Triangulating a Polygon

Recall: PSLG = Planar Straightline graph.

Def (Simple) **Polygonal chain** is a PSLG consisting of a simple cycle P.

Claim A Polygonal chain has a unique interior.

Def Polygon is Polygonal chain + interior

Triangulation: Addition of seg so that

1) Still PSLG
2) Interior is decomposed into triangles
Theorem: Every simple polygon can be triangulated.

Proof: Induct on # of edges n.

Base case: $n = 3$

Assume no 180° in $n < 3$ true for $m < n$.

Let v be left most point with neither w nor u.

1) Case 1: $\deg = [w, u]$ is interior

 We get two Poly $|P_1| = 3$ $|P_2| = n - 1$

2) Case 2: 3 point v' interior to $Tri = [v, v', u]$

 Let v' be left most such point.

 $\deg = [v, v']$ is interior

 $|P_1| < n$ and $|P_2| < n$.
Thm: Not every simple polygonal surface in 3D can be decomposed into tetrahedra.

Example: Prism xyz with twist top.

By CONTRA:
Consider Tet with faces B.

Missing vertex in x or y not z.

Not x since seg $[a,x]$ is outside.

Not y since seg $[g,y]$ is outside.

In general: Test if polygonal surface is decomposable in NP-Hard.
Guarding A Polygon

Input: Polygon P

Output: Locations $p_1, \ldots, p_k \in P$ (guards)

1) Guards cover P
2) k small.

Thm. A polygon P with n vertices

$\frac{n}{3}$ guards suffice and maybe necessary.

Necessary.

$|P| = 12$ needs a guard per prong.

$\frac{n}{3}$ prongs
$\frac{3}{2}$-guards Alg (\mathcal{P})

1) Tri \mathcal{P} $\overline{\mathcal{P}}$
2) 3-color $\overline{\mathcal{P}}$
 a) Construct geometric dual T (on degree 3 tree)
 b) 3-color $\overline{\mathcal{P}}$ by traversing tris in an
 inorder fashion.
3) Pick least used color.

Only non-linear time step is 1)
2D-Algorithm

Proof \Rightarrow O(n^2)

Known: O(n) Chazelle

today: O(n \log n) \text{ (sweep line)}

Thin Class: O(n \log^* n) Seidel (incremental randomized)

Def \log^* n = \min_k \log \log \ldots \log n \leq 1

(Prob. Give a O(n) time alg to determine which side of
an edge is interior/exterior)

(Prob. test P \in \text{Int}(P) \text{ in } O(n) \text{ time})

3.14 O(n \log n) O.K

O(n) ?

\text{Trap} \Rightarrow \text{Tr}^1
Step 1: Partition into Monotone Polygons

Definition: Y-monotone if
Every horizontal line l
\(l \cap P \) is connected or empty

Alg Type: Line Sweep

\(O(n \log n) \) time

- \(\square \): Start vertex
- \(\blacksquare \): End
- \(\circ \): Seq
- \(\triangle \): Split
- \(\triangledown \): Merge
Claim \(P \) is \(y \)-monotone iff no split or merge vertices.

\[(\Rightarrow) \text{ (easy)} \]

\[(\Leftarrow) \text{ (not mono } \Rightarrow \text{ split or merge)} \]

Assume not mono

\[\quad \quad \quad \quad \quad \]

\[\text{Case 1} \]

\[\quad \quad \quad \quad \quad \]

\[\text{Case 2} \]

\[\quad \quad \quad \quad \quad \]
Alg: Sweep Line (top-to-bottom)

Events: endpoints

Dictionary: Intervals (sorted)

Interval: (left-seg, right-seg, helper vertex)

vertex: 2 edges before l after

Def: helper(l, e') = lowest vertex above l and between e & e'

no horizontal seg.

Procedure: add(l, e) = add seg from p to e if [l, e] not already an edge.
Make Monotone (G, event)

Case (Start Vertex)
 1) Add new interval
 2) set helper ∈ G

Case (End Vertex)
 if helper is a merge vertex then add (G, helper)
 2) remove interval

Case (Regular)
 \[e \quad e' \]
 1) add (G, helper)
 2) replace e with e''
 3) helper ∈ G

Case (Split)
 1) add (G, helper)
 2) "split" interval say I_1, I_2
 3) helper(I_1) = helper(I_2) ∈ G
Case (Merge)

1) \text{add}(\text{help}_L, g); \text{add}(\text{help}_R, g)

2) "Merge" intervals

3) help = g
Another View

1) Make Trapezoidal Decom (sweep line)
2) For each trap add a diagonal if possible
3) Types of Traps