B-Spline Curves

B—splines were investigated as early as the nineteenth century by N. Lobachevsky

(see Renyi [506], p. 165); they were constructed as convolutions of certain prob-
ability distributions.! In 1946, 1. ]. Schoenberg [ 542] used B-splines for statistical
data smoothing, and his paper started the modern theory of spline approxima-
tion. For the purposes of this book, the discovery of the recurrence relations
for B-splines by C. de Boor [137], M. Cox [129], and L. Mansfield was one of
the most important developments in this theory. The recurrence relations were
first used by Gordon and Riesenfeld [284] in the context of parametric B-spline
curves.

This chapter presents a theory for arbitrary degree B-spline curves. The orig-
inal development of these curves makes use of divided differences and is math-
ematically involved and numerically unstable; see de Boor [138] or Schumaker
[546]. A different approach to B-splines was taken by de Boor and Héllig [143];
they used the recurrence relations for B-splines as the starting point for the the-
ory. In this chapter, the theory of B-splines is based on an even more fundamental
concept: the blossoming method proposed by L. Ramshaw [498] and, in a dif-
ferent form, by P. de Casteljau [147]. More literature on blossoms: Gallier [252],
Boehm and Prautzsch [87].
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8.1

Motivation

B-spline curves consist of many polynomial pieces, offering much more versatility
than do Bézier curves. Many B-spline curve properties can be understood by
considering just one polynomial piece—that is how we start this chapter.

The Bézier points of a quadratic Bézier curve may be written as blossom values

b[0, 0], b[0, 1}, b1, 11.

Based on this, we could get the de Casteljau algorithm by repeated use of the
identity t =(1—1£)- 0+~ 1. The pairs [0, 01, [0, 1], [1, 1] may be viewed as being
obtained from the sequence 0, 0,1, 1 by taking successive pairs.

Let us now generalize the sequence 0,0, 1,1 to a sequence up, %1, 42, U3 The
quadratic blossom b[u, u] may be written as
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Fieure 8.1 The de Boor algorithm: the quadratic case.
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d;=b[Ur Y i=0,...,n (8.1)

The point x(x) = b[#=">] on the curve is recursively computed as
dl(u) =blu~"", U;’_'_r]; =Ny oot =000 00—t (8.2)

with x(z) = dg(z«:}.2 This is known as the de Boor algorithm after Carl de Boor
see [137]. See Example 8.2 for the case # = 3 and Figure 8.2 for an illustration.
Equation (8.2) may alternatively be written as

d;(u)=(l—t;‘:lHle;_]+t:?+_1r+.ld;t1i§ F= Ty e 5= Qs =4, (8.3)

where rf;{*l is the local parameter in the interval U’ 27

A geometric interpretation is as follows. Each intermediate control polygon
leg d7, d], , may be viewed as an affine image of U;:f“. The point d/* is then
the image of # under that affine map.

For the special knot sequence 0>, 1"> and U = [0, 1], the de Boor algorithm
becomes

di(u) =b[u~"", 0" " 15 r=1,...,m i=0,...,n—r, (8.4)

which is simply the de Casteljau algorithm.

If the parameter # happens to be one of the knots, the algorithm proceeds as
before, except that we do not need as many levels of the algorithm. For example,
if a quadratic curve segment is defined by b[ug, 1], by, u5], bu,, 13] and we
want to evaluate at # = u,, then two of the intermediate points in the de Boor
algorithm are already known, namely, b[u, #;] and b[u,, u3]. From these two,
we immediately calculate the desired point b[uy, #,], thus the de Boor algorithm
now needs only one level instead of rwo.

Derivatives of a B-spline curve segment are computed in analogy to the Bézier
curve case (5.17)

%(u) = nb[u=""1>, 1]. (8.5)
Expanding this expression and using the control point notation, this becomes
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Example

8.2 The de Boor algorithm for =

3.
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to the de Casteljau algorithm.

Higher derivatives follow the same pattern:
q=r=> (87)
—d-r—x(u) = -—-Qn—!—-—bht"”_”, 1<%

du’ (n—1)!
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Figure 8.2 The de Boor algorithm: a cubic example. The solid point is the result bfu, u, u]; it is on

the line through b[u, 1, #;] and b[a, u, u5).

In the case of Bézier curves, we could use the de Casteljau algorithm for curve
evaluation, but we could also write a Bézier curve explicitly using Bernstein
polynomials. Since we changed the domain geometry, we will now obtain a
different explicit representation, using polynomials? P

x(u) =Y ;P! (w). (8.8)
=0

The polynomials P? satisfy a recursion similar to the one for Bernstein polyno-
mials, and the following derivation is very similar to that case:

i 0

3 These will later become building blocks of B-splines.
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126  Chapter 8 4 Example 8.3 Some examples of B-spline curve definitions.

n*l
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Figure 8.3 B-spline curves: several examples.
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Individual curve segments: the first four cubic segments of a cubic B-spline curve are
shown, alternating between dashed and black.

U = (1o 1)
The steps in the de Boor algorithm then become
dfa) = 1 — B ) + okd )
with

ok = BT Mikti

Upi; — U] by

fork=r+1,...,n, and i=0,...,n — k. Here, r denotes the multiplicity of u.
(Normally, # is not already in the knot sequence; then, r = 0.)

The fact that each curve segment is only affected by # + 1 control points is
called the local control property.

We also use the notion of a B-spline blossom d[vy, . . ., v,], keeping in mind
that each domain interval U has its own blossom bY and that consequently
dlvy, ..., v,]is piecewise defined.

B-spline curves enjoy all properties of Bézier curves, such as affine invariance,
variation diminution, etc. Some of these properties are more pronounced now
because of the local control property. Take the example of the convex hull
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Figure 8.6 The local convex hull property: top,

Figure 8.7 T
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quadratic; bottom, cubic.
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Example 8.4 Knot insertion.
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Figure 8.9
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8.5 Degree Elevation

Example 8.5

We may degree elevate in (almost) the same way we could degree elevate Bézier
curves using (6.2). The difference: a given B-spline is a piecewise degree #
curve over a given knot sequence. Its differentiability is determined by the knot
multiplicities. If we write it as a piecewise degree n + 1 curve, we need to
increase the multiplicity of every knot by one, thus maintaining the original
differentiability properties. For example, if we degree elevate a C? piecewise
linear curve to piecewise quadratic, it is still C°. But for a piecewise quadratic
to be C?, it has to have double knots. Let us denote the knots in this augmented
knot sequence by ;.

Let V" be a sequence of 7+ 1 real numbers vy, . . ., v, 1. Let V*[y; denote the

sequence V" with the value »; removed. Then the degree 7 + 1 blossom b may be
expressed in terms of the degree # blossom b via

b[VD] = ﬁ—] (b[v”‘*'%l] +...+ b[V[”+l’|vﬂ+]I) . (8.11)

The proof is identical to that for degree elevation of Bézier curves. The control
points are then recovered from the blossom as before (see Example 8.5)

The inverse process—degree reduction is more important for practical ap-
plications. Following the example of the analogous Bézier case, we write the
elevation process as a matrix product and invert it by a least squares technique
for the reduction process; see Section 6.4. This method is described in detail in
[617]. Other methods exist, see [481] and [624].

B-spline degree elevation and blossoms.

Let a cubic B-spline curve be defined over {1y =1 = uy, 13, ...}. Then the
interval [u4, u5] corresponds to [, itg]. We denote the corresponding blossoms
by d4[a, b, c] and d-[a, b, ¢, d). The new control point dy is computed as follows:

I
{ = 0

dy = dyiy, its, it, it7

(dalita, its, itg] + dyglitg, fis, fr7) + dylitg, itg, 7] + dylits, Hg, it7])

(d4I“37 i3, M4] 1 d-’l{”}s Uy, M4U .

| S N

For the last step, we have used iy =ts=uzand ftg = 7 = iy
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8.6 Greville Abscissae

Let I[u] = u be the blossom of the (nonparametric) linear function u. If we want
to write this linear blossom as a quadratic one: 12[u, v] = I[u], we easily see that

: 1 1
1P [u,v]= Ef[“] *+ E”L‘] dy
ds
gives the desired quadratic form of our linear blossom. If we asked for a cubic
form I¥[u, v, w] of I[ul], we find that
1 1 1 S &
(3) _— 2 e _12 ) 51 £ .
1Ou, v, w) 3! (v, w]+ 31 [, w] + 2 [, v z'f"}) = 7 : -
u 3 ) i i
! 4 s
blossom by [®[V"] with V" = ity i
Hy

If we denote a degree 7 version of the linear

Voo, Uy, it follows that .
1» sVns Figure 8.10 Nonparametric B-spline curves: a cubi
4 ic examp

le.

VA 1(ul 4. U
n

The proof is by induction and was anchored by the earlier examples. The

inductive step starts with the degree elevation formula (8.11):*
1 n+1 1
[l — 2yt
=5 ; m LA

This is easily transformed to

1
I”+1 — m(b’l + LR + UFH"I)’

thus finishing the proof.
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., ug and a degree 7, then we know that
L] un—'l]a i 3d[”K —p1s 2

1 1
—(ug+ ...+ Hy1)s- s —(BK—nt1 +...tu,-
n M

These t : ;
erms are called Greville abscissae and are abbreviated
d as
1
Ex= ;?—(ux- Tt u, ).
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8.7 Smoothness
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Figure 8.13 Smoothness: an interior knot of multiplicity three results in a C° iecewise cubic curve,
P Y P

at i1’ The highest-order osculant is given by
O?’F—?'(M) = b[i‘{‘{f:", u{ﬂ—r}]’

assuring continuity of derivatives up to order 7 — r. Higher-order continuity is
possible, but cannot be guaranteed.

An important special case is given by piecewise Bézier curyes. These are B-
spline curves of degree 7 where each knot is of full multiplicity 7. In general, such
curves will only be C° but under certain conditions, they may be smoother.

For concreteness, take two cubic Bézier curves with control polygons by, by,
by, bzand ¢y, ¢y, ¢,, ,, defined over a knot sequence u, u,, Uy Uy Uy Uy, Uy, U, 1.
They are C% if by = Cp, or, in terms of the associated blossoms, if b[uy, u,, U=
c[uq, 1y, u1]. Two such curves are shown in Figure 8.14.

The two curves are C1if they may be written as a B-spline curve with a double,
not a triple knot #,. Then our triple knot at u, is the result of knot insertion and
the three points b,, b, ¢q are collinear and in the ratio Ag: A with Ag =u; — u,

The osculant of order 7 of an 5 degree polynomial curve x(x) at paramter value 7 is the
degree r polynomial that agrees with x for all derivatives up to order r.
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Figure 8.14 Smoothness of Bézier curves: the C! case.

and A= uy — #y. In terms of blossoms:

¢y = bluy, uq,12] and by = clug, #1s uy.

For C? smoothness, the knot #; must have been the result of two knot

insertions. It follows that
blueg, 1, #2] = cleo, #15 ).

is our desired C* condition. It is illustrated in Figure 8.15.

f we are to check if two given PBézier curves are C2 or not, all we have to dois
construct the two points appearing in (8.12). If they disagree, as in Figure 8.16,

we conclude that the given curve is not C2.

In most practical cases, 2 G2 check would have to check for approximate
satisfaction of (8.12), since reals or floats are rarely equal. In other words, a
rolerance has to be used. The practical value of (8.12) lies in the fact that it 1S
amenable to using a point tolerance that determines when two distinct points
are to be considered the same point. Checking for C2 smoothness by comparing

second derivatives would require a different, and less intuitive, tolerance.
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8.8 B-Splines

Consider a knot sequence uy, ..., #y and the set of piecewise polynomials
of degree n defined over it, where each function in that set is # —#; times
continuously differentiable at knot u;. All these piecewise polynomials form a
linear space, with dimension

M-1
dim=@E+1)+ ) 7. (8.13)

=1

For a proof, suppose we want to construct an element of our piecewise polyno-
mial linear space. The number of independent constraints that we can impose
on an arbitrary element, or its number of degrees of freedom, is equal to the
dimension of the considered linear space. We may start by completely specifying
the first polynomial segment, defined over [u, #,]; we can do this in 7 + 1 ways,
which is the number of coefficients that we can specify for a polynomial of degree
n. The next polynomial segment, defined over [uy, #,], must agree with the first
segment in position and # — r| derivatives at #y, thus leaving only r; coefficients
to be chosen for the second segment. Continuing further, we obtain (8.13).

We are interested in B-spline curves that are piecewise polynomials over the
special knot sequence [u,,_ 1, #; |. The dimension of the linear space that they form
is L + 1, which also happens to be the number of B-spline vertices for a curve in
this space. If we can define L. + 1 linearly independent piecewise polynomials in
our linear function space, we have found a basis for this space. We proceed as
follows.

Define functions N¥(u), called B-splines by defining their de Boor ordinates
to satisfy d; =1 and d},- =0 for all j #i. The N¥(u) are clearly elements of the
linear space formed by all piecewise polynomials over [u,,_y,#; |. They have local
support:

N;!(“) # 0 OUIY ifue |.ui-— 15 “i-%:x!'

This follows because knot insertion, and hence the de Boor algorithm, is a local
operation; if a new knot is inserted, only those Greville abscissae that are “close”
will be affected.

B-splines also have minimal support: if a piecewise polynomial with the same
smoothness properties over the same knot vector has less support than N7, it
must be the zero function. All piecewise polynomials defined over [u;_1, ;]
the support region of N, are elements of a function space of dimension 27 + 1,
according to (8.13). A support region that is one interval “shorter” defines a
function space of dimension 2#. The requirement of vanishing zz — ;_; derivatives
at #;_y and of vanishing n — r;,,, derivatives at u;,, imposes 27 conditions on
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any element in the linear space of functions over [u;_y, #,,,_]. The additional
requirement of assuming a nonzero value at some point in the support region
raises the number of independent constraints to 27 + 1, too many to be satisfied
by an element of the function space with dimension 2#.

Another important property of the N7 is their linear independence. To demon-
strate this independence, we must verify that

L
Y NI =0 (8.14)
j=0

implies ¢; = 0 for all /. It is sufficient to concentrate on one interval [u}, uy, 1] with
up < up,q. Because of the local support property of B-splines, (8.14) reduces to

I+1

Z NI () =0 for u € [ug, upq].
j=l—nt1

We have completed our proof if we can show that the linear space of piecewise
polynomials defined over [u;_,, u; ., 1] does not contain a nonzero element that
vanishes over [u, 1) ]. Such a piecewise polynomial cannot exist: it would have
to be a nonzero local support function over [1y, 1, )., 1]. The existence of such
a function would contradict the fact that B-splines are of minimal local support.

Because the B-splines N”" are linearly independent, every piecewise polynomial
s over [u,_q,u; ] may be written uniquely in the form

E
sy=" &N (). (8.15)
=0

The B-splines thus form a basis for this space. This reveals the origin of their
name, which is short for Basis splines. Figure 8.17 gives examples of some cubic
B-splines.

If we set all d;=1in (8.15), the function s(u) will be identically equal to 1,
thus asserting that B-splines form a partition of unity.

3 N3 3 3 3

N; Nj N; N; N2
. e, N .
T }

Uy #3 Hy us Hg Uz

uy Ug

My Hy

Figure 8.17 B-splines: some cubic examples.
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Figure 8.18

B-spline curves are simply the parametric equivalent of (8.15):

L
x(u) = Z d},-Nf(u).
/=0

Just as the de Casteljau algorithm for Bézier curves is related to the recursion
of Bernstein polynomials, the de Boor algorithm yields a recursion for B-splines.
It is given by

M — i

N7 () = NI~y + 2 — 2 N, (8.16)

Ulip—1— U ), — U L
with the “anchor” for the recursion being given by

NO(u) = 1 fu, 1<u<uy ' (8.17)
0 else
Its proof relates the local recursion (8.10) to the global indexing scheme. An

example is shown in Figure 8.18.

Equation (8.16) is due to L. Mansfield, C. de Boor, and M. Cox; see de Boor
[137] and Cox [129]. For an illustration of (8.16), see Figure 8.18. This formula
shows that a B-spline of degree 7 is a strictly convex combination of two lower-
degree ones; it is therefore a very stable formula from a numerical viewpoint. If
B-spline curves must be evaluated repeatedly at the same parameter values #,, it

1s a good 1dea to compute the values for N7(uy) using (8.16) and then to store
them.

. I )
| Y l |
= 7 N u
A ol ) N 1 1
LS N N 1 O I
! N |
| ! =
] i
HEN [
AT, ; T
| i | .".. | / ‘)é-‘:; y |
ui A A AT N NN
| > e : T
T+ T _ : e # i
i | | |
T ! !

The B-spline recursion: top, two linear B-splines vield a quadratic one; bottom, two
quadratic B-splines yield a cubic one.
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A comment on end knot multiplicities: the widespread data format IGES uses
two additional knots at the ends of the knot sequence; in our terms, it adds knots
u_y and u ,5,_1. The reason is that formulas like (8.16) seemingly require the
presence of these knots. Since they are multiplied only by zero factors, their values
have no influence on any computation. There is no reason to store completely
inconsequential data, and hence the “leaner” notation of this chapter.

8.9 B-Spline Basics

Here, we present a collection of the most important formulas and definitions of
this chapter. As before, 7 is the (maximal) degree of each polynomial segment,
L + 1is the number of control points, and K is the number of intervals.

Knot sequence: {ug,...,ug}.

Control points: dg,...,d;, with L=K—-n+1.
Domain: Curve is only defined over [u, 1,... %]
Greville abscissae: & = L(u; + -+ #;4,1)-
Support: N” is nonnegative over [#; 1, ;]

Knot insertion: To insert u; < u < 1y, first find new Greville abscissae £, then
set new d; = P(&)).

de Boor algorithm: Given #; < u < 11, renumber the relevant control points
di_pits---»>drerasdy,. .., d, and then set

dbu) = (1 — ob)d* 1) + ofdi )

i
with
U—Uryit1
afz - +1+
Ui _pthi — M4t

fork=r+1,...,n, and i=0,...,n— k. Here, r denotes the multiplicity of
u. (Normally, # is not already in the knot sequence; then, r = 0.)

Mansfield, de Boor, Cox recursion:

— i u —
NP () = — 2L N 4 SH2Z Z Nl ),
u !

Ulpp1— U l4+n —

¥
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Derivative: ) B
H i _ ] T : (M)
Y 141
E_N?!(y) = Nf ( } A i
du t Upi|—1 — W11
Derivative of B-spline curve:
L]
Ad n—1
A sy =n b LN
du =5 i1 — Hi-1
ion:
Degree elevatio N |
N7 (u) = -—L Nf*' (23 1),
| H + 1 f=f—-1

3 -pt that the
ned over the original knot sequence c;zlq,pr tcred -
1 1 . '0‘! 7
incre This identity was disC )
increased by one. :
eference is Barry and Goldman [39].

where Nf“(u; u;) is dfe{_i
knot #; has its multiplicity
H. Prajutzsch in 1984 [493]. Another r

8.10 Implementation

Here is the header for the de Boor algorithm code:

float deboor{degree,coeff,knot,u,1) .
/* uses de Boor algorithm to compute 0
coordinate on B-spline curve for param. e e
degree polynomial degree of each p
: de : .
e coiff‘ B-spline control points
knot: knot sequence
evaluation abscissa .
u's interval: u[i]<=u < uli+1]

coordinate value.

value u in interval i.

'
i:
Qutput:
*/
- A
; rogram enerates
Thi am does not need to know about L. The next p al : hognc'st—'s"’ 1
e o hole B-spline curve—for one coordinate, to b
0le bD-5

set of points on a W and three times for a 3D curve.

has to be called twice for a 2D curve

L 3 s 3 i )

{jeg? ee Oei l knOt denSE po nt‘S p01 t um

( L] c s ( )

e 01 curve

hspl to points .
Ty i B-spline curve.
& enerates points on :
{ 3 gd ree: polynomial degree of each piec
e 'IE!g . number of active intervals
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coeff: B-spline control points
knot: knot sequence: knot[0] +«.knot[1+2*degree-2]
dense: how many points per segment
Output:points: output array with function values.
point_num: how many points are generated. That number is

easier computed here than in the calling program:
no points are generated between multiple knots.

)

The main program deboormain. c generates a postscript plot of a B-spline curve.
A sample input file is in bsp1 .dat; it creates the outline
5.1

As a second example, the input data for the y-
8.10 are

of the letter r from Figure

values of the curve in Figure

degree = 3; 1 = 3; coeff = 1,4,4,0,0,1;
knot = 0,0,0,3,9,12,12,12; dense = 10.

Next, we include a B-spline blossom routine:

deboor_blossom(control »degree,deboor,deboor wts,
knot,uvec, interval,point ,point wt)

/k

FUNCTION: deBoor algorithm to evaluate a B-spline curve blossom.
For polynomial or rational curves.

INPUT: Contvolll sivessnivin [0]: indicates type of input curve

0 = polynomial
1 = rational
[1]: indicates if input/output is
in R3 or R4;
3 =R3
4 = R4
1= ) T — polynomial degree of each piece
of the input curve, must be <=20
deboor[][3] ......... deboor control points
deboor wts[] ........ rational weights associated with
the control points if control[0]=1;
otherwise weights not used
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8.11

knot sequence with multiplicities

Knot[] coevevveacnns S
0 blossom (parameter) values
Cl] essscesanssrss
e to evaluate
i ] interval within knot sequence
el e with which to evaluate wrt u
(typically: i=interval then
knot[i]<= u < knot[i+1])
int[3] -iveieeniens evaluation point;
U e h depending on control[] values,
this point will be in R3 OT R4h
i ; AT if control[0]=1 then this 1s‘t e
ponit rational weight associated with
the point
g
Problems

B-spline curve, does symmetry of the

f : ametric of the
1 For the case of a planar para e e

is 1 / same s
polygon with respect to the y-axis imply that

*2 Derive (8.16) from (8.10).

i s of deg
i ézier poi he closed B-spline curves o
*3 Find the Bézier points of t t;:edges D have () .
uniform knot spacing and knots all wit

ree four whose

uniform knot
control polygons consist of

spacing and simple knots and (b)
multiplicity two.

= n ror 'Spllne Curves.
I I [_]SL dE bOO] b 10 som Tt rogra de ree Lle‘- atio f) B
s D p o m g

9.1

Constructing Spline
Curves

A spline is a flexible rod of wood or plastic. It has its origins in shipbuilding,
where splines were used to draft the curves (ribs) that define a ship body. Early
uses go back to the 1600s, and are documented in [450]. Although mechanical

splines are used less frequently now, the underlying principle still gives rise to
new algorithms.

Greville Interpolation

In Chapter 7, we saw how to pass a polynomial curve of degree # through
7+ 1 data points py,. .., p, with parameter values #j,...,t,. The key to the
solvability of the problem was simple: the number of knowns (the data points
with parameter values) had to equal the number of unknowns (the polynomial
coefficients).

Something quite analogous happens in a spline context. A spline curve of
degree # is defined over a knot sequence u, ..., ug. Such a knot sequence has
K — 7+ 2 Greville abscissae & and hence the spline curvehas L+ 1=K —n 42
B-spline control points d,, . . . ,dj.

In view of these numbers, the following is a meaningful interpolation problem:

Given: A knot sequence u, . . . s #g and a degree #, also a set of data points
Po---prwithL=K —#n+1,

Find: A set of B-spline control points dy, ..., d; such that the resulting curve
X () satisfies

x{é(')__"pf; 'i__‘oa---:L‘ {9]}

- o ey
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