Graph Rigidity

Def. G is rigid in \mathbb{R}^2 if some embedding is infinitesimally rigid.

Laman: G is minimally rigid iff

1) $m = 2n - 3$
2) $\forall H \subseteq G$ $m' \leq 2n' - 3$

$K_{3,3}$

Prim

not inf-rigid

inf-rigid
Let G be infinitely rigid if

$$\forall v = (v_1, \ldots, v_n) \in \mathbb{R}^n \text{ if } (v_i - v_j) \cdot (p_i - p_j) = 0 \quad \forall (i, j) \in E$$

then $V \equiv 0$

Let G be minimally rigid if

G is inf-rigid & $G \not\in \text{ not } \text{Vec} E$.
Lovász-Yemini 82: \(G \) is minimally rigid iff \(G + \text{edge} \cong 2 \text{ edge disjoint spanning trees.} \)
Henneberg 1860: G is min rigid iff
G can be obtained using Henneberg's rules

Rule 0: Start with an edge.
Rule 1: Add vertex of degree 2

Rule 2: 1) Remove (v,w)
2) Add x adjacent to v,w, if $e \not\in V$

Diagram:

```
es

[Diagram of a triangle with vertices connected to form a larger triangle, then to a simpler structure]
```
Claim: If the embedded graph \(m < 2n - 3 \) then \(T \) is not rigid.

\[V = \{ v_1, \ldots, v_n \} \] is not a rigid motion.

\[(v_i - v_j) \cdot (p_i - p_j) = 0 \quad \forall (i, j) \in E \]

\[\begin{pmatrix}
 V_1^x \\
 V_1^y \\
 \vdots \\
 V_n^x \\
 V_n^y
\end{pmatrix} = \begin{pmatrix}
 0 \\
 0 \\
 \vdots \\
 0 \\
 0
\end{pmatrix} \]

\(m + 3 < 2n \) done!
Lemma 6. If G is Laman then G has a Henneberg construction.

By Induction on n. $n > 3$

$m = 2n - 3 \quad \forall v \in V$ of degree ≤ 3

If $\deg(v) = 2$ remove it

Then $G \setminus v$ is Laman

If $\deg(v) = 3$ then $G \setminus v \quad m' = 2n' - 4$

then G' is not rigid

Compute maximal rigid components of G'

G'_1, \ldots, G'_x

v must attach to at least 2 G'_i

else $G' \cup \{v\}$ has too many edges.
Pseudo-Tri & Rigidity

Pseudo-tri examples

Pseudo-Δ

Vertex types
convex - corners
straight
reflex

inside is P-3-gon
outside is P-4-gon

Pseudo-triangulation (including CH) P-Δ

Triangulating a Polygon
Suppose G is embedded planar.

Def: A vertex is **pointed** if some angle at x is reflex.

G is **pointed** if all $v_e V$ are pointed.
Lemma: If T is a $P\Delta$ of n points P then

$$m = |E(T)| = 2n - 3$$

$$t = \#\Delta\cap T \quad m = \#\text{edge}$$

Euler: $t - m + n = 1$ (no outside face)

$$\#\text{angles} = 2m$$

$$\#\text{corners} = 2m - n \quad (\text{pointed condition})$$

$$3t = 2m - n$$

Euler: $3t - 3m + 3n = 3$

$$2m - n - 3m + 3n = 3$$

$$-m + 2n = 3$$

$$m = 2n - 3$$
Theorem: Since pointed PD of a CH theorem
is rigid.

We consider dual problem!

Maxwell lifting

Claim: If f is a lifting of a face F & P is a reflex vertex of F then

$P \in \operatorname{Max}(F)$ iff f on F is constant.
Thm If G is a pointed \mathcal{P}_Δ & $e \in \text{CH}(G)$ then expanding e gives an expansive motion of G.
Converting a Polygon

Alg (R polygon)

1) Add struts to & forming pointed PD (convex)
2) While 3 struts s on CH do
 a) Expand s until some pair e & e' are straight
 b) If e & e' Bars then freeze e & e'
 else clean up by edge flipping