Chernoff Bounds for Traps

Let X_1, \ldots, X_t be independent 0/1 random variables.

Assume $\Pr(X_i = 1) = p$.

The binomial random variable is $S_n^p = X_1 + \cdots + X_t$.

$$\Pr(S_n^p \in (1-\beta)p^t, \beta p^t)$$

$$\text{Expect}(S_t^p) = \sum E(X_i) = p \cdot t$$
Theorem 2

\[\text{Prob}\left(S_t^p < (1-\beta)p_t \right) < e^{-\beta^2 p_t/2}, \quad \forall 0 \leq \beta < 1 \]

\[\text{Prob}\left(S_t^p > (1+\beta)p_t \right) < e^{-\beta^2 p_t/2}, \quad \forall 0 \leq \beta < 2 \]
Theorem

If N non-crossing bars separate queries, query q, $\lambda > 0$

\[\text{Prob}(\text{search}(q) > 3\lambda \ln(n+1)) \leq \frac{1}{(n+1)^{\lambda \ln(1.25)-1}} \]

Proof

Let Z be random variable # nodes on search path.

Goal: Write Z as sum of independent variables.

Consider DAG of all subsets of $\{1, 2, \ldots, N\}$

![Diagram of a DAG with subsets](attachment:diagram.png)
Each path in an insertion order!

Mark edge if trap contains 9 changes.

Indegree \leq 4 by BA

Mark more edges for \(i \geq 4 \) so indeg is 4.

Def \(X_i = \begin{cases} 1 & \text{if } \text{ith edge is marked} \\ 0 & \text{otherwise} \end{cases} \)

\(z \leq 3y \) where \(Y = \sum X_i \)

Goal's bd \(\Pr \left[Y \geq 1.1 n \ln(n+1) \right] \)

Thm (Markov) \(\Pr \left[X \geq x \right] = \frac{E[X]}{x} \quad x \geq 0 \)
\[E(Y) = \sum E(X_i) = 4H_n \]

\[E(X_i) \leq \frac{4}{i} \quad (i \text{ small ?}) \]

Note: \(X_i \) are i.i.d.

\[\text{Chernoff: } \quad \text{Prob} \left(Y > (1+\beta)E(Y) \right) \leq e^{-\beta^2 \frac{4}{3} H_n} \]

\[= (e^{H_n})^{-\frac{4}{3} \beta^2} \quad \text{Wolfram: } \quad e^{H_n} \leq n+1 \]

\[\leq \frac{1}{(n+1)^{\frac{4}{3} \beta^2}} \quad (\text{Concentration}) \]

Claim: At most \(2/(n+1)^2 \) different \(g \)s.

Proof: \(2(n+1) \) slabs using \(2(n+1) \) endpoints

Each slab has \((n+1) \) traps

Note: \(2g \) in each trap have same search!
Prob that some search is more than

\[(1+\beta)^4 A_n \in \frac{1}{(n+1)^{\frac{3}{2}\beta - 2}}\]

Pick \(\beta \) s.t. \(\frac{3}{2}\beta - 2 \geq 1 \)

\[\frac{3}{2}\beta \geq 3\] or \(\beta \geq \frac{3}{2} \)

\[\beta^* = \frac{3}{2}\]