1 Using Cell-Chains

In class we proposed using Cell-Chains to represent topological information. Let \(d \) be the dimension of the representation of a cell complex \(\mathcal{T} \). In this data structure we will maintain the boundary map (the poset) as well as the switch operators \(\alpha_0, \ldots, \alpha_d \).

1. Let \(F \) be a \(d - 1 \)-dimensional cell in \(\mathcal{T} \). Describe the code for updating the data structure to remove \(F \) from \(\mathcal{T} \) and merge the two \(d \)-dimensional faces containing \(F \).

2. Let \(F \) be a \(d \)-dimensional cell in \(\mathcal{T} \). Describe the code for updating the data structure to add a new point \(p \) interior to \(F \). The cell \(F \) should be removed and a new \(d \)-dimensional cell should be added for each \(d - 1 \)-dimensional common to \(F \). These new cells should each contain \(p \).

Hint: Try each of these problems for \(d = 2 \) and \(d = 3 \) first.

2 Triangulating a Trapezoidal Decomposition

Let \(\mathcal{P} \) be a planar straight line graph and \(\mathcal{T} \) a trapezoidal decompositions of \(\mathcal{P} \). Show how to triangulate \(\mathcal{P} \) in \(O(n) \) time using \(\mathcal{T} \).

3 Star Shaped Polygons

A polygon \(\mathcal{P} \) is star shaped if there exists a point in the interior of \(\mathcal{P} \) that can see all of the interior.

1. Give an \(O(n) \) expected time algorithm to determine if a simple polygon of size \(n \) is star shaped.

2. Give a \(O(\log n) \) time algorithm for determining if a point \(q \) is in a star shaped polygon \(\mathcal{P} \). We assume that the the vertices of \(P \) are given in CW order and that we are also given a point \(p \) that can see all of the interior \(P \).

4 Trapezoidal Map for Intersecting Segments

Give an \(O(n \log n + k) \) expected time algorithm for computing a Trapezoidal-Map for a set of \(n \) line segments where the number of segment intersections is \(k \). You may assume that the segments are all in general position and none are vertical.
5 Circular Partition

Given a set of red points \(R \) and a set of green point \(G \) in the plane give an algorithm to find a disk \(D \) such that \(G \subset D \) and \(R \cap D = \emptyset \) if one exists. Your algorithm should run in expected linear time in the size of \(R \) and \(G \).