Curves and Surfaces
for CAGD

A Practical Guide
Fifth Edition

Gerald Farin
Arizona State University

AAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAA

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
OOOOOOOOOOOOOOOOO

5.1

The Bernstein Form
of a Bézier Curve

pon
IS

Bézier curves can be defined by a recursive algorithm, which is how de Casteljau
first developed them. It is also necessary, however, to have an explicit represen-
tation for them; this will facilitate further theoretical development considerably.

Bernstein Polynomials

We will express Bézier curves in terms of Bernstein polynomials, defined explicitly
by

B/(t) = (’?)m -1, (5.1)
[

where the binomial coefficients are given by

i 0 else.

There is a fair amount of literature on these polynomials. We cite just a few:
Bernstein [53], Lorentz [399], Davis [133], and Korovkin [364]. An extensive
bibliography is given in Gonska and Meier [269].

Before we explore the importance of Bernstein polynomials to Bézier curves,
et us first examine them more closely. One of their important properties is that
they satisfy the following recursion:

BI(t) = (1~ B}~ (®) + tBI 7 (®) (5.2)
57

58 Chapter 5 The Bernstein Form of a Bézier Curve

with
Bi@)=1 (5.3)
and
B;.’(t) =0 for j¢{0,...,n}. (5.4)
The proof is simple:

Bt = (”) £(1— 1)
1

= (" - 1)ti(1 - 4 (" - 1)ti(l —)"
1 i—1

= (1 - B e) + BT @)

Another important property is that Bernstein polynomials form a partition of

unity:
-] n
! Y B®=1. (5.5)
i=0
-
- This fact is proved with the help of the binomial theorem:

n

1=[t+A-0"=) (’;)ti(l — 1" =) " Bl@.

=0 j=0

Figure 5.1 shows the family of the four cubic Bernstein polynomials. Note that
the B? are nonnegative over the interval [0, 1].

We are now ready to see why Bernstein polynomials are important for the
development of Bézier curves. Recall that a Bezier curve may be written as bz <">]
in blossom form. Since t = (1 —1t) - 0+ ¢ - 1, the blossom may be expressed as
b[(1 —#)- 0+t -1)<">], and now the Leibniz formula (3.22) directly yields

b(t) =b[t<">]=)_b;B](®) (5.6)
i=0

since b; = b[0<"~">, 1<*>] according to (4.9).

Figure 5.1

5.1 Bernstein Polynomials 59

A

Bernstein polynomials: the cubic case.

Similarly, the intermediate de Casteljau points b] can be expressed in terms of
Bernstein polynomials of degree 7:

bj(t) =) bi1;Bj(®). (5.7)
j=0

This follows directly from
b:(t) — b[0<n—r—i>, t<r>’ 1<i>]

and the Leibniz formula.

Equation (5.7) shows exactly how the intermediate point b} depends on the
given Bézier points b,. Figure 5.2 shows how these intermediate points form
Bézier curves themselves.

With the intermediate points bl at hand, we can write a Bézier curve in the
form

n—r

b™(t) =Y b{()BI (). (5.8)

=0

This is to be interpreted as follows: first, compute 7 levels of the de Casteljau
algorithm with respect to ¢. Then, interpret the resulting points b{(t) as control
points of a Bézier curve of degree » — r and evaluate it at £.

60 Chapter § The Bernstein Form of a Bézier Curve

Figure 5.2

5.2

ri‘
R e ,
8 AN
y m‘“‘“‘““"""’r"‘""r;w«(;f'{" %

o S
W+ Gy
(% t

The de Casteljau algorithm: 50 points are computed on a quartic curve, and the interme-
diate points b} are connected.

Properties of Bézier Curves

Many of the properties in this section have already appeared in Chapter 4. They
were derived using geometric arguments. We shall now rederive several of them,
using algebraic arguments. If the same heading is used here as in Chapter 3, the
reader should look there for a complete description of the property in question.

Affine invariance. Barycentric combinations are invariant under affine maps.
Therefore, (5.5) gives the algebraic verification of this property. We note again
that this does not imply invariance under perspective maps!

Invariance under affine parameter transformations. Algebraically, this prop-
erty reads

Y bBXt)= bB! (g—:—g) (5.9)
i=0 i=0

Convex hull property. This follows, since for ¢ € [0, 1], the Bernstein polynomi-
als are nonnegative. They sum to one as shown in (5.5). For values of ¢ outside
[0, 1], the convex hull property does not hold; Figure 5.3 illustrates.

5.2 Properties of Bézier Curves 61

@/

Figure 5.3 Convex hull property: a quartic Bézier curve is plotted for parameter values t € [-1,2].

Endpoint interpolation. This is a consequence of the identities

B*(0) = 8,9

B = 3y (5.10)

and (5.5). Here, §;; is the Kronecker delta function: it equals one when its
arguments agree, and zero otherwise.

Symmetry. Looking at the examples in Figure 4.4, it is clear that it does not
matter if the Bézier points are labeled by, by,...,b, orb,,b,_4,...,bg. The
curves that correspond to the two different orderings look the same; they differ
only in the direction in which they are traversed. Written as a formula:

Y bBI@®) =) b, Bi1-1. (5.11)
j=0 i=0

This follows from the identity
Br(t) =B _(1-1), (5.12)

which follows from inspection of (5.1). We say that Bernstein polynomials are
symmetric with respect to t and 1 —¢.

Invariance under barycentric combinations. The process of forming the Bézier
curve from the Bézier polygon leaves barycentric combinations invariant. For
a + B = 1, we obtain

Y (ab;+ Bc)Bl(t)=a) _bBi(®)+B) _ B/®). (5.13)
j=0 j=0

=0

In words: we can construct the weighted average of two Bézier curves either
by taking the weighted average of corresponding points on the curves, or
by taking the weighted average of corresponding control vertices and then
computing the curve.

This linearity property is essential for many theoretical purposes, the most
important one being the definition of tensor product surfaces in Chapter 14.
It is illustrated in Figure 5.4.

',‘;ll

nALY

62 Chapter 5 The Bernstein Form of a Bézier Curve

Figure 5.4 Barycentric combinations: the middle curve (black) is the average of the two outer curves
(gray).

Linear precision. The following is a useful identity:
S LBy =1, (5.14)
" 4

which has the following application: suppose the polygon vertices b; are
uniformly distributed on a straight line joining two points p and q:

b,.:(l—L)p—}—Lq; j=0,...,n
n n

B The curve that is generated by this polygon is the straight line between p and
‘ + q, that is, the initial straight line is reproduced. This property is called linear
precision.]

Pseudolocal control. The Bernstein polynomial B? has only one maximum and
- attains it at ¢ = i/n. This has a design application: if we move only one of
the control polygon vertices, say, b;, then the curve is mostly affected by this
change in the region of the curve around the parameter value /7. This makes
the effect of the change reasonably predictable, although the change does
affect the whole curve. As a rule of thumb (mentioned to me by P. Bézier),
the maximum of each BY is roughly 1/3; thus a change of b; by three units will
change the curve by one unit.

5.3 The Derivatives of a Bézier Curve

We start with an identity, closely resembling Leibniz’s formula for derivatives.
Let ¢ be a point on the real line, and let ¥ be a vector in the associated 1D linear

1 If the points are not uniformly spaced, we will also recapture the straight line segment.
However, it will not be linearly parametrized.

5.3 The Derivatives of a Bézier Curve 63

space. Then

n

bl(t + D)<= (’:)b[t<"-i>, 5<i>). (5.15)

i=0

This is an immediate consequence of the Leibniz formula (3.22).
The derivative of a curve x(z) is typically defined as

dx@ .. 1 _
5 _Ill_l)rz)h[x(t—{—h) x(®)).

We will be a little more precise and observe that ¢ is a 1D point, whereas b is a
1D vector. We thus denote it by b and obtain

dx(@) _ lim —1_—[x(t +h) — x(®)}.
dt j-0 |h] '

Invoking (5.15), we have

dX(t) : 1 “ n\Y [<n—i> L<i> <n>
= = lim — [;(,)b[t <1 —blt]]. (5.16)

b—0 |b| !

For i = 0, two terms b[¢<">] cancel. We expand the rest and factor in the term

|/;|:
dx(¢)

— fim (b |1, 2 +(")b A1
dt j-0 bl 2 |h|

We observe that % — 1. Taking the limit annihilates all other terms containing
; .

l;, and we thus have

dX(t) —1> 2
=nb[t<"""7, 1]. 5.17
o =" [] (5.17)

Figure 5.5 illustrates the cubic case.

From now on, we use the expression x(¢) for the first derivative.

This has two possible interpretations. For the first one, we perform a de
Casteljau step with respect to 1, and then # — 1 steps with respect to ; as an
equation:

n—1
X(t)=mn Z(b,+] — b’)B’;—](t)
j=0

nA Y

'

|

64

Chapter S The Bernstein Form of a Bézier Curve

Figure 5.5 Blossoms and derivatives: the underlying geometry.

This can be simplified somewhat by the introduction of the forward difference
operator A:

We now have for the derivative of a Bézier curve:

n-1
x@®)=nY)_ AbB"l(r); Ab;eR>. (5.19)
j=0

The derivative of a Bézier curve is thus another Bézier curve, obtained by differ-
encing the original control polygon. However, this derivative Bézier curve does
not “live” in E® any more! Its coefficients are differences of points, that is, vectors,
which are elements of R3. To visualize the derivative curve and polygon in E3, we
can construct a polygon in E3 that consists of the points a + Aby, . ..,a + Ab,_;.
Here a is arbitrary; one reasonable choice is a = 0. Figure 5.6 illustrates a Bézier
curve and its derivative curve (with the choice a = 0). This derivative curve is
sometimes called a hodograph. For more information on hodographs, see Forrest
[244], Bézier [59], or Sederberg and Wang [559].

For a second interpretation of (5.17), we first perform n — 1 steps of the
de Casteljau algorithm, resulting in the two points b;’"l(t) and bg_l(t). Now
performing one step with respect to 1 yields (after multiplication by n):

x(t) = n(b]12) — b3 ®)). (5.20)

Thus the first derivative vector is a “byproduct” of the de Casteljau algorithm;
see Figure 4.2. The de Casteljau algorithm is not the fastest way to evaluate a
Bézier curve, but this property makes it a desirable tool: very often, we not only
need a point on a curve, but the derivative vector as well. Using (5.20), we get
both in parallel. The two ways of computing the derivative are shown in Example
5.1.

5.3 The Derivatives of a Bézier Curve 65

I\

Ab,

Figure 5.6 Derivatives: a Bézier curve and its first derivative curve (scaled down by a factor of three).
Note that this derivative curve does not change if a translation is applied to the original
curve.

Example 5% Two ways to compute derivatives.

To compute the derivative of the Béziér curve from Example 4.1, we could
form the first differences of the control points and evaluate the corresponding
quadratic curve at t = 1/2:

0

2

o] 1]
=] (5] o]

Alternatively, we could compute the difference b% - b%:

HEHE!

In both cases, the result needs to be multiplied by a factor of 3.

Higher derivatives follow the same pattern:

d"x(t) n e o
= b[t<""",1°""]. 5.21
der (n—1)! [] ()

P L2

i

'

66 Chapter S The Bernstein Form of a Bézier Curve

To compute these derivatives from the Bézier points, we first generalize the
forward difference operator (5.18): the iterated forward difference operator A"
is defined by

A'b; = A""'b; gy — A", (5.22)
We list a few examples:

A%; =b,

A'b;=b; 1 —b;

A%b;=b;;; — 2b;; +b;

A%b; =bjy3— 3b;yy + 3bjyy — by,

The factors on the right-hand sides are binomial coefficients, forming a Pascal-
like triangle. This pattern holds in general:

Ab;=) (;>(—1)'—ibi+j. (5.23)

=0

The ' derivative of a Bézier curve is now given by

d’ !
Ly = b.B" (1) 24
wYO=" ’§=0:Ab,Bl ®) (5.24)

Two important special cases of (5.24) are given by t = 0 and ¢ = 1. Because of
(5.10), we obtain

d" n!

—b*(0) = Ab 5.25

7 0) oo ()
and

d” n!

—b*(1) = A™b,,_.. 5.26

ar- (n—nt "7 (-26)

Thus the 7 derivative of a Bézier curve at an endpoint depends only on the 7 + 1
Bézier points near (and including) that endpoint. For 7 = 0, we get the already
established property of endpoint interpolation. The case 7 = 1 states that by and

A

5.3 The Derivatives of a Bézier Curve 67

Figure 5.7 Endpoint derivatives: the first and second derivative vectors at ¢ = 0 are multiples of the
first and second difference vectors at by,.

b, define the tangent at ¢ = 0, provided they are distinct.? Similarly, b,_; and b,
determine the tangent at ¢ = 1. The cases 7 = 1, 7 = 2 are illustrated in Figure 5.7.

If we know all derivatives of a function at one point, corresponding to ¢t = 0,
say, we can generate its Taylor series. The Taylor series of a polynomial is just
that polynomial itself, in the monomial form:

v .
x0 =Y %xo>(0)ti_ -~
=0 T* <
o
Using (5.25), we have . i 14
b=y (") Alby . (5.27)
—~\j
=0

The monomial form should be avoided wherever possible; it is very unstable
for floating-point operations.
If x(¢) is defined over an interval [a, b), (5.17) becomes

dx(¢) »

b[t<""1>_1]. 5.28
” 2 [] ()

2 In general, the tangent at by is determined by by and the first b; that is distinct from by
Thus the tangent may be defined even if the tangent vector is the zero vector.

“

LY}

68 Chapter S The Bernstein Form of a Bézier Curve

5.4 Domain Changes and Subdivision

A Bézier curve b” is usually defined over the interval (the domain) [0, 1], but it can
also be defined over any interval [0, c]. The part of the curve that corresponds to
{0, c] can also be defined by a Bézier polygon, as illustrated in Figure 5.8. Finding
this Bézier polygon is referred to as subdivision of the Bézier curve.

The unknown Bézier points c; are found without much work if we use the
blossoming principle from Section 4.4. There, (4.11) gave us the Bézier points
of a polynomial curve that is defined over an arbitrary interval [a, b]. We are
currently interested in the interval [0, ¢], and so our Bézier points are:

;= b[0<n—i>, C<i>].

Thus each ¢; is obtained by carrying out i de Casteljau steps with respect to ¢, in
nonblossom notation:

¢; =b(©). (5.29)

This formula is called the subdivision formula for Bézier curves.

Thus it turns out that the de Casteljau algorithm not only computes the point
b”(c), but also provides the control vertices of the Bézier curve corresponding to
the interval [0, c]. Because of the symmetry property (5.11), it follows that the

control vertices of the part corresponding to [c, 1] are given by the b;.'_j . Thus,

in Figures 4.1 and 4.2, we see the two subpolygons defining the arcs from b”(0)
to b*(¢) and from b*(z) to b"(1).

Instead of subdividing a Bézier curve, we may also extrapolate it: in that case,
we might be interested in the Bézier points d; corresponding to an interval [1, d].
They are given by

d; = b[1"7>, <7 = bﬁl_j(d).

It should be mentioned that extrapolation is not a numerically stable process,
and should be avoided for large values of d.

Subdivision for Bézier curves, although mentioned by de Casteljau [146],
was rigorously proved by E. Staerk [578]. Our blossom development is due to
Ramshaw [498] and de Casteljau [147].

Subdivision may be repeated: we may subdivide a curve at ¢ = 1/2, then split
the two resulting curves at ¢t = 1/2 of their respective parameters, and so on. After
k levels of subdivisions, we end up with 2% Bézier polygons, each describing a
small arc of the original curve. These polygons converge to the curve if we keep
increasing k, as was shown by Lane and Riesenfeld [369].

Convergence of this repeated subdivision process is very fast (see Cohen and
Schumaker [123] and Dahmen [131]), and thus it has many practical applica-

5.4 Domain Changes and Subdivision 69

b,
b,
/ “ C3
¢y
b

0 Co b3

t 4, M|

0 c 1

Figure 5.8 Subdivision: two Bézier polygons describing the same curve: one (the b;) is associated with
the parameter interval [0, 1], the other (the ¢;) with [0, c].

tions. We shall discuss here the process of-intersecting a straight line with a Bézier
curve. Suppose we are given a planar Bézier curve and we wish to find intersection
points with a given straight line L, if they exist.

If the curve and L are far apart, we would like to be able to flag such
configurations as quickly as possible, and then abandon any further attempts
to find intersection points. To do this, we create the minmax box of the control
polygon: this is the smallest rectangle, with sides parallel to the coordinate axes,
that contains the polygon. It is found very quickly, and by the convex hull
property of Bézier curves, we know that it also contains the curve. Figure 5.9
gives an example.

Having found the minmax box, it is trivial to determine if it interferes with
L; if not, we know we will not have any intersections. This quick test is called
trivial reject.

Now suppose the minmax box does interfere with L. Then there may be an
intersection. We now subdivide the curve at ¢ = 1/2 and carry out our trivial
reject test for both subpolygons.? If the outcome is still inconclusive, we repeat.
Eventually the size of the involved minmax boxes will be so small that we can
simply take their centers as the desired intersection points.

The routine intersect employs this idea, and a little more: as we keep sub-
dividing the curve, zooming in toward the intersection points, the generated
subpolygons become simpler and simpler in shape. If the control points of a

Hig o

RA.1L

3 The choice t = 1/2 is arbitrary, but works well. We might try to find better places to
subdivide, but it is cheaper to just perform a few more subdivisions instead.

o\

-

70 Chapter 5 The Bernstein Form of a Bézier Curve

Figure 5.9 The minmax box of a Bézier curve: the smallest rectangle that contains the curve’s control
polygon.

C

N\

Ry S IR 2 A -7

O

Figure 5.10 Subdivision: finding the intersections of a curve with a line (dashed). Note the clustering
of minmax boxes near the intersection points.

polygon are almost collinear, we may replace them with a straight line. We could
then intersect this straight line with L in order to find an intersection point. The
extra work here lies in determining if a control polygon is “linear” or not. In our
case, this is done by the routine checkflat. Figure 5.10 gives an example. Note
how the subdivision process finds all intersection points. These points will not,
however, be recorded by increasing values of z.

Figure 5.11

5.

5

.

5

5.5 Composite Bézier Curves 71

Font design: the characters in this book are stored as a sequence of cubic Bézier curves.

Composite Bézier Curves

Curves may be composed of several Bézjer curves in order to generate shapes
that are too complex for a single Bézier curve to handle. For example, Figure
5.11 shows how composite Bézier curves may be used in font design.*

In piecing Bézier curves together, we need to control the smoothness of the
resulting curve. Let by, ..., b3 and b, . .., bg be the Bézier points of two cubic
curve segments x_ and x, . Since they both share the point b, they clearly form
a continuous, or CY, curve. With this minimal continuity requirement, the two
curves may form a corner; for several examples, see Figure 5.11.

But if we want to ensure that the two pieces meet smoothly, more care is called
for. Based on our knowledge of endpoint derivatives from Section 5.3, the three
points b, b3, b, must be collinear. That condition ensures that the tangent’ at
b; is the same for both curves. Again, consult Figure 5.11 for examples. Curves
with a continuously changing tangent are called G, or first-order geometrically
continuous; see Chapter 11.

A stronger condition is to require that the two curve segments form a Cl, or
continuously differentiable curve. Since the derivative of a curve (more precisely,
the length of the derivative vector) depends on the domain of the curve, we need to
introduce domains for our two curve segments. We adopt the convention that x_
is defined over an interval [, b] and that x, is defined over [b, c]. The derivatives

This book was printed using the PostScript language. It represents all characters as
piecewise cubic Bézier curves in order to have a scalable font set. As-an estimate, the
text in this book is made up using about 10 million cubic Bézier curves.

By “tangent,” we refer to the tangent line, not to the derivative vector!

W

nNALY

%
A
|

B

3

LI}

72

Chapter 5 The Bernstein Form of a Bézier Curve

Figure 5.12

Figure 5.13

y
[I i
1R 5 4
N,
P28
N ¥
~ ‘ A b3
b,
t <3 T x
¢ b a
Composite curves: a C® example.
y
) b 3
b,
.
. I)\
A
¥ X 3
b,
1 =<3 m X
c b a

Composite curves: a C! example.

of both segments at parameter value b are now obtained using (5.28):

3 3
3 [by—b,]=
b—J3 2] o

[bs — bs). (5.30)
A geometric interpretation is that the ratio of the three points by, bs, b, is the
same as the ratio of the three parameter values a, b, c. This is a much stronger
condition than that for G! continuity above!

Figures 5.12 and $5.13 illustrate this difference. The composite parametric
curves—in the x, y-coordinate systems—are identical. The difference is their
domains: in Figure 5.12, we chose 4, b, c = 0, 1, 2. Thus ratio(a, b, c) = 1 while
the figure suggests that ratio(b,, b3, bs) = 1/3. Hence the composite curve is not
C1, despite the collinearity of the points by, b3, by. This is demonstrated by the
cross plot (y-part only): each component must form a C! function for a curve to
be C!. Clearly, the y-component is not C1. ;

If we adjust the domain, however, such that the range geometry is reflected by
the domain geometry, we can achieve Cl. This is shown in Figure 5.13, where
now ratio(a, b, ¢) = 1/3. This results in C! components, and hence also in a o
composite curve.

5.6

5.6 Blossom and Polar 73

Higher-order smoothness of composite curves is best dealt with in the context
of B-spline curves and blossoms; see Section 8.7.

Blossom and Polar

After the first de Casteljau step with respect to a paramieter value ¢4, the resulting
b2, - -5 b!_(t;) may be interpreted as a control polygon of a curve py(¢) of
degree 7 — 1. In the blossoming terminology from Section 4.4, we can write:

p1() =bfty, <"1,

Invoking our knowledge about derivatives, we have:

|
-

n

pi®) =Y [(1 = tp)b; + 111 B} (1)
i=0
n—1 1 ‘
=37 [= tpb; + t1b;y = b} (®)]BI (@) + > b!@®)B7 ' (t)
i=0 i=0

n—1 n—1
= (= 1) Y _[biy1 —bJBI @) +) bj®B;).
=0 i=0

Therefore,

ty—t
n

p1(t) =b(@) + -&d—tb(t). (5.31)

The polynomial py is called first polar of b(z) with respect to #;. Figure 5.14
illustrates the geometric significance of (5.31): the tangent at any point b()
intersects the polar at p;(¢). Keep in mind that this is not restricted to planar
curves, but is equally valid for space curves!

For the special case of a (nonplanar) cubic, we may then conclude the follow-
ing: the polar p; lies in the osculating plane (see Section 11.2) of the cubic at b(ty).
If we intersect all tangents to the cubic with this osculating plane, we will trace
out the polar. We can also conclude that for three different parameters ty, 25, 3,
the blossom value b{t;, t5, 23] is the intersection of the corresponding osculating
planes.

Another special case is given by b[0, #<""1>: this is the polynomial defined
by by, . . . , b,,_1. Similarly, b[1,£<"~1>]is defined by by, . . . , b,,. This observation
may be used for a proof of (4.9).

nA L\

74 Chapter 5 The Bernstein Form of a Bézier Curve

Figure 5.14 Polars: the polar p;(#) with respect to ¢; = 0.4 is intersected by the tangents of the given

5.7

curve b(z).

Returning to the general case, we may repeat the process of forming polars,
thus obtaining a second polar py,(¢) =bl#y, 1, t<"=2>], and so on. We finally
arrive at the »™ polar, which we have already encountered as the blossom
b[ty, . . . t,] of b(#). The relationship between blossoms and polars was observed
by Ramshaw in [499]. The preceding geometric arguments are due to S. Jolles,
who developed a geometric theory of blossoming as early as 1886 in [346].6

The Matrix Form of a Bézier Curve

Some authors (Faux and Pratt [228], Mortenson [433], Chang [106]) prefer to
write Bézier curves and other polynomial curves in matrix form. A curve of the
form

x(®) =Y G

=0
can be interpreted as a dot product:

Co(®)
x()=[cg ... ¢,] :
C. (@)

One can take this a step further and write

W. Boehm first noted the relevance of Jolles’s work to the theory of blossoming.

5.8

5.8 Implementation 75

Co(t) mog ... Mgy 10
o= o : - (5.32)

C,(®) Myg ... My, "

The matrix M = {m;} describes the basis transformation between the basis poly-
nomials C;(t) and the monomial basis t'.
If the C; are Bernstein polynomials, C; = B7, the matrix M has elements

mi = (—1)i_i(?) (1)3 (5.33)

a simple consequence of (5.27).
We list the cubic case explicitly:

1 -3 3 -1
0 3 —6 3
M=14y 0o 3 -3
0 0 0 1

The matrix form (5.32) does not deseribe an actual Bézier curve; it is rather
the monomial form, which is numerically unstable and should be avoided where
accuracy in computation is of any importance. See the discussion in Section 24.3
for more details.

Iimplementation

First, we provide a routine that evaluates a Bézier curve more efficiently than
decas from the last chapter. It will have the flavor of Horner’s scheme for the
evaluation of a polynomial in monomial form. To give an example of Horner’s
scheme, also called nested multiplication, we list the cubic case:

cypt+ici+ t2C2 + t3C3 =y + tlcg + t(cy + tc3)l

A similar nested form can be devised for Bézier curves; again, the cubic case:

=[G+ Q)] G ()

where s = 1 — ¢. Recalling the identity

()= (7) o
! 1 i—1

76 Chapter S The Bernstein Form of a Bézier Curve

we arrive at the following program (for the general case):

float hornbez(degree,coeff,t)
/* uses a Horner-like scheme to compute one coordinate
value of a Bezier curve. Has to be called
for each coordinate (x,y, and/or z) of a control polygon.
Input: degree: degree of curve.
coeff: array with coefficients of curve.
t: parameter value.
Output: coordinate value.

*/

To use this routine for plotting a Bézier curve, we would replace the call to decas
in bez_to_points by an identical call to hornbez. Replacing decas with hornbez
results in a significant savings of time: we do not have to save the control polygon
in an auxiliary array; also, hornbez is of order #, whereas decas is of order n?.

This is not to say, however, that we have produced superefficient code for
plotting points on a Bézier curve. For instance, we have to call hornbez once for
each coordinate, and thus have to generate the binomial coefficients n_choose_i
twice. This could be improved by writing a routine that combines the two calls. A
further improvement could be to compute the sequence of binomial coefficients
only once, and not over and over for each new value of ¢. All these (and possibly
more) improvements would speed up the program, but would be less modular
and thus less understandable. For the code in this book, modularity is placed
above efficiency (in most cases).

We also include the programs to convert from the Bézier form to the monomial
form:

void bezier_to_power(degree,bez,coeff)
/*Converts Bezier form to power (monomial) form. Works on
one coordinate only.

Input: degree: degree of curve,
bez: coefficients of Bezier form
Qutput: coeff: coefficients of power form.

Remark: For a 2D curve, this routine needs to be called twice,
once for the x-coordinates and once for y.

*/

The conversion program internally calls iterated forward differences:

5.8 Implementation 77

void differences(degree,coeff,diffs)
/*
Computes all forward differences Delta™i(b_0).
Has to be called for each coordinate (x,y, and/or z) of a control polygon.
Input: degree: length (from 0) of coeff.
coeff: array of coefficients.
Qutput: diffs: diffs[i]= Delta”i(coeff[0]).
*/

Once the power form is found, it may be evaluated using Horner’s scheme:

float horner(degree,coeff,t)

/*
uses Horner's scheme to compute one coordinate
value of a curve in power form. Has to be called
for each coordinate (x,y, and/or z) of a control polygon.
Input: degree: degree of curve.
coeff: array with coefficients of curve.
t: parameter value.
Qutput: coordinate value. =
*/

The subdivision routine:

void subdiv(degree,coeff,weight,t,b]eft,bright,w]eft,wright)
/*

subdivides ratbez curve at parameter value t.

Input: degree: degree of Bezier curve
coeff: Bezier points (one coordinate only)
weight: weights for rational case
t: where to subdivide

Output:

bleft,bright: left and right subpolygons
wleft,wright: their weights

Note: 1. For the polynomial case, set all entries in weight to 1.
2. Ordering of right polygon bright is reversed.

*/

Actually, this routine computes a more general case than is described in this
chapter; namely, it computes subdivison for a rational Bézier curve. This will be

78

Chapter 5 The Bernstein Form of a Bézier Curve

discussed later; if the entries in weight are all unity, then wieft and wright will
also be unity and can be safely ignored in the context of this chapter.

Now we present the routine to intersect a Bézier curve with a straight line (the
straight line is assumed to be the x-axis):

void intersect(bx,by,w,degree,tol)

/* Intersects Bezier curve with x-axis by adaptive subdivision.
Subdivision is controlled by tolerance tol. There is
no check for stack depth! Intersection points are not found in
'natural’ order. Results are written into file outfile.

Input: bx,by,w: rational Bezier curve

degree: its degree

tol: accuracy for results
Output: intersection points, written into a file
*/

This routine (again covering the rational case as well) uses a routine to check
if a control polygon is flat:

int check_flat(bx,by,degree,tol)

/* Checks if a polygon is flat. If all points
are closer than tol to the connection of the
two endpoints, then it is flat. Crashes if the endpoints
are identical.

Input: bx,by, degree: the Bezier curve
tol: tolerance
Qutput: 1 if flat, 0 else.

*/

5.9 Problems

1 Consider the cubic Bézier curve given by the planar control points

LIIBIEST

At t = 1/2, this curve has a cusp: its first derivative vanishes and it shows
a sharp corner. You should verify this by a sketch. Now perturb the
x-coordinates of b; and b, by opposite amounts, thus maintaining a sym-
metric control polygon. Discuss what happens to the curve.

2

3

*4

P1
P2

P3

5.9 Problems 79

Show that a nonplanar cubic Bézier curve cannot have a cusp. Hint: use
the fact that bg_l, b’f‘l, bjj are identical when we evaluate at the cusp.

Show that the Bernstein polynomial B attains its maximum at ¢ = ¢/#. Find
the maximum value. What happens for large n?

Show that the Bernstein polynomials B? form a basis for the linear space
of all polynomials of degree #.

Compare the run times of decas and hornbez for curves of various degrees.

Use subdivision to create smooth fractals. Start with a degree four Bézier
curve. Subdivide it into two curves and then perturb the middle control
point b, for each of the two subpolygons. Continue for several levels. Try
to perturb the middle control point by a random displacement and then by
a controlled displacement. Literature on fractals: [35], [411].

Use subdivision to approximate a high-order (n > 2) Bézier curve by a
collection of quadratic Bézier curves. You will have to write a routine
that determines if a given Bézier curve may be replaced by a quadratic one
within a given tolerance. Literature on approximating higher-order curves
by lower-order ones: [336], [341]

el
”.

i
kT

