

1 Introduction

Many applications in computational geometry, graphics, solid modeling, nu­
merical simulation and other areas require complicated geometric objects
to be decomposed into simpler pieces for further processing. For instance,
in the finite element method, a planar domain is divided into a mesh of
elements, typically triangles or quadrilaterals. Differential equations repre­
senting some physical property such as heat distribution or airflow are then
approximated using functions that are piecewise polynomial within each ele­
ment. The running times of these algorithms generally depend on the size of
the decomposition (the number of elements), hence we seek decompositions
of small size. Furthermore, in many applications, the numerical stability and
convergence are affected by the shapes of the elements; excessively "long and
skinny" elements can lead to undesirable behavior.

In this paper we focus on the decomposition of 2-dimensional objects
such as polygons into triangles. We will refer to this problem both as mesh
generation and triangulation; it is also called unstructured grid generation.
A triangulation must be a simplicial complex, that is, the intersection of
any two triangles is either a common edge, a common vertex, or the empty
set. Quality mesh generation describes techniques that offer a guarantee on
some measure of shape, such as all triangles non-obtuse, or all with bounded
aspect ratio. The aspect ratio of a triangle is the length of the longest edge
divided by the length of the shortest altitude. A fairly general measure of
triangle shape is the minimum angle a, since this gives a bound of 7r - 2a on
maximum angle and guarantees an aspect ratio between 1_.1_1 and I---,--L I. We

SIn 0' SInO'

allow triangulations to contain Steiner points-vertices of the mesh that are
not vertices of the input-because in general they are necessary for achieving
shape bounds (see Figure 1, for example). A mesh satisfying a certain shape
bound is said to be size-optimal if the number of triangles is within a constant
factor of the minimum number possible in any triangulation of the given input
that meets the same shape bound.

The first algorithm to give a shape guarantee was due to Baker, Grosse
and Rafferty [1]. They gave a technique for producing a non-obtuse trian­
gulation of polygons, in which all angles are at most 90 0 • In addition, the
smallest angle is at least 130 • (Of course, this is only possible if all angles in
the input are at least 130 .) Together, these bounds guarantee an aspect ratio
of at most 4.6. The algorithm places a uniform square grid over the polygon,

2

with grid spacing determined by the smallest feature present in the polygon.
(Roughly speaking, the smallest feature is determined either by the pair of
closest vertices, or by the closest vertex-edge pair, where the edge does not
contain the vertex.) Since the smallest feature determines the mesh density
throughout the polygon, the number of triangles can be very large.

Bern, Eppstein and Gilbert gave the first mesh generation algorithm with
both shape and size guarantees [3]. They show how to triangulate polygons
so that every triangle has aspect ratio at most 5. In addition, their analysis
shows that the mesh is size-optimal. One of the key ideas in the algorithm
is to replace the uniform grid of [1] with a quadtree, which is a recursive
subdivision into squares of varying sizes. This yields large triangles in ar­
eas of large features. By keeping the quadtree balanced, aspect ratios are
bounded in the output. Melissaratos and Souvaine give some extensions to
the quadtree algorithm [12]. Mitchell and Vavasis show an extension of the
quadtree technique to 3D [14]. They give an algorithm that uses octrees to
produce size-optimal, bounded aspect ratio triangulations of polyhedra.

All the above techniques use grids or quadtrees. A quite different tech­
nique for quality mesh generation is Delaunay refinement, so-called because
a Delaunay triangulation is maintained, and some criterion is used to succes­
sively pick new points to add to it. Chew [5] presented a Delaunay refinement
algorithm that triangulates a given polygon into a mesh in which all angles
are between 300 and 1200 • The algorithm produces uniform meshes, meaning
that all triangles are roughly the same size. The output mesh is size-optimal
(to within a constant factor) amongst all uniform meshes. However, there are
inputs for which a uniform mesh has many more triangles than are necessary,
see Figure 1 (c), for instance.

In this paper, we extend Chew's work by giving an algorithm to triangu­
late planar straightline graphs (PSLGs) such that all triangles in the output
have angles between 0: and 7r - 20:. Here 0: is a parameter that can be cho­
sen between 00 and 200 • The triangles will vary in size, and the mesh will
be size optimal to within a constant factor (that depends on 0:). PSLGs in­
clude polygons, polygons with holes, and complexes (objects made of multiple
polygons); dangling edges and isolated vertices are also allowed, as shown in
Figure 1 (a).

Theoretically speaking, our algorithm essentially matches the PSLG al­
gorithms of [12] and [3](modified as mentioned in [2]), but it is distinguished
from them in a number of ways: (1) The Delaunay refinement approach is

4

fundamentally different from the quad tree techniques. (2) It is much simpler.
With fewer special case constructions, it is easier to implement. (3) It gener­
ally produces fewer triangles in practice. (4) It is "parameterized": the user
can ask for the "best" mesh with a given number of triangles. In this way, the
algorithm takes advantage of the inherent mesh size/shape tradeoff. (5) The
output mesh has no favored orientation. In contrast, grid or quadtree based
meshes produce many mesh edges aligned with the coordinate axes. Such
alignment may affect subsequent computation. (6) Delaunay refinement can
be modified to generate a mesh unique to the input, independent of the ori­
entation of the input. (This assumes careful handling of degeneracies, and
elimination of the bounding box, as described in Section 5.)

A few words about the input to the algorithm: The input can be any
planar straightline graph (PSLG), with dangling edges and isolated points
allowed (see Figure l(a)). As shown in the figure, the algorithm will tri­
angulate a larger region, out to an enclosing box. To get a triangulation
of a particular region, say the interior of a polygon, exterior triangles can
be removed. (To maintain the size optimality guarantee in this case, the
algorithm must be modified slightly, as discussed in Section 5.)

Though the algorithm is based on the Delaunay triangulation, the con­
strained Delaunay triangulation [11],[4], might be a worthwhile alternative.
We discuss this briefly in Section 5, and Chew discusses its use in a related
mesh generation algorithm [6].

The remainder of this paper is organized as follows. In the next section
we present the algorithm. Then we show that it halts and outputs a valid
triangulation satisfying the minimum angle bound. We define the local fea­
ture size at each point in the input, and bound the output size in terms
of it. Then we show that every triangle is within a constant factor of the
largest possible at that point, which proves size-optimality. To balance the
theoretical results, we then discuss some issues that arise in implementing
the algorithm, and describe our own implementation. Through a variety of
examples, we evaluate its performance in terms of mesh size and shape.

Large portions of the work reported here have appeared elsewhere in
preliminary form [16], [17], [18].

5

2 The Delaunay Refinement Algorithm

The basic idea of the algorithm is to maintain a triangulation, making local
improvements in order to remove the skinny triangles. Each improvement
involves adding a new vertex to the triangulation and retriangulating. To pick
good locations for these new vertices, we use the following fact of elementary
geometry:

Fact 1 If triangle T = abc has Lbca = 8, and p is the circumcenter of T,
then L bpa = 28. (See Figure 6.)

This fact can be proved by considering the angles of the triangles pab, pbc
and pca. The circumcenter of a triangle is the center of the unique circle
through the three vertices of the triangle. As described below, we will gen­
erally be adding vertices that are circumcenters, though when such locations
are unsuitable, we will instead place new vertices on the input segments.

The particular triangulation we maintain is a Delaunay triangulation,
which has been extensively discussed in the literature (see, e.g., [15] or [9]).
We recall the definition: given a finite set of points in the plane, three
points contribute a triangle to the Delaunay triangulation if the circumcircle
through those points contains no other point in its interior. This defini­
tion produces a unique triangulation, assuming the appropriate handling of
degeneracies (4 or more co-circular points).

Edges of the input PSLG will be referred to as segments to distinguish
them from the edges of the Delaunay triangulation that is maintained. Also,
a vertex is a vertex of the input or of the growing Delaunay triangulation,
whereas a point is any point in the plane. During the course of the algorithm,
we will maintain a set V of vertices (initialized to the vertices in the input)
and a set S of segments (initially those in the input). Vertices are added
to the Delaunay triangulation DT(V) for two reasons: to improve triangle
shape, and to insure that all input segments are present in DT(V) (as the
union of one or more Delaunay edges).

The two basic operations in the algorithm are to split a segment by adding
a vertex at its midpoint, and to split a triangle with a vertex at its circum­
center. In each case, the new vertex is added to V; when a segment is split,
it is replaced in S by its two subsegments.

For a segment s, the circle with s as a diameter is referred to as its
diametml circle, and we say that a vertex encroaches upon segment s if it

6

Algorithm DelaunayRefine
INPUT: planar straightline graph X;

desired minimum angle bound a

OUTPUT: triangulation of X, with all angles > a.
Initialize:

add a bounding square B to X:
compute extremes of X: xmin! ymin! xmax! ymax
let span(X) = maxCxmax-xmin! ymax-ymin)
let B be the square of side 3 X span(X) , centered on X
add the four boundary segments of B to X

let segment list S = edges of X
let vertex list V = vertices of X
compute initial Delaunay triangulation 1YT(V)

repeat:
while any segment s is encroached upon:

SplitSegCs)
let t be Cany) skinny triangle Cmin angle < a)
let p be t's circumcenter
if p encroaches upon any segments S1,"" Sk then

for i = 1 to k:
Spli tSeg CSi)

else
SplitTriCt) C* adds p to V *)

endif
until no segment s encroached upon, and no angles < a
output current Delaunay triangulation 1YT(V)

Figures 3 and 4 show the execution of the algorithm on a simple polygonal
example. For clarity, no bounding box is used. In each picture, the input
is shown in thick lines, the current Delaunay triangulation is overlayed in
thin lines. (The observant reader might notice a slight enhancement in the
algorithm used in the example: if a segment s is encroached upon by a vertex
on another segment, s does not have to be split as long as it appears in the
triangulation, and no skinny triangles are present. For instance, the vertex

8

added between (b) and (c) encroaches upon two segments that are never
split.)

In the next section, we show that the algorithm halts for any a < 20°. (In
practice, larger values can be chosen, up to a ~ 30° .) Upon termination, all
triangles will have aspect ratios at most Isi~a I, since all angles smaller than
a will have been removed. Furthermore, all input segments will be present in
the output (as the union of one or more Delaunay edges), since any segments
missing from the Delaunay triangulation are encroached upon, and hence get
split until they are present. Note that the algorithm allows skinny triangles
to be split in any order. We discuss good orderings and other implementation
issues in Section 6.

3 Output Size

In this section we give an upper bound on the number of triangles in the
output. The bound depends upon the local feature size of the input. At
every point in the mesh, the vertex spacing will be close to the local feature
size. In the next section, we will show that the local feature size is indeed
the desired spacing, since it yields meshes within a constant factor of the
optimal size.

Definition 1 Given a PSLG X! The local feature size at a point P!
lfs x (p)! or simply Ifs(p L is the radius of the smallest disk centered at p

that intersects 2 non-incident vertices or segments of X.

Figure 5 illustrates the definition of lfs(), the radius of the disk Di being
lfS(pi). Note D3 in particular: a smaller disk would intersect 2 segments, but
they are incident to each other.

For a given input X, lfs(p) is defined for all points p in the plane, and
the entire function, which we refer to as lfs(X) , is continuous. If lfs(p) is
interpreted as an elevation at p, then lfs(X) is a "not-too-steep" surface
above the plane. The following lemma shows that it has a Lipschitz condition
of 1, i.e. the slope in any direction is at most 1.

Lemma 1 Given any PSLG X, and any two points p and q in the plane!

lfs(q) ::; lfs(p) + dist(p, q),

where dist(p, q) is the Euclidean distance between p and q.

11

the vertices of T are a, b, c, with the smallest angle 0 at c. Then the shortest
edge of T is from a to b. Call its length d. Without loss of generality, assume
a was added after b (or that both were in the input). We will use the fact
that a and b are close together to bound lfs (a) in each of several cases, which
in turn will bound lfs(p).

Case 1 (a): a was a vertex of the input. Then so was b, so lfs (a) ::; d.

Case l(b): a was added as a circumcenter of some triangle with cir­
cumradius r' ::; d (since b was outside that triangle's circumcircle). We
can apply this lemma to a, yielding lfs(a) ::; r'CT ::; dCT.

Case l(c): a was the midpoint of a segment that was split. Applying
this lemma to a now yields lfs(a) ::; dCs, since b was outside a's vertex­
free circle.

So we have lfs(a) ::; dCs, assuming we have the condition I Cs 2:: CT 2:: 11,
which we will be able to satisfy below. By Fact 1, Lapb = 20, so simple
geometry gives d = 2r sin O. Lemma 1 gives

lfs (p) ::; lfs (a) + r

using our bound for lfs (a) we have

lfs(p) ::; dCs + r

= 2rCs sinO + r

or, since 0 < a,
lfs(p)

r>-------'-----'------
1 + 2Cs sina

So we get the desired bound on r as long as we can satisfy the condition

I CT 2:: 1 + 2Cs sin a I·
Case 2: We now consider the case where a vertex p is added to split a

segment s. Segment s is split because some vertex or circumcenter a is inside
s's diametral circle, which has radius r. (See Figure 7.) We have two cases
for a:

Case 2(a): a lies on some segment t, which cannot be incident to s, since
we are assuming that all angles in the input PSLG are at least 90 0 • (Any

14

Cs = 1+0 will work. For 0: = 10°, we can choose CT = 2.8, and
l-2V2sina

Cs = 5.
Since CT :s: Cs, the lemma shows that when a vertex p is added, no other

vertex is within distance lf~~) of p. The following theorem shows that vertices
added later cannot get much closer to p.

Theorem 1 Given a vertex p of the output mesh, its nearest neighbor vertex

q is at a distance at least g:~i .
Proof: Lemma 2 handles all but the case when q was added after p, in which
case we can apply the lemma to q and get

d· t() > lfs(q)
IS p, q - Cs

Lemma 1 gives a bound for lfs(q) in terms of lfs(p) and q's distance from p,
so

d. () lfs(p) - dist(p, q)
1St p,q 2: Cs

rearranging finishes the proof: dist(p, q) 2: g:~i •

The next theorem uses an area argument to yield a bound on the number
of vertices. Intuitively, a region of small local feature size requires small
triangles, i.e. the vertex spacing should be proportional to the local feature
size. Thus the triangle density in the mesh is proportional to the inverse of
the square of the local feature size. So we will "charge" the cost for each
vertex to the local feature size around it.

Theorem 2 The number of vertices in the output mesh is at most

where B is the region enclosed by the bounding square, and Cl is a constant
to be specified.

16

Proof: The previous theorem says that each vertex p in the mesh is at the
center of an open disk of radius g:(!i that contains no other vertex. Halving
the radii gives non-intersecting disks: let Dp be the open disk of radius

Tp = 2~;~l) centered on p. Since at least one-fourth of each Dp is contained
in the ounding square B, we get a lower bound for the integral by summing
its value in the disks Dp for every p in the vertex set V:

By Lemma 1, the maximum lfs() attainable in Dp is lfs(p) + Tp, which gives
a bound for JD :

p

f 1 dx > area(Dp) 1
iDp lfs2(X) - maxx EDp{lfs2(x)}

1
2:: area(Dp) (lfs (p) + T p)2

Using area(Dp) = 1fT p 2 , plugging in for T p, and cancelling yields

Substituting back in for the entire integral,

1 1 d 1,", 1f x> - ~
B lfs2(x) - 4 pEV (2Gs + 3)2

1f

= 2 L 1
4(2Gs + 3) pEV

Since the summation merely counts the number of vertices in the output
mesh, the theorem holds if we choose the constant Gl 2:: 4(2C!+3)2. •

17

4 Size-Optimality

Our goal in this section is to show that any triangulation produced by the
Delaunay refinement algorithm is size-optimal, meaning that the number
of triangles is within a constant factor of the minimum number possible.
We first state and prove some properties that any bounded aspect ratio
triangulation must have, and then use these properties to show that even
the optimal triangulation is not too much better than the output of the
Delaunay refinement algorithm. The following properties of bounded aspect
ratio triangulations are seemingly obvious, but a number of technical details
are required to state and prove them precisely:

• Small input features will be surrounded by proportionally small trian­
gles.

• Nearby triangles have similar sizes.

• The size variation between distant triangles depends on their distance.

The basic idea would be to show that in an optimal mesh, triangle sizes
must vary slowly, proportional to the local feature size measure. Since this
was the case for Delaunay refinement meshes as well, we could show that
they are within a constant factor of optimal. The difficulty in using this
approach directly is that triangle size is a step function: size is constant
within each triangle, but large discontinuities are possible between triangles,
especially near mesh vertices of high degree. To cope with this, we must
define precisely what we mean by "triangle size", and show that though it
is a step function, it is reasonably well-behaved. With a series of lemmas,
we bound the maximum triangle size at an arbitrary point, and show that
triangle sizes within a Delaunay refinement mesh are within a constant factor
of the largest possible.

The analysis in this section is similar to that given by Mitchell and Vava­
sis for their 3D algorithm [14]. A basic notion in their proof is that of a
"characteristic length function", which defines the "triangle size" at every
point within the triangulation:

Definition 2 If a point p is contained in a triangulation T of input PSLG
X, then we say the edge length at p, elT,x(p), or simply el(p), is the length
of the longest edge among all triangles of T containing p.

18

Lemma 5 At any point q in the interior of a triangle ofT, el(q) ::; C4 lfs(q),
where C4 is a constant to be specified.

Proof: By definition, lfs(q) is the radius r, determined by two points x and y
on non-incident segments of the input (see Figure 12). From Lemma 4, there
must be some point p along xy with el (p) ::; 2· dist (x, y) . A. Since we always
have dist(x, y) ::; 2r, el(p) ::; 4r . A. Using dist(p, q) ::; r and Lemma 3,

el(q) ::; el(p) + C2 • el(p) + C3 • dist(p, q)

::; (C2 + 1) . el(p) + C3 . r

::; (C2 + 1) . 4r . A + C3 . r

::; [(C2 + 1) . 4A + C3]· r

::; [(C2 + 1) . 4A + C3]·lfs(q)

Choosing C 4 2:: (C 2 + 1) . 4A + C 3 concludes the proof. _

We can now state and prove the major result of this section: that the
mesh output by the Delaunay refinement algorithm is size-optimal to within
a constant factor. First we recall the situation: the input is a planar straight­
line graph X with all angles at least 90 0 , CY ::; 20 0 is the minimum angle bound
for the output, which guarantees all triangles have aspect ratio at most ~.

SIn a

The algorithm triangulates the region inside B(X), a larger bounding box
of X, and the optimality is with respect to any triangulation of B(X) with
minimum angle bound CY. (The 900 input restriction, and the requirement
that the mesh triangulates B(X), will be removed in the next section.)

Theorem 3 Given CY ::; 20 0 , and input X, suppose T is any triangulation of
X with minimum angle bound CY. There is a constant C a such that if T has
N triangles, then the Delaunay refinement triangulation TD has ND ::; Ca· N
triangles. Letting T be the triangulation with fewest possible triangles shows
that TD is within a factor Ca of optimal.

Proof: Theorem 2 bounds the number of vertices in the Delaunay refinement
triangulation TD . In any triangulation, the number of triangles is at most

23

twice the number of vertices (true by Euler's relation, see [15], p. 19). Thus
TD has

triangles. By Lemma 5 this is

where the edge-length function el() is with respect to T. (Strictly speaking,
Lemma 5 does not apply to edges of the triangulation, but since they have
measure 0, they do not contribute to the integral.) We can instead sum the
integrals over each triangle T E T:

= C1 . cl L f -----i-() dx
TETJT el x

In each triangle T, el() is constant, just the length of the longest edge. The

area of T is at most V; e1 2 (), which occurs if T is equilateral. So for T we
have

Substituting back in,

2 V3 '"' N D :s: C1 . C4 - ~ 1
4 TET

We have LTET 1 = N, since the summation just counts the number of trian-

gles in T. Thus the theorem holds for CO! = C1 . C4 2 V;. •

The constant factor CO! depends on the choice of 0:, but not on X, i.e.
the Delaunay refinement algorithm is optimal on every input, not just in the
worst case. We discuss CO! more in Section 6.

5 Corner-Lopping and Riemann Sheets

Two issues must be resolved so that the algorithm produces size-optimal
bounded aspect ratio triangulations for general 2-dimensional inputs. First,

24

Delaunay triangulation (CDT) [11],[4]. The CDT can be computed with the
Riemann sheet technique of Seidel [20]. This corresponds to Mitchell and
Vavasis' use of Riemann volumes for octree mesh generation [14]. Chew has
recently described a related mesh generation algorithm that uses the CDT
[6].

Using the CDT, one can develop a modified Delaunay refinement algo­
rithm to produce meshes that are unique (for a given 0:) and independent of
the orientation of the input. The CDT allows the algorithm to work with­
out a bounding box; for uniqueness it is also necessary to specify the order
in which skinny triangles and encroached edges are split, for instance one
could always split the triangle with the largest circumcircle, breaking ties ac­
cording to vertex indices. In the case of degeneracies (4 or more co-circular
points), the Delaunay triangulation is not uniquely defined; this can also be
disambiguated with vertex indices.

6 Implementation and Discussion

The pseudocode algorithm given in Section 2, which we call the basic al­
gorithm, could be implemented in many ways. In our case, there were two
main goals: to allow interactive experimentation with the algorithm, and to
produce sample outputs for evaluating its performance. In this section, we
discuss some general implementation issues, and describe our own implemen­
tation, as well as a variety of possible modifications and enhancements to the
basic algorithm. We will also evaluate the algorithm's practical performance
with respect to mesh size and shape.

The basic algorithm was quite simple to implement, requiring only a small
amount of work beyond the computation of a Delaunay triangulation. The
corner-lopping and Riemann sheet modifications mentioned in the previous
section were not implemented. Though corner-lopping was required for the
theoretical analysis in the case of small input angles, it would require a large
implementation effort. Instead, we used a simpler approach that works very
well in practice. The implementation runs reliably on many examples, and
produces meshes in which the number of triangles seems to be quite reason­
able. In practice, the algorithm easily achieves a minimum angle bound of
20°, and can be run longer if desired, though it rarely improves the minimum
angle much above 30°. Figure 17 shows an example of its output, given as

29

upon.) In our case, efficiency was not an issue, because we merely needed to
interactively experiment with the algorithm on relatively small meshes. An
implementation of the sweepline algorithm was available, so we have used it
throughout, even for incremental addition of a single point to the triangula­
tion. For meshes with several hundred vertices, a full recomputation of the
Delaunay triangulation takes less than a second, which is sufficient for inter­
active use. However, the algorithm would be excessively slow for practical
usage on large inputs, so we do not report any timing measurements.

We have not analyzed the asymptotic running time of the Delaunay re­
finement algorithm in detail. The worst-case running time for incremental
Delaunay triangulation is O(M2), where M is the output size. In practice,
such algorithms usually run much faster [10]. Much of the time is typically
taken up locating the triangle containing the added point. For non-input
vertices, this is simplified in our algorithm by starting at the skinny triangle
or encroached upon segment being split.

Figure 18 shows another output of the algorithm, given as input an ap­
proximate outline of Lake Superior, including several islands. Since the
boundary was represented by roughly equally spaced points, most of the
points added by the algorithm were interior points (in the lake, or between
the lake and the bounding box). We note that the input contains an angle
close to 15°, which was not a problem even though the corner-lopping step
was not done.

The basic algorithm of Section 2 says that any skinny triangle may be
split, though it seems like a good idea to split the triangle with the globally
minimum angle. In this way, the algorithm is parameterizable, meaning
that it can be halted just as soon as all angles are "large enough". This
modification comes at a slight cost, however, since skinny triangles must be
maintained in a priority queue to allow the globally minimum angle to be
efficiently determined. If we choose to split an arbitrary skinny triangle, then
only a list is needed.

The detection of "encroached upon" segments (those containing a point
in their diametral circle) can be done efficiently by checking local criteria
during each update of the Delaunay triangulation. A segment is encroached
upon if either:

1. It is not present as a Delaunay edge (e.g. 31 in Figure 2), or

2. It is present, but opposite an obtuse angle in a Delaunay triangle (e.g.

32

32 in Figure 2).

Though the basic algorithm specifies a square bounding box 3 times as
large as the input, any constant multiple will work. For clarity in our ex­
amples, we have used a smaller bounding box. The bounding box has both
a theoretical and a practical purpose. Whereas a polygon clearly has an
interior, a PSLG input may have dangling edges, and it is not always clear
exactly what region is to be triangulated. The convex hull of the PSLG is a
logical candidate, but then an input vertex just inside the hull could gener­
ate a "small feature" that is not really present in the input. The bounding
box gives an unambiguous region to be triangulated, without reducing the
local feature size by more than a constant factor. An axis-aligned bounding
square also improves the algorithm's robustness, since splitting an edge of
the box gives a midpoint which is truly collinear with the endpoints. Oth­
erwise, if roundoff were to occur, then the midpoint could fall inside the
edge, causing a very skinny Delaunay triangle to form between the midpoint
and the endpoints. The calculation of such a triangle's circumcenter is very
ill-conditioned.

Since the base algorithm of Section 2 is so simple, it is easy to experiment
with alternative criteria for splitting triangles. For instance, some applica­
tions, such as error adaptive solvers, have a maximum desired triangle size.
Figure 1 (c) shows how to achieve this as well as a minimum angle bound:
we change the criterion to split triangles that are skinny or large, where
large means having a circumradius larger than a fixed bound. One can also
exclude certain triangles from being split, for instance, in Section 5 triangles
were not split if their small angle was part of the input. In Section 2 we also
mentioned a situation in which an encroached upon segment need not be split
if the encroaching vertex lies on some other input segment. Finally, the user
may wish to eliminate large angles, but allow small angles. As discussed in
[3], this can generally be done with fewer triangles than in the no-smaIl-angle
case. Unfortunately, we cannot take advantage of this fact by modifying the
basic algorithm to split triangles with large angles, because every triangle
with an angle above 7r - 2a also has an angle below a, and the behavior of
the modified algorithm approximates that of the original.

Another variation to the basic algorithm is to split triangles at points
other than their circumcenters, and to split segments at points other than
their midpoints. For instance, in Figure 6 we saw that the angle opposite ab

33

doubles if it is moved to the circumcenter. The angle would increase further if
p were closer to ab, though possibly at the expense of other triangles. We have
not explored this approach, but perhaps it could increase the global minimum
angle more rapidly, and reduce the overall number of triangles. Below we
discuss how splitting segments at non-midpoints can help in handling small
input angles. It would be nice to extend the size-optimality proof to cover
these different split points. One would need to show that the proof holds for
split points "near" circumcenters and midpoints. We have not done this, but
it seems possible, perhaps with weaker optimality constants and minimum
angle bounds.

Mesh Size

Next we take several different approaches to evaluating the size of meshes
produced by the Delaunay refinement algorithm. We argue that the algo­
rithm performs significantly better than other algorithms with mesh shape
guarantees, and somewhat worse than a human might do. We also argue
that the analysis of Section 4 gives a gross overestimate of the algorithm's
behavior in practice.

Upon close examination of Figures 17 and 18, one sees many places where
moving a vertex could improve triangle shapes, or where a vertex could be
removed without decreasing the minimum angle. We might estimate these
triangulations to be within a factor of 2-5 times the minimum possible size
for the given angle bound. Thus the "true" size-optimality constant for the
Delaunay refinement algorithm lies somewhere between 2 and the value of
Ca of Section 4. Plugging a minimum angle bound of a = 20° into the
inequalities given in Section 4, we get a bound Ca ~ 1.81 X 1025 . Though
this is the first explicitly stated optimality constant for a bounded aspect
ratio triangulation algorithm, the value is clearly meaningless as a practical
guarantee. Examination of the analysis shows much slack that might be
tightened, for example a constant of A2K+6, with A ;::::; 6, J{ ~ 4, that we
suspect can be replaced by 2K or A 2 , but even a reduction of 10 or 15 orders
of magnitude would not yield a useful value for Ca. One would really like a
stronger proof technique.

We can make a non-rigorous argument about output size using the con­
stant Cs of Section 4. It bounds the density of points along input segments,
and its value indicates that at most 5 "layers" of triangles will appear be-

34

Roughly speaking, the discrepancy between 2D and 3D is the following: in
2D, an "evenly spaced" point set (ie. no large "gaps") will have a Delaunay
triangulation with no skinny triangles, but this does not hold true in 3D.
Figure 27 shows why: a skinny triangle, or sliver, will have a circumcircle
much larger than its shortest edge. Such a circumcircle forms a large "gap"
not containing any points. In 3D, however, tetrahedra can have roughly
equal-length edges, a reasonably-sized circumsphere, and yet be arbitrarily
skinny, as shown in Figure 28: four vertices spaced equally around the equator
of a sphere, with d raised slightly to a latitude of f above the equator.

These flat sliver tetrahedra appear quite often in 3D Delaunay triangula­
tions. The difficulties of avoiding them or removing them have been discussed
in a number of papers, including [8], [13], [7].

8 Conclusion

We have presented a new Delaunay refinement algorithm for bounded aspect
ratio triangulation of planar straightline graphs. The algorithm comes with
theoretical guarantees on its behavior, yet it is simple enough to be easily
implemented, and is likely to find use in practical applications.

There are several directions for further work. Foremost, can the De­
launay refinement algorithm be generalized to work for 3D triangulation of
polyhedra? The Delaunay refinement algorithm is well-suited to applica­
tions involving adaptive analyses that increase mesh density in regions of
large error. For adaptive or dynamic problems, mesh reduction, or coarsen­
ing, is also useful-is there a Delaunay based criterion that indicates good
vertices to delete from the mesh? There are several questions regarding the
size-optimality constants: Can the analysis be significantly improved? Can
tight lower bounds be proved for bounded-aspect ratio triangulation, even
for specific inputs?

9 Acknowledgements

I would particularly like to thank Raimund Seidel, for many productive dis­
cussions. Helpful suggestions were provided by Balas N atarajan, Marshall
Bern, Eric Barszcz, and two anonymous referees. The development of the al-

43

gorithm was aided by the Voronoi diagram implementation of Steve Fortune
(available via netlib).

References

[1] B. Baker, E. Grosse, and C.S. Rafferty. Nonobtuse triangulation of
polygons. Disc. and Comput. Geom., 3:147-168, 1988.

[2] M. Bern and D. Eppstein. Mesh generation and optimal triangulation.
In D.Z. Du and F.K. Hwang, editors, Computing in Euclidean Geometry.
World Scientific, 1992.

[3] M. Bern, D. Eppstein, and J.R. Gilbert. Provably good mesh genera­
tion. In Proceedings of the 31st Annual Symposium on Foundations of
Computer Science, pages 231-241. IEEE, 1990. To appear in J. Compo
System Science.

[4] L.P. Chew. Constrained Delaunay triangulation. Algorithmica, 4:97-
108, 1989.

[5] L.P. Chew. Guaranteed-quality triangular meshes. Technical report,
Cornell University, 1989. No. TR-89-983.

[6] L.P. Chew. Guaranteed-quality mesh generation for curved surfaces. In
Proceedings of the Ninth Annual Symposium on Computational Geome­
try, pages 274-280. ACM, 1993.

[7] T. Dey, C. Bajaj, and K. Sugihara. On good triangulations in three
dimensions. In Proceedings of the ACM Symposium on Solid Modeling
Foundations and CAD/CAM Applications, 1991.

[8] D. Field. Implementing Watson's algorithm in three dimensions. In Pro­
ceedings of the Second Annual Symposium on Computational Geometry,
pages 246-259. ACM, 1986.

[9] S. Fortune. A sweep line algorithm for Voronoi diagrams. Algorithmica,
2:153-174, 1987.

44

[10] L.J. Guibas and J. Stolfi. Primitives for the manipulation of general sub­
divisions and the computation of Voronoi diagrams. ACM Transactions
on Graphics, 4:74-123, 1985.

[11] D.T. Lee and A. Lin. Generalized Delaunay triangulation for planar
graphs. Discrete Comput. Geom., 1:201-217, 1986.

[12] E. Melissaratos and D. Souvaine. Coping with inconsistencies: A new
approach to produce quality triangulations of polygonal domains with
holes. In Proceedings of the Eighth Annual Symposium on Computational
Geometry, pages 202-211. ACM, 1992.

[13] S. Meshkat, J. Ruppert, and H. Li. Three-dimensional unstructured
grid generation based on Delaunay tetrahedrization. In Proceedings of
the 3rd International Conference on Numerical Grid Generation, pages
841-851, June 1991.

[14] S.A. Mitchell and S.A. Vavasis. Quality mesh generation in three di­
mensions. In Proceedings of the Eighth Annual Symposium on Compu­
tational Geometry, pages 212-221. ACM, 1992. Full version in Cornell
Tech. Report TR 92-1267, Feb. 1992.

[15] F. P. Preparata and M. I. Shamos. Computational Geometry - an In­
troduction. Springer-Verlag, New York, 1985.

[16] J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh
generation. Technical Report UCB/CSD 92/694, Computer Science Di­
vision, University of California, Berkeley, 570 Evans Hall, U.C. Berkeley,
CA 94720, June 1992.

[17] J. Ruppert. Results on Triangulation and High Quality Mesh Genera­
tion. PhD thesis, University of California at Berkeley, 1992.

[18] J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh
generation. In Proceedings of the Fourth Annual Symposium on Discrete
Algorithms, pages 83-92. ACM-SIAM, January 1993.

[19] A. Saalfield. Delaunay edge refinements. In Third Canadian Conference
on Computational Geometry, pages 33-36, Vancouver, 1991.

45

[20] R. Seidel. Constrained Delaunay triangulations and Voronoi diagrams
with obstacles. Technical Report 260, Inst. for Information Processing,
Graz, Austria, 1988.

46

