G = f) VT,&l x. We add simplices to Ki that will allow
us to extend the homeomorphism so it includes F E Vi.
Specifically, consider all sets U & S, with T C U and
fl Vu,x # 0. The corresponding simplices au belong to
Kj and are contained in ~j (bd F – int G). Add all sim-
plices uuu~v~] to Xi. To extend the homeomorphism
we distinguish two cases. Assume first that G = 0, and
therefore F ~ int X. Since ~j is a homeomorphism and
F is a closed i-ball, bd F and qj (bd F) are both (i – l)-
spheres. It follows that U st VT is a closed i-ball, and a
homeomorphism PT : F a U st vT that agrees with ~j
on bd F can be constructed. Now assume G # 0. By
lemma 4.2, bd F – int G and therefore ~j (bd F – int G)
are closed (i – 1)-balls. Furthermore, bd G is an (i – 2)-
sphere. Let L ~ Ki consist of the simplices avuiv~],
with au ~ ~j (bd G). U Z is a closed (z’– 1)-ball, and
a homeomorphism p$ : G + U L that agrees with ~j
on bd G can be established. Now we are in the same
situation as in the first case, and a homeomorphism
PT : F ~ U st VT that agrees with p~ on G and with
Vj on bd F – int G can be constructed. After adding all
F = flVT,x with card T = m + 1 – i in this fashion, we
get $o~by combining all ~T using the pasting lemma.
Observe that X and sdDx contain a vertex for each

T ~ S with flVTjx # 0, so vertsd Dx = {bT I VT E
vert K}. It follows that ~ : vert K ~ vert sd Dx de-
fined by ~(vT) = bT is a bijection. By construction
of K, if a collection of vertices belong to a common
simplex in K, then their images belong to a common
simplex in sd ‘DX. It follows that the simplicial map
g : UK ~ U sd Vx implied by ~ is a homeomorphism.
Therefore, IJ K x U sd D% = U Vx, and the assertion

of the theorem follows. Q1

REMARK. As illustrated in figure 4.1, the Delaunay
simplicial complex restricted by X is related to the com-
plex obtained from the chains of the regular CW com-
plex defined by the Voronoi cells. Besides being smaller,
an advantage of the Delaunay simplicial complex is that
it naturally imbeds in the same space that contains X
and S.
REMARK. For manifolds of dimension 3 or less, condi-
tion (B2) is implied by (Bl) and the weaker requirement

(B2’) fl VT,bdx is either empty or contractible.

Of course, this is interesting only for manifolds with
boundary, for otherwise (B2) and (B2’) are void. To

see why (B2’) is sufficient, let 1 ~ m ~ 3 and suppose
X and S satisfy the assumptions in lemma 4.1. Assume
also that S satisfies condition (Bl), that is, for every
l~mandevery T~Swithcard T =m+l–.l,
F = (1 VT,X is either empty or a closed l-ball. Note
that

G= nVZ’,bdx = bdF– U intflv~,x
TcU~S

is either empty or an (1 — 1)-manifolcl cent ained in an
(~– 1)-sphere, namely bd F. For 1 ~ 3, the contractibil-
ity of G # 0 implies that G is a closed (1 – 1)-ball; so
(B2’) implies (B2). For m =4, (B2’) implies (B2) if the
Poincar6 conjecture for 3-spheres is true, see e.g. [1].

5 General Topological Spaces

In this section, we generalize the result for compact
manifolds to more general topological spaces. The re-
quirements will automatically exclude spaces that can-
not be expressed as the underlying space of a finite reg-
ular CW complex. In order to generalize theorem 4.3,
we need extensions of the generic intersection and the
closed ball properties. Let X ~ Rd be a topological
space and let S ~ lid be a non-degenerate finite point
set. S has the eztended closed ball property for X if
there is a regular CW complex 7?, with X = U 77,,that
satisfies the following properties for every 1’ c S with
flVT,X # 0:

(El) there is a regular CW complex ~T ~ %?so that
flVT,x=U~T,

(E2) the set 72$ = {y ~ 7?,[ inty ~ int flVT} contains
a unique cell, ?jT, so that ~T ~ -y for every y E 7Z$,

(E3) if qT is a ~-cell then ?j’Tn bd flVT is a (j - l)-
sphere, and

(E4) for each integer k and each k-cell y E R& - {~},
-yn bd (1 VT is a closed (k – 1)-ball.

We call qT the hub of: R;. Furthermore, S has: the
extended genem”c intersection property for X if for every
T~Sandevery7E~T–’R~ there isa6~13~so
that -y c 6.
It is not difficult to see tlat if X is a compact manifold

and S haa the generic intersection and the closed ball
properties for X, then the extended generic intersecticm
and the extended closed ball properties follow. Indeed,
the regular CW complex, 7?, required by condition (El)
consists of all non-empty sets n VT;x and n vT,bd X,

T ~ S. Fix a subset T ~ S and dkfine F = n VT,X
and G = (1 VT,bd x. If non-empty, F and G are closed
balls, and if G # 0 then F # 0 and the dimension of



F exceeds the dimension of G by one. There are three
possible cases. If F = G = 0 then (l VT,X = F = 0 and
conditions (E2) through (E4) are void. If F # @and
G = 0 then 77$ = {F}, and w = F satisfies conditions
(E2) and (E3); condition (E4) is void. If F # 0 and
G # 0 then I& = {F, G), ~ = G satisfies conditions
(E2) and (E3), and y = F satisfies condition (E4). In
any case, the establishment of the homomorphism in
the proof of theorem 4.3 can be viewed as introducing
a vertex vT for ?lT and connecting it to the simplices
inductively constructed for the cells in %?.T – 77,$. This
idea also works in the general case.

Let X ~ Rd be a topological space, and let S ~ Rd be
a non-degenerate finite point set that has the extended
generic intersection and the extended closed ball prop-
erties for X. To construct a homeomorphism between
X = U 7? and U Dx, we consider one subset T ~ S at a
time, in order of non-increasing cardinality. Inductively,
we assume the cells in ~T – %3; are already mapped
homeomorphically to appropriate simplices. We extend
the homeomorphism to the cells of %!$, again induc-
tively in order of non-decreasing dimension. We intro-
duce a vertex, vT, for the hub, VT. If ?j’T is a k-ball,
its boundary is a (k – I)-sphere, and by (E3) and the
induction hypothesis, the cells in this (k – I)-sphere are
already part of the homeomorphism. After connecting
VT to the simplices that correspond to the cells in bd VT,
we can extend the homeomorphism to ?)T. Every other
cell in 7?$ is treated the same way, only that the reason
the homeomorphism can be extended is now a combi-
nation of the two induction hypotheses. This implies
the generalization of theorem 4.3 to topological spaces
other than manifolds.

THEOREM 5.1 Let X ~ F@be a topological space, and
let S be a non-degenerate finite point set that has
the extended generic intersection property for X. If
S has the extended closed ball property for X then
U9. %X.

6 Remarks and Further Work

This paper is targeted at problems requiring the dis-
cretization of possibly complicated geometric objects in
finite-dimensional Euclidean spaces. Such problems are
abundant in the computational science literature, see
e.g. Kaufmann and Smarr [12], where the discretization
of continuous domains is common practice. The dimen-
sions of the domain and the imbedding space can be
the same, as e.g. common in fluid dynamics problems,
or they can be widely different, as in the study of many
dynamical systems. The restricted Delaunay simplicial
complex introduced in this paper is a general method
that produces simplicial discretizations in all cases.

The introduction of a general concept typically gives
rise to many specific questions and directions for fur-
ther research. We see three directions of progressively
more basic work necessary to bring restricted Delaunay
simplicial complexes closer to the targeted application
areas. The first is the design of efficient algorithms
that constructs the Delaunay simplicial cclmplex of a
finite point set, S, restricted by a domain or space,
X. Special cases under different assumptions on how
X is specified are considered in [15, 4, 8]. The second
direction is the design of methods that chc)ose finitely
many points resulting in good quality discretizations of
X. Such methods have a long history in the somewhat
different context of finite element analysis, see e.g. [21].
The third direction is the study of maps from a prob-
lem specific domain to a space, possibly imbedded in
higher dimensions, that depends on functional studied
over the domain or on approximate solutions thereof.
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