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Abstract 2 Related Work

A modified quadric error metric (QEM) for simplifica- Subdivision surfaces combine the easy handling of
tion of Loop subdivision surfaces is presented. The sug-meshes with the well-defined properties of a parametric
gested error metric not only measures the geometric differ- surface. Defined over an initial control mesh, an arbi-
ence but also controls the smoothness and well-shapednesarily close approximation to a smooth limit surface can
of the triangles that result from the decimation process. Pe generated by repeatedly refining the mesh using simple
Minimizing the error with respect to the original limit sur-  rules. Many subdivision schemes are inspired by splines,
face, our method allows for drastic simplification of Loop and generalize to spline curves and surfaces: Catmull and

control meshes with convenient control over the reproduc- Clark described a generalization of bicubic tensor prod-
tion of sharp features. uct B—splines [2], and the Doo-Sabin scheme generalizes

to biguadratic tensor product B—splines [5]. The Loop
scheme [14] is based on the three-directional box spline.
Many other schemes were proposed until today, among
these the extensions of the Loop scheme [9, 1], the Butterfly
scheme [6], and variational schemes [12].
Mesh decimation reduces the complexity of a given input
1 Introduction mesh by removal of detail information, i.e. vertices and tri-
angles. Some typical areas of application are oversampled
scan data, over-tessellated surfaces, level-of-detail render-

Subdivision surfaces have become increasingly popu-ing, and progressive transmission. The problem of mesh
lar due to their ab|||ty to br|dge the gap between po|ygo_ decimation is well understood and extensive literature ex-
nal meshes and higher-order surfaces. Since they are conists on the subject [3, 4, 7, 8, 13, 15]. Modifications of the
structed by repeated refinement of triangle meshes up to arfjuadric error metric [7] in the context of subdivision sur-
arbitrarily close approximation to their smooth limit sur- face fitting have been proposed. To reconstruct a B-Spline
face, they also provide an effective means to control ac- surface from a triangle mesh, the metric has been adapted
curacy and efficiency of display in a systematic manner. to the Doo-Sabin scheme [16]. In [11], a triangle mesh is
Since a subdivision surface is always smooth in the limit, an gradually converted to a Loop control mesh while simulta-
overly complex control mesh can often be drastically sim- neously simplifying it.
plified with only minor changes to the look of the surface.

In this paper, we introduce a simplification error metric 3 QEM for Loop surfaces
with respect to a Loop limit surface, based on the quadric er-
ror metric (QEM) method [7], to simplify the control mesh 3.1  Notation
of a Loop surface. We also include the possibility to con-
trol the smoothness and well-shapedness of the triangles In the following, mesh vertices, edges, and triangles will
at a given target triangle count. With a single parameter, be identified by an index, usually, e andt, respectively.
the user can adjust the simplification of the subdivision sur- Themeskhposition of a vertex is written asp,,, or just asp,
face for accurate reproduction of surface features, or for aif no particular vertex is referenced. For a control mesh ver-
smoother representation. This is useful to produce visuallytex v, its limit position on the subdivision surface is written
more pleasing results or enable further processing such ap, ... In the following discussion, all vertex positions are
re-sampling for displacement computation. given as a vector in homogeneous coordinaté'inwhose
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elements are identified by a superscepf{0, ...,3}, as in
pY. For a vertex, fan(i) returns the fan of triangles around

v. adj(v) returns the set of vertices directly connected to A
by an edge, andal(v) returns the size of this set. v V5
3.2 QEM-based mesh simplification A % A

The QEM method was originally defined for simplifica- " PR ‘3 Y
tion of triangle meshes. Each vertex of the original mesh

sits at the intersection of the planes of its adjacent triangles, ~Figure 1. Initial subdivision of a control mesh
which amounts to a summed distance of zero to all these triangle for setting up the quadric error metric
planes. The squared distance of a vertex with posiido

onesuchplan® = [ a b ¢ d |iselegantly expressed

in the quadratic forml(p) = p' Qp, where

Q, for a mesh vertex, we first initialize allQ,, to 0. For

2
a ag’ ac ad each control mesh triangle the sub-triangles im are la-
Q= ab b" bc bd belled A}, 5, according to Figure 1. Iterating over &]l
ac be & de

thefundamental quadri§7] computed for each triangld!

is then added to vertexof ¢. Q, thus contains the contribu-

Summing up a set of quadri€; results in a new quadric tions of the subdivided and projected sub-triangles adjacent

Q = 2. Qi, which can be used to measure the sum of to v. EachQ, is now used to define an error metric with

squared distances to the set of planes defined b@the respect to the limit position of its associated control mesh
The QEM simplification algorithm is initialized by as- Vvertexv. Since the planes that are used to build @ein

Signing to each mesh vertex the sum of quadrics representfact inClUdepvpo, the error will |n|t|a”y be zero. The error

ing the planes of its adjacent triangles. For evaluating aduadric for the center piecé} of each triangle is initially

prospective collapse of edgewith end verticesu and v, assigned to the adjacent edges of the mesh. Such an “edge

the quadric®,, andQ, are summed UpQ., = Q. + Q.. quadric” is added to the quadric of the vertex that results

The position of the collapsed vertex,, that minimizes the ~ from a collapse of that edge.

squared distance to the set of planes define@byis then ] )

calculated by solving the linear equatioid(p,,) = 0.  3-4 Distance metric

The value ofd(p.,) represents the estimated surface ap-

proximation error, and is used to rank this collapse oper- ~ The error quadric that has been defined in the previous

ation. In the main loop of the algorithm, when the cur- section can be used to compute the surface difference after

rent “best collapse” is read from the queue and carried @n €dge collapse. For the vertexafter the edge collapse

out, the new vertex position is set to the optimal position, depicted in Figure 2, a distance valig, representing the

and the potentia' C0||apses a|0ng the Changed edges are réieViation of the limit pOSition of control vertex from its

evaluated. Due to the simple and fast evaluation of the errorofiginal position, is computed:

metric, QEM simplification is very fast, and produces gen-

erally pleasing results.

ad bd cd d?

d'u = pI,oc vav,oo-

_ o To measure this error, given the positipp on the control
3.3 Setup for Loop surface simplification meshM., we expresp, ~ as a linear combination gf,,:

The original QEM error metric can be adapted for use dy = (AoPo +40) Qu(AoPo + ),
with a subd|V|s_|on control mesh. A quadric does now _not where), € R, andq, € R* are computed from the one-
measure the distance of a vertex to the mesh surface 'tselfneighborhood ob. If v is an inner vertex, and givem —
but the distance to the limit surfacedefined by the Loop val(v), we set
scheme on the mesh.
We thus define the initial quadric of a control vertex _ l<5 (3 1 Q_W)z) ,_ 1
through an approximation of the limit surface around that LAY X
vertex, whose triangles are used to set up the plane equay | 1 sptain
tions. First, we subdivide the control mesh,. once to ob-
tain the subdivided mesi . We then project the vertices Ao = (1—nx),qu = X Z Pw-
P to their limit positionsp,, . To set up the initial quadric weadj(v)



Figure 2. collapsing an edge

e = (vg,vp) INtO @
vertex v influences the two-neighborhood of

v. Left: before edge collapse. Right: after
edge collapse. The dots mark the vertices
where Q has to be evaluated.

If v is on a boundary, then the limit position is evaluated
using the two neighboring boundary verticegndw. A,

is set to2/3, andq, = 1/5(p. + pw). By expressing the
linear combination as a matrix

A 00 qp

_ |10 X 0 q
=10 0 A & |

0 0 0 o

this can be expressed more concisely as

dv = p'IT—verTvpv

Since the change of a vertex on the control mesh influence
its two-neighbor region according to the support of the Loop

scheme, we take into account not only the center vertex

but also its neighbor vertices to measure the distance differ-

ence, as shown in Figure 2 right. MatricBg are computed
for the verticesv € adj(v):

>

u€adj(w)/v

Aw = X, Qw = (1 = nX)Puw + X Pu-

Finally, the distance error metric is defined as

Qv = Z TLQwTw + T;I)—QUT’U7 (1)

weadj(v)

3.5 Smoothness metric

When we use the quadric error metric as derived above,

it shows that the surface resulting from simplification will

obtained from the distance error metric and the mean limit
position of its adjacent control vertices.

Similar to what was discussed in 3.4, the limit position
of a vertexw € adj(v) can be computed by applying an
affine transformatiof',, to p,:

Pw,co = Twpv~

The average limit positiop,, .. computed from the vertices
adjacent ta is then:

Z (Twpv)'

_ 1 1
Pu,oo = val(v) Z Puw,co = val(v) .
weadj(v)

Combining the above two equations, we obtain a makjx
that transforms,, to the difference vector fronp, - to

pv,oo:

1
_’UOO_ v = Tw v _T’U v
B, — Pu,co o) > (Tupy) = Tup
weadj(v)
= T, T, v
val Z P
wEadJ(v)
= Tvpv'

The squared distance betwgef andp,,« is thus easily
calculated ap, T T, p,. Finally, the quadric smoothness
metric for vertexv is now defined as

=T!T,. 2)

3.6 Simplification Algorithm

We define the final error quadrfnf, by combining Equa-
tionsland 2:

Q; :=0Q, + (1-9) ®)

whered € [0, 1] is a smoothing parameter that blends the
contributions of the two quadrics. This parameter influences
the surface smoothness as shown in Figure 3. With the new
error quadric, our Loop surface simplification is carried out
as follows:

v

Initialization: Quadrics are computed as approximations
of the limit surface, by subdividing and projecting the
control mesh to its limit position.

Priority evaluation: For every edge in the mesh, the error
that results from collapsing this edge into a veries
calculated according t@$, and the priority queue is
built.

in some cases result in very sharply preserved features on

an otherwise smooth surface. Hence, we suggest a simplé/pdate: Due to the support of the Loop subdivision
but reasonable measure for smoothness similar to [10]. Es- ~ scheme, we update the priority for all edges in the two-
sentially, we compute the new position for a collapsed ver- neighborhood of a vertex after the collapse of an edge
tex by a weighted average of its optimum limit position as on top of the queue (cf. Figure 2).



Figure 3. Simplified subdivision surfaces us-
ing different smoothing parameters (from left
to right: 1.0, 0.5, 0.1). The rightmost image
shows the result of the original QEM method.

Figure 4. Comparison of simplified subdi-
vision surfaces with different simplification
schemes.

4 Results and Conclusion

Figure 3 compares the results obtained with our algo- [4]
rithm using different blending parameters to simplification
of the control mesh with the original QEM algorithm. All
control meshes were simplified from 134345 vertices down
to 2000 vertices. Surface features are well preserved on
the leftmost image even on a smooth subdivision surface by [6]
our error metric. The middle left and middle right images
show a smoother result while some features are still pre-
served better in comparison to the rightmost image, which
was created using the original QEM algorithm. Figure 4
shows the difference between standard simplification of a g
control mesh versus using our metric. The left image shows
a subdivision surface created from a complex control mesh
with 5600 vertices. The surface resulting from simplifica- [9]
tion to 150 vertices using our method is displayed in the
center image. The right image shows the result from sim-
plification to the same number of vertices using the original 4
QEM method. Clearly, our method preserves the details of
the limit surface much better at a given target vertex count.

We have presented a quadric error metric for simplifying
Loop surfaces, in combination with a parameter that allows [11]
the user to control surface smoothness by a scalar parame-
ter. For future work, we plan to make use of the smoothness[ 1
parameter for generation of domain surfaces for displaced
subdivision surfaces, and integrate other functionals into the[13]
error metric, i.e. curvature, surface normals, etc.

(5]
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