
     

International Journal of Computational Geometry & Applications
c© World Scientific Publishing Company

PARALLEL CONSTRUCTION OF QUADTREES
AND QUALITY TRIANGULATIONS

MARSHALL BERN∗ DAVID EPPSTEIN†

SHANG-HUA TENG‡

Received 12 August 1996
Revised 18 February 1997

Communicated by M. T. Goodrich

ABSTRACT

We describe efficient PRAM algorithms for constructing unbalanced quadtrees, bal-
anced quadtrees, and quadtree-based finite element meshes. Our algorithms take time
O(logn) for point set input and O(logn log k) time for planar straight-line graphs, using
O(n + k/ logn) processors, where n measures input size and k output size.

1. Introduction

A crucial preprocessing step for the finite element method is mesh generation,
and the most general and versatile type of two-dimensional mesh is an unstructured
triangular mesh. Such a mesh is simply a triangulation of the input domain (e.g., a
polygon), along with some extra vertices, called Steiner points. Not all triangula-
tions, however, serve equally well; numerical and discretization error depend on the
quality of the triangulation, meaning the shapes and sizes of triangles. A typical
quality guarantee gives a lower bound on the minimum angle in the triangulation.

Baker et al.1 first proved the existence of quality triangulations for arbitrary
polygonal domains; their grid-based algorithm produces a triangulation with all
angles between 14◦ and 90◦. Chew2 also bounded all angles away from 0◦ using
incremental constrained Delaunay triangulation. Both of these algorithms, how-
ever, produce triangulations in which all triangles are approximately the size of the
smallest input feature; hence, many more triangles than necessary may be gener-
ated, slowing down both the mesh generation and finite element procedures. Bern
et al.3 used adaptive spatial subdivision, namely quadtrees, to achieve guaranteed
quality with a small number of triangles (within a constant factor of the opti-
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mal number). Modifications yield other desirable properties, such as small total
length4 and no obtuse triangles.5 Mitchell and Vavasis generalized this approach
to three dimensions.6 Subsequently, Ruppert7 built on Chew’s more elegant incre-
mental method to achieve theoretical guarantees on number and quality of triangles
similar to those of the quadtree meshing methods of Bern et al. For more mesh
generation theory, see our survey.8

In this paper, we give parallel algorithms for mesh generation. We use a theo-
retical model of parallel computation, the PRAM, but our main contribution is to
reduce much of the work of mesh generation to a sorting algorithm, which can be
performed efficiently on most or all parallel computers.

The finite element method is often performed on parallel computers, but parallel
mesh generation is less common. (We are unaware of any theoretical papers on the
subject and only a few practical papers, for example, see Refs. [9,10,11].) In some
applications, a single mesh is generated and used many times; in this case the
time for mesh construction is not critical and a relatively slow, sequential algorithm
would suffice. In other applications, especially when the physics or geometry of the
problem changes with time, a mesh is used once and then discarded or modified.
Here, a parallel mesh generator would offer considerable speed-up over a sequential
generator.

We parallelize the quadtree-based methods of Bern et al.3 The grid-based method
of Baker et al.1 and a grid-based modification of Chew’s algorithm2 both parallelize
easily, but as mentioned above these may produce too many triangles. It is currently
unknown whether Ruppert’s method7 has an efficient parallel version.

A quadtree12 is a recursive partition of a region of the plane into axis-aligned
squares. One square, the root , covers the entire region. A square can be divided
into four child squares, by splitting it with horizontal and vertical line segments
through its center. The collection of squares then forms a tree, with smaller squares
at lower levels of the tree.

It may seem that quadtrees are easy to construct in parallel, a layer a time.
In practice this idea may work well, but it does not provide an asymptotically
efficient algorithm because the quadtree may have depth proportional to its total
size. We use the following strategy instead. We first find a “framework”, a tree of
quadtree squares such that every internal node has at least two nonempty children.
Our construction for this framework is based on sorting the input according to
an interleaved bit ordering known as the “linear quadtree”.13 This tree guides the
computation of the complete quadtree. We then balance the quadtree so that no
square is adjacent to a square more than twice its side length. For polygonal
inputs, we further refine and rebalance the quadtree so that edges are well separated.
Finally, we perform local “warping” as in Bern et al.3 or Melissaratos and Souvaine,5

to construct a guaranteed-quality triangulation. Figure 1 shows a mesh computed
by a variant of our sequential algorithm.

Since the preliminary conference version of this paper appeared, similar ideas to
ours have also found application in problems other than mesh generation. Callahan14

gives parallel algorithms for certain clustering problems, which he applies to nearest
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Fig. 1. A mesh derived from a quadtree (courtesy Scott Mitchell).

neighbor searching; his technique is based on the construction of a fair split tree.
The quadtree framework we develop below is a special case of such a tree, and our
methods provide a simpler alternate to his (however Callahan does not make our
assumption of integer input). Arya et al.15 use a form of centroid decomposition in
quadtree-like structures, very similar to our algorithm for partitioning input PSLG
edges into quadtree squares, as a key part of their approximate nearest neighbor
data structure. Mount and Arya have applied the same idea in other approximate
range searching problems.16 More recently, Arora17 used a variant of quadtrees in
his breakthrough (1 + ε)-approximation for the Euclidean traveling salesman prob-
lem and related problems.

1.1. Computational Model

We assume that the input is a point set or planar straight-line graph, with n
vertices. The coordinates of the points or vertices are fixed-point binary fractions,
strictly between 0 and 1, that can be stored in a single machine word. We assume
the ability to perform simple arithmetic and Boolean operations on such words in
constant time per operation, including bit shift operations. Finally, we assume the
ability to detect the highest order nonzero bit in the binary representation of such
a number in constant time.

These assumptions are similar to a model in which the input coordinates are
machine-word integers, as in the work of Fredman and Willard.18,19 Our description
in terms of fixed point fractions is somewhat more convenient for our application,
but equivalent in expressive power. If we were to use a real number model instead—
as is more usual in computational geometry—we would incur a slight expense in
time. The key operation of finding the highest bit can be simulated by binary search
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in time O(log logR) per operation, where R is the ratio between the largest and
smallest numbers tested by the algorithm. For our purposes R = O(2k) where k is
the output size, so the penalty for weakening the model is a factor of O(log k) time.

Our parallel algorithms use a somewhat nonstandard version of the EREW
PRAM model of exclusive access to shared memory.20 Since our processor bound
depends on k, the size of the output triangulation, which is not known in advance,
we need a mechanism for allocating additional processors within the course of the
computation. We assume that a single allocation step, in which each of the N
processors already allocated asks to be replaced by some number kp of additional
processors, can be performed in O(logN) time. It is assumed that each new proces-
sor will receive O(1) words of initialization information provided by the requesting
processor p, together with its position in the list of kp new processors requested by
p. The O(logN) time bound avoids misusing this feature to broadcast information
quickly in order to escape the exclusive read restrictions of the model.

1.2. New results

We describe EREW PRAM algorithms to perform the following tasks.

• We construct a balanced or unbalanced quadtree for an arbitrary point set in
time O(log n) with O(n + k/ log n) processors.

• We triangulate a point set with total edge length O(1) times the minimum
and all angles bounded between 36◦ and 80◦, using a total number of points
within a constant factor of optimal, in time O(log n) using O(n + k/ log n)
processors.

• We triangulate a point set with total edge length O(1) times the minimum
and all angles less than 90◦, using O(n) Steiner points, in time O(log n) using
O(n) processors.

• We triangulate a planar straight-line graph (PSLG) with all angles except
those of the input bounded away from zero, using a total number of triangles
within a constant factor of optimal, in time O(log k log n) using O(n+k/ log n)
processors.

Our last algorithm can also be used to produce a guaranteed-quality triangu-
lation of a polygon, but the number of triangles in this case may not be within a
constant of optimal. If the polygon wraps around and nearly touches itself from the
outside (as in Figure 1), our algorithm uses some triangles with size approximately
the size of this outside “feature”, which may be unnecessarily small.

Our results can also be used to fill a gap in our earlier paper,3 noted by Mitchell
and Vavasis.6 In that paper we gave sequential algorithms for triangulation of point
sets, polygons, and planar straight-line graphs, all based on quadtrees. In the con-
ference version of the paper we claimed running times of O(n log n+ k) in all cases,
but gave a proof only for the case of point sets. There turn out to be some com-
plications in achieving this bound for polygons and PSLGs. (A straightforward
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implementation achieves O(k log n).) However, the ideas given here also improve
sequential quadtree-based triangulation, yielding the first guaranteed-quality trian-
gulation algorithms with the optimal running time of O(n log n+k). This last result
holds also in the more standard real number model of computation.

2. Unbalanced Quadtrees

We first describe how to generate a quadtree for a set of points in the plane. In
the resulting quadtree, there are no restrictions on the sizes of adjacent squares, but
no leaf square may contain more than one point. The root square of the quadtree
will be the semi-open unit square [0, 1)2. Thus the corners of quadtree squares
have coordinates representable in our fixed-point format. Bern et al.3 described a
sequential algorithm using O(k + n log n) operations (where k denotes the output
size); here we give a parallel algorithm with the same asymptotic bound on the
total work but with O(log n) running time.

The sides of all squares in any quadtree with the given root have lengths of the
form 2−i, and for any quadtree square of side length 2−i the coordinates of all four
corners are integral multiples of 2−i. We say that a square with bottom left corner
(x, y) and size 2−i contains point (x′, y′) if x ≤ x′ < x + 2−i and y ≤ y′ < y + 2−i.
Given two input points (x, y) and (x′, y′), we define their derived square to be the
smallest square with the above restrictions on side length and corner coordinates
that contains both points. The size of this square can be found by comparing the
high order bits of x⊕ x′ and y⊕ y′, and the coordinates of its corners can be found
by masking off lower order bits from the coordinates of x and y.

Given a point (x, y), where x and y are k-bit fixed point fractions, we define the
shuffle Sh(x, y) to be the 2k-bit fixed point fraction formed by alternately taking
the bits of x and y from most significant to least significant, the x bit before the
y bit. Since it may not be easy to compute Sh(x, y) explicitly in our model of
computation, we represent this value implicitly by the pair (x, y). Any two such
pairs can be compared in constant time by using arithmetic and high bit operations
separately on x and y.

The first step of our algorithm will be to sort all the input points by the values
of their shuffled coordinates. This can be done in O(log n) time with O(n) EREW
processors.21 From now on we assume that the points occur in this sorted order.
Lemma 1 The set of points in any square of a quadtree rooted at [0, 1)2 form a
contiguous interval in the sorted order.

Proof. The points in a square of size 2−i have the same i most significant
shuffled-coordinate bits, and any pair of points with those same bits shares a square
of that size. If a point (x, y) is outside the given square, one of its first i bits must
differ. If that bit is zero, (x, y) will appear before all points in the square. If the bit
is one, (x, y) will appear after all points in the square. Hence it is impossible for
(x, y) to appear before some points and after some others in the sorted order. !

Figure 2 illustrates a quadtree with the contiguous intervals defined by Lemma 1.
Lemma 2 If more than one child of quadtree square s contains at least one input
point, then s is the derived square for some two adjacent points in the sorted order.
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.000000…
– .001111…

.010000…
– .011111…

.110000…
– .111111…

.100000…
– .100011…

.100100…
– .100111…

.101000…
– .101011…

.101100…
– .101111…

x = .111…x = .110…x = .100…x = .000…
y = .000…

y = .010…

y = .100…

y = .111…

Fig. 2. The contiguous intervals of binary numbers formed by the shuffled
coordinates of points in each quadtree square, and the sorted order of those
intervals.

Proof. By Lemma 1, the points in s form an interval, which can be divided
into two to four smaller intervals corresponding to the children of s. Then s is the
derived square for any pair of points in two different smaller intervals. !

Consider the desired unbalanced quadtree as an abstract rooted tree. If we
remove all leaves of this tree that do not contain input points, and contract all
remaining paths of nodes having one child each, we obtain a tree TF in which all
internal nodes have degree two or more. We call TF the framework and use it to
construct the quadtree.

By Lemma 2, the nodes of TF exactly correspond to the derived squares for
adjacent points in the sorted order, and the structure of TF corresponds to the
nesting of intervals induced by the derived squares, as in Lemma 1. So for each
adjacent pair of points, we compute their derived square and note its side length.
(Some squares may be derived in as many as three ways, but we can eliminate this
problem later.)
Lemma 3 Let s be a quadtree square derived from a pair of points pi, pi+1 in the
sorted order. Then the parent of s can be derived from a pair pj , pj+1 such that for
any k with j < k < i or i < k < j, the derived square of pk, pk+1 has size no larger
than s.

Proof. If s is the first child of its parent, we let pj be the last point of the sorted
order that is contained in s; otherwise we let pj+1 be the first point contained in s.
Then exactly one of pj , pj+1 is in s, and the other is also in the parent of s, so the
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parent of s is derived from pj , pk+1. For all k between i and j, both pk and pk+1

are in s, so the derived square must either be s or one of its descendants. !

By Lemma 3 we can compute the nesting of squares in TF by computing the sizes
of squares derived from adjacent pairs of points, and for each derived pair finding
the nearest pairs to the left and to the right in the sorted order that give a larger
size. The smaller of the two resulting squares must be the desired parent. This
is an all-nearest-larger-values computation, taking O(log n) time with O(n/ log n)
work.22

Once the framework TF is computed, we construct the quadtree TQ. Each edge
in TF corresponds to a path of perhaps many squares in TQ, with the number of
squares determined by the relative sizes of TF squares. So we perform a processor
allocation step in which each framework edge e requests O(pe/ log n) processors,
where pe is e’s number of squares. Now all remaining squares (leaves and children of
path squares), can be constructed in O(log n) time. The total number of processors
is O(n+k/ log n) where k is the complexity of the resulting (unbalanced) quadtree.
Theorem 1 Given n input points, we can compute a quadtree with k squares, in
which each point is alone in its square, in time O(log n) using O(n+k/ log n) EREW
processors.

3. Balancing the Quadtree

Most quadtree-based mesh generation algorithms3,4,5 impose a balance condi-
tion: no leaf square is adjacent to another leaf square smaller than half its size.
(Some variants of these algorithms impose stronger conditions involving bounds
on the ratio of side lengths between leaf squares separated by a constant number
of other squares; the techniques given here generalize to these stronger conditions
with the same asymptotic performance.) These algorithms also need cross pointers
between squares of the same size sharing a common side. Sequentially, the bal-
ance condition can be enforced top down, in time linear in the quadtree complexity.
The cross pointers can also be found top down. We present an alternate parallel
algorithm that uses O(k + n log n) work and takes O(log n) parallel time. Unlike
the top-down algorithm we do not create a balanced quadtree with the minimum
possible number of squares, however the number of squares will be within a small
constant factor of optimal.

We proceed in two stages, starting from the unbalanced quadtree TQ of Section 2.
In the first stage, we produce a tree of squares T ′

Q in which some non-leaf squares
may have fewer than four child squares. Tree T ′

Q, however, will satisfy the balance
condition above; it will also include cross pointers.

The balance condition is ensured if, for each square s, three other squares (not
necessarily leaves) exist: the two squares adjacent to both s and its parent, twice
as large as s, and the square s′ sharing a corner with both s and its parent. If
s′ is contained in the grandparent of s, it has size twice that of s; otherwise it is
four times as large as s. See Figure 3 for the latter case. (If any of these squares
protrudes from [0, 1)2, then an exception is granted.) The parents of these forced
squares will also be forced to exist either by the same rule applied to the parent of
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s

Fig. 3. The three shaded squares are forced by the balance condition for
square s.

s, or because they are themselves ancestors of s. The three forced squares do not
force other new squares in an unbounded chain of requirements; the nine squares
forced by these three either already exist as ancestors of s or are already forced by
the parent of s. (We do not require the siblings of the forced squares to be created,
as this could result in such an unbounded chain. This is why we allow a square to
have fewer than four children.)

How do we add forced squares in parallel all over TQ? The following simple
method will suffice, although it uses more total work than we desire. We simply
build a large array, in which we store four squares for each already-existing square:
the square itself and the three larger squares forced by the balance condition. Then
we sort this array and eliminate duplicates. The squares can be grouped by size, so
that (within a single size class) only O(n) squares need to be sorted, and the sorting
step takes only O(log n) time and O(k log n) total work. Each square can appear
only O(1) times in the sorted list, so duplicate elimination takes only constant time.
The same sorting idea can be used to create cross-links between squares.

In the second stage of the algorithm, once we have constructed T ′
Q, we turn

it back into a quadtree simply by splitting all squares, leaves as well as internal
nodes without all four children. This preserves the balance condition and restores
the required number of children per parent. Due to this extra split, the resulting
balanced quadtree TB may have up to four times as many squares as the quadtree
produced by the sequential balancing algorithm. The cross pointers for a square in
TB can be found in constant time by using the cross pointers for the square’s parent
constructed as part of T ′

Q.
The following theorem shows how to combine the “sorting algorithm” just de-

scribed with a top-down algorithm in order to achieve an optimal parallel work
bound, and to reduce the increase in the number of squares compared to the se-
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quential algorithm.
Theorem 2 An unbalanced quadtree can be balanced and cross-linked in time O(log n)
using O(n + k/ log n) processors.

Proof. Consider the following top-down method. Assume a virtual processor
per square of the unbalanced quadtree. This processor waits until all the balancing
and cross-linking is done for its parent’s level. Then it creates nearby squares to
enforce the balance condition, coordinates with neighboring squares so that no new
square is created multiple times, and adds all necessary cross-links, in O(1) time.
It also tests whether its square contains the (at most one) input point contained in
its parent. This results in an algorithm which has time t bounded by the number
of levels in the quadtree, and total work O(k). By Brent’s lemma,23 only O(k/t)
actual processors are required to simulate all virtual processors in time O(t).

To combine the two algorithms, we apply the sorting algorithm only at certain
levels. We choose a set of levels, equally spaced and " = #log2 n$ apart. Once
the spacing is fixed there are " ways of making this choice, each giving rise to a
set of levels disjoint from other such sets, so for some such set there are a total
of only O(k/ log n) squares. The appropriate choice of set can be determined from
the framework tree. Once we have added the required squares in this set of levels,
we apply the parallelization of the top-down algorithm in O(log n) time and O(k)
total work. The scheduling required for Brent’s lemma can be performed using
information on the number of squares per level, again computed from the O(n)-size
framework tree. !

4. Locating Points in Quadtree Squares

The algorithm described in the previous section produces a balanced quadtree
TB defined on the input set of n points, however the information describing for each
point the square containing it, available in the unbalanced quadtree, has become
lost in the transformations. We next describe how to recover this information.

As in the previous section, we find a set S of O(k/ log n) squares spaced O(log n)
levels apart in TB . We then partition S into blocks of O(n) squares. Within each
block we perform the following computation. We are given O(n) squares sj in the
block, and we also use in each block a list of the n input points pi. (The set of
O(k/n log n) such lists may be constructed with O(k) work and O(log n) time by
assigning an additional k/n log n processors per point at the time we performed the
first processor allocation step.)

We first find for each square si the bottom left corner b(si) and the centerpoint
c(si), and compute a framework F (that is, a compressed quadtree such as the one
above) for the set consisting of the union of the point sets pi, b(sj), and c(sj). Then
F contains each input square sj since sj has two nonempty children (namely those
containing b(sj) and c(sj). Further each input point pi is at a leaf of F .

We now follow step by step from the squares in S down through TB , as in the
top-down part of the algorithm in the previous section. Each square s visited in this
top-down process is a descendant of a square in some particular block, and hence
has a smallest containing square in the corresponding framework F . We simply
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compute this containing square from the parent of s. Thus all such containing
squares can be found in time O(log n) and work O(k).
Lemma 4 Let s be a square of TB without any children in TB, and having smallest
containing square s′ in framework F . Then s′ has O(1) descendants in F , and any
input point contained in s can be found in O(1) time from these descendants.

Proof. The only points in s that can have been involved in the construction of
F are b(s), c(s), and at most a single input point pi. Therefore s′ can have at most
four descendants, one of which is the leaf of F corresponding to pi. !

Corollary 1 We can find the correspondence between input points and squares of
the balanced quadtree of Theorem 2 in time O(log n) using O(n+k/ log n) processors.

5. Mesh Generation for Point Sets

The balanced quadtree computed in the last section can be modified by a set
of “warping” steps to give a triangulation of the input point set, with no angles
smaller than about 20◦, as in Bern et al.3 These warping steps are local, involving
only O(1) squares each, and hence can obviously be performed in constant parallel
time with optimal work. In this section, we go on to solve two slightly harder
problems: (1) approximate minimum-weight no-small-angle triangulation, and (2)
approximate minimum-weight nonobtuse triangulation.

Eppstein4 showed how to sequentially compute triangulations of point sets with
these guarantees: all angles between 36◦ and 80◦, total edge length within a constant
factor of the minimum, and total number of triangles within a constant of the
minimum for any angle-bounded triangulation. The algorithm again uses local
warping, trivial to parallelize, but the quadtree must also satisfy some stronger
conditions than the ones given directly by Theorems 1 and 2:

• The coordinate axes of the quadtree must be rotated so that the diameter, of
length d, connecting the farthest pair of points, is horizontal.

• A row of equal-size smaller squares that contain the input is cut from the root
square. These squares have side length proportional to max{d′, d/n}, where
d′ is the maximum distance of any point from the diameter.

• The quadtree square must satisfy a strong balance condition in which no
quadtree square s can be adjacent to both a smaller square and a larger
square, unless the adjacencies are directly across s from each other.

• The points must be well-separated , meaning that for some specified constant
c, if a point is in a square with side " then its nearest neighbor must be at
least distance c" away. (In Bern et al.3, c = 2

√
2.)

We relax these requirements somewhat to simplify our parallel algorithm. Rather
than computing the exact diameter, it suffices to find some line segment with length
within a factor of, say, .95 of the diameter, and rotate the points so that line seg-
ment forms an angle of O(1/n) with the horizontal axis. Such a line segment can
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be found by projecting the point set onto O(1) different axes, taking the extrema of
each projected point set, and choosing the pair forming the longest segment. The
rotation can be performed in our integer model by treating our inputs as complex
numbers with integer coordinates, and multiplying by another such number chosen
appropriately. The result will be a set of points with the correct orientation but
scaled by a factor of O(n), which corresponds to using O(log n) additional bits to
represent each coordinate value.

We scale and translate the rotated point set to fit in the rectangle [1/4, 3/4) ×
[2−i, 2−i+1), where i is the smallest integer with 2−i ≥ 1/n for which this is possible.
The row of squares will then have side lengths equal to 2−i+1. These steps may all
be performed in O(log n) time with O(n/ log n) processors.

To enforce the strong balance condition, we first balance the quadtree as before,
and subdivide each square one further time. After this subdivision, each square
that is the smallest of a triple of squares violating the strong balance condition
can only be adjacent to same-size or larger squares. We then subdivide again, this
time only subdividing squares having a smaller neighbor. In any bad triple, the two
larger squares are subdivided, and no new bad triple can be formed in this final
subdivision, so the result is a strongly balanced quadtree.

It remains to ensure the separation of points. We first compute near neighbors
(approximate nearest neighbors), using the balanced quadtree constructed by The-
orem 2. We simply examine the O(1) squares around each square containing an
input point. If all those squares are empty, we need not find a near neighbor for the
input point; otherwise we take the near neighbor to be any point in a neighboring
square. We can now add notations to the framework tree of Section 2 specifying
the desired size of the quadtree square containing a point with a near neighbor; the
size is, say, one-eighth of the distance to the near neighbor. A suitable quadtree
can then be computed as in Theorems 1 and 2.
Theorem 3 Given a set of n points in the plane, we can compute a triangulation
with total edge length O(1) times the minimum possible in which all angles measure
between 36◦ and 80◦, in time O(log n) using O(n + k/ log n) EREW processors.
The output size k is O(m + n), where m is the minimum number of Steiner points
required to triangulate the input point set with no angle smaller than 36◦ (or any
other fixed constant).

We now consider the second problem: nonobtuse triangulation. Sequential
quadtree-based methods can triangulate a point set with all acute angles and only
O(n) Steiner points.3 Moreover, the total edge length can be made

to approximate that of the minimum-weight triangulation.4 The following the-
orem extends this result to the parallel case.

The idea in Bern et al.3 is to locate clusters of points, triangulate these clusters
recursively, and then treat them as single points in the outer quadtree. A cluster
is a set of closely spaced points far from all other points, that lies in a long path of
quadtree squares, or equivalently, in a square of the framework tree whose parent
square is much larger. The sequential algorithm proceeds top-down, recognizing
clusters whenever the required sequence of subdivisions is seen. This algorithm
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does not work in parallel since the quadtree may have as many as Ω(n) levels.
Our parallel algorithm uses the framework tree to identify potential clusters,

that is, parent-child pairs of sufficiently large size difference. The algorithm then
builds a collection of balanced quadtrees in parallel, one for each potential cluster,
using the methods of Theorems 1 and 2. Small potential clusters within a larger
one are represented by single points in this computation.

A true cluster is a potential cluster that is also well-separated from its neighbors.
If the quadtree square containing a potential cluster’s representative point is only
a constant factor larger than the potential cluster itself, we merge the potential
cluster with the quadtree containing it. Otherwise, we check that containing square
and O(1) neighbors and ancestors. These contain O(1) points and clusters, some
of which may be too close to the given cluster. If so, they merge with it to form
a true cluster. Isolated points may also need to merge to form small clusters. At
most four clusters or points may join in any merger, and this can only happen if all
four are near a shared corner of their squares. Each merged group may then split
immediately into its component clusters, but this can be tested in constant time.

Once the true clustering structure is known, the final balanced quadtrees may
be constructed as before. The resulting system of quadtrees is triangulated using
local rules.
Theorem 4 A set of n input points can be triangulated with O(n) triangles, all
angles less than 90◦, and total length O(1) times the minimum possible, in time
O(log n) using O(n) EREW processors.

6. Mesh Generation for Planar Straight-line Graphs

For most finite-element mesh generation applications, the input is not a point
set but rather a polygonal region. We discuss here the most general input, a planar
straight-line graph (PSLG). Our triangulation algorithm handles simple polygons
as a special case, but the output complexity may be larger than necessary due to
input features that are near to each other in Euclidean distance but far in geodesic
distance.

Several new complications arise with PSLG input. First, we must modify the
input to eliminate any pre-existing acute (below 90◦) corners,3 and this should be
done without introducing new points or edges too close to existing ones. Second,
we must subdivide the edges of the PSLG where they cross the sides of quadtree
squares. Third, we require that vertices not only be well-separated from other
vertices, but also from other edges, and that edges be well-separated from each other;
this means that each (piece of an original) edge is contained in a sufficiently small
square that no vertex or other edge passes nearby (less than a specified constant—
such as 3—times the square’s side length).

To accomplish these goals, we take the following approach. We compute vertex-
to-vertex and vertex-to-edge approximate nearest neighbors using an initial bal-
anced quadtree TB . This information enables us to cut off the acute corners and
build a second quadtree T ′

B in which vertices are well-separated from edges and
other vertices. We subdivide the edges into pieces in this quadtree, and then split
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the squares of the quadtree to create a third quadtree T ′′
B in which each square

contains only O(1) pieces of edges. We can then—finally—compute approximate
nearest neighbor information for pieces of edges, which we use to construct the final
quadtree T ∗

B , in which everything is well-separated.
We now flesh out the steps mentioned above. Approximate vertex-vertex nearest

neighbors proceeds as in Section 5. The following lemma shows how to find a nearby
non-incident edge for each vertex of the planar straight-line graph.
Lemma 5 If the nearest edge e to a vertex v has distance d from v, then either
some vertex v′ is within distance

√
2d from v, or e is visible to v through an angle

of at least 90◦.
Proof. If neither endpoint of e is within distance

√
2d, then e covers an angle

of 90◦ within which it is entirely within distance
√

2d. No other edge can entirely
obscure e in that angle, or it would cross the segment of length d between p and e,
and hence be closer than e. If an edge partially obscures e in that angle, it has an
endpoint within distance

√
2d. !

So for each vertex of the PSLG, we need only determine which edge is visible
along each of the four axis directions, and choose the nearest of these four edges.
This horizontal and vertical ray-shooting problem is exactly that solved by the
trapezoidal decomposition, which can be constructed in time O(log n) using O(n)
CREW processors;24 this algorithm can be simulated on an EREW machine with
logarithmic slowdown.20

Now we cut off acute angles around each vertex at a distance proportional to
the vertex’s nearest neighbor as in Bern et al.3 and Ruppert,7 so that cut-off trian-
gles do not contain other parts of the input, two such triangles on the same edge
match up, and the new cutting edges are not unnecessarily short. We can ignore
the cut-off triangles for the remainder of the algorithm, simply reattaching them
(with appropriately subdivided cutting edges) after the final warping step. For the
remainder of the algorithm, we can assume that all angles measure at least 90◦, and
consequently each vertex has bounded degree.

We can now compute a quadtree T ′
B in which each vertex lies in a square of

size proportional to the nearer of its nearest neighbors (vertex and edge). Vertices
will be well-separated from other vertices and edges, but two PSLG edges may yet
cross the same square. We subdivide the PSLG edges into pieces contained in each
quadtree square so that we will be able to discover these problems and correct them.
Sequentially, we could simply walk along each edge, keeping track of its crossings
with each square, but in a parallel algorithm we must do this differently.

We apply the accelerated centroid technique25 to T ′
B . This produces a binary

tree TC , the accelerated centroid tree, which has logarithmic height and linear size;
each subtree of TC corresponds to a subtree of T ′

B . To find the subdivisions of a
given PSLG edge, we test it against TC ’s root node r. Node r corresponds to a
square in the quadtree T ′

B , and we simply test whether the edge misses the square,
is contained in the square, or crosses the square’s boundary. If one of the first two
cases occurs, we continue recursively to the left or right child of r. If the third
case occurs, we split the segment in pieces and continue in parallel for each piece
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to the appropriate child of r. We process all edges in parallel, one level of TC at a
time. Each level can be handled in O(log k) time by O(k/ log k) EREW processors.
Between levels we reallocate processors and split the lists of edges being tested,
resulting in time O(log k) and linear work.

This edge-subdivision step of our algorithm takes O(log2 k) time and a total of
O(k log k) work. But in each of these bounds, a factor of O(log k) can be reduced
to O(log n) by the following trick: partition the quadtree T ′

B into O(k/n) subtrees,
each of O(n) squares, and perform the edge partition algorithm described above
in parallel for each edge in each subtree. The number of levels in each centroid
decomposition tree is thus reduced from O(log k) to O(log n), but O(log k) time per
level is still required for processor reallocation.

We now look at the arrangement of edges in a single square of quadtree T ′
B . We

assert that each cell in this arrangement has only O(1) complexity. If the cell is
not convex, then there is a vertex of the PSLG on its boundary, and the bound on
angles then implies the assertion. If the cell is convex, PSLG edges on its boundary
must either meet at a nearby PSLG vertex or be nearly parallel. The fact that
vertices are well-separated in T ′

B then implies the assertion.
We consider in parallel each pair of edge pieces that bound a common cell. By

the assertion above, there are only O(k) such pairs over all of T ′
B . For each pair, we

determine the further quadtree subdivision that would be necessary to separate the
edges in that square. We combine and balance all such subdivisions with sorting
(as in Section 3) to produce a new balanced quadtree T ′′

B in time O(log n) and work
O(k log n). We again use a centroid tree to determine the sub-pieces of edge pieces;
each quadtree square now intersects only O(1) sub-pieces.

Finally, for each square we search O(1) nearby squares to determine how much
further splitting is necessary. We again subdivide and rebalance to construct a last
quadtree T ∗

B , in which all PSLG edges are finally well-separated. Local warping then
offers the following result. Bern et al.3 achieve an angle bound of 18◦ sequentially;
the same specific bound can be achieved in parallel, only with a constant factor
more triangles.
Theorem 5 Given a planar straight-line graph with n vertices, we can compute a
triangulation with k triangles, in which all new angles are bounded away from 0◦,
in time O(log k log n) using O(n + k/ log n) EREW processors. The output size k
is O(n+m), where m = m(ε) is the minimum number of Steiner points required to
triangulate the given PSLG with no new angle smaller than fixed constant ε.

7. Sequential Algorithms

As noted in the introduction, our results fill a gap in our earlier paper.3 In that
paper we gave sequential algorithms for triangulation of point sets, polygons, and
planar straight-line graphs, all based on quadtrees. However we were unable to
prove our claimed O(n log n+ k) time bound for polygons and PSLG’s. As we now
see, this can be achieved using ideas of the previous section.
Theorem 6 Given a planar straight-line graph with n vertices, we can compute a
triangulation with k triangles, in which all new angles are bounded away from 0◦,
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in time O(k + n log n).
Proof. We follow the same basic outline of the previous section: we first con-

struct a quadtree on the input vertices, and use this to find approximate nearest
neighbors to each vertex. We use this information to guide the construction of a
second quadtree in which all vertices are well-separated. We then subdivide the
input edges into portions contained within a single quadtree square; unlike the
parallel case we can simply walk from one end of each edge to the other, keeping
track of the crossed squares. Finally, as in the previous section, we construct cells
of constant complexity within each quadtree square, and determine the necessary
quadtree subdivision separately within each cell. Unlike the parallel case, we can
glue the subdivided cells together in linear time by walking sequentially along their
boundaries. !

Note that the only steps in which our parallel algorithm requires the input to
be integer-valued are in the construction of quadtree frameworks for point sets,
however sequentially we can construct these in O(n log n) time even for real-valued
input, as shown in Bern et al.3 Therefore the sequential algorithm above works also
for real-valued point coordinates.

8. Conclusions

We have given a theoretical study of parallel two-dimensional mesh generation,
and also demonstrated the application of similar techniques to sequential mesh gen-
eration algorithms. We believe this area deserves further research, both theoretical
and practical.

The triangulations we construct are within a constant factor of the optimal
complexity, but it might be of some practical interest to improve the constant
factors. In particular, our balancing method wastes a factor of four, and further
constant factors are lost to achieve the strong balance condition. Is it possible to
compute the minimum balanced quadtree for a set of n points in time O(log n)?
Another interesting problem that we are leaving open is the parallel computation
of approximate geodesic nearest neighbors. Efficient algorithms for this problem
(both vertex-vertex and vertex-edge) would extend our PSLG methods to simple
polygons with a stronger bound on the total number of triangles.
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