
Subdivision Surface Simplification

Won-Ki Jeong, Kolja K̈ahler, and Hans-Peter Seidel

Max-Planck-Institut f̈ur Informatik, Saarbr̈ucken, Germany
E-mail: {jeong,kaehler,hpseidel}@mpi-sb.mpg.de

Abstract

A modified quadric error metric (QEM) for simplifica-
tion of Loop subdivision surfaces is presented. The sug-
gested error metric not only measures the geometric differ-
ence but also controls the smoothness and well-shapedness
of the triangles that result from the decimation process.
Minimizing the error with respect to the original limit sur-
face, our method allows for drastic simplification of Loop
control meshes with convenient control over the reproduc-
tion of sharp features.
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1 Introduction

Subdivision surfaces have become increasingly popu-
lar due to their ability to bridge the gap between polygo-
nal meshes and higher-order surfaces. Since they are con-
structed by repeated refinement of triangle meshes up to an
arbitrarily close approximation to their smooth limit sur-
face, they also provide an effective means to control ac-
curacy and efficiency of display in a systematic manner.
Since a subdivision surface is always smooth in the limit, an
overly complex control mesh can often be drastically sim-
plified with only minor changes to the look of the surface.

In this paper, we introduce a simplification error metric
with respect to a Loop limit surface, based on the quadric er-
ror metric (QEM) method [7], to simplify the control mesh
of a Loop surface. We also include the possibility to con-
trol the smoothness and well-shapedness of the triangles
at a given target triangle count. With a single parameter,
the user can adjust the simplification of the subdivision sur-
face for accurate reproduction of surface features, or for a
smoother representation. This is useful to produce visually
more pleasing results or enable further processing such as
re-sampling for displacement computation.

2 Related Work

Subdivision surfaces combine the easy handling of
meshes with the well-defined properties of a parametric
surface. Defined over an initial control mesh, an arbi-
trarily close approximation to a smooth limit surface can
be generated by repeatedly refining the mesh using simple
rules. Many subdivision schemes are inspired by splines,
and generalize to spline curves and surfaces: Catmull and
Clark described a generalization of bicubic tensor prod-
uct B–splines [2], and the Doo-Sabin scheme generalizes
to biquadratic tensor product B–splines [5]. The Loop
scheme [14] is based on the three-directional box spline.
Many other schemes were proposed until today, among
these the extensions of the Loop scheme [9, 1], the Butterfly
scheme [6], and variational schemes [12].

Mesh decimation reduces the complexity of a given input
mesh by removal of detail information, i.e. vertices and tri-
angles. Some typical areas of application are oversampled
scan data, over-tessellated surfaces, level-of-detail render-
ing, and progressive transmission. The problem of mesh
decimation is well understood and extensive literature ex-
ists on the subject [3, 4, 7, 8, 13, 15]. Modifications of the
quadric error metric [7] in the context of subdivision sur-
face fitting have been proposed. To reconstruct a B–Spline
surface from a triangle mesh, the metric has been adapted
to the Doo-Sabin scheme [16]. In [11], a triangle mesh is
gradually converted to a Loop control mesh while simulta-
neously simplifying it.

3 QEM for Loop surfaces

3.1 Notation

In the following, mesh vertices, edges, and triangles will
be identified by an index, usuallyv, e and t, respectively.
Themeshposition of a vertexv is written aspv, or just asp,
if no particular vertex is referenced. For a control mesh ver-
texv, its limit position on the subdivision surface is written
pv,∞. In the following discussion, all vertex positions are
given as a vector in homogeneous coordinates inR

4, whose



elements are identified by a superscript∈ {0, . . . , 3}, as in
p0
v. For a vertexi, fan(i) returns the fan of triangles around
v. adj(v) returns the set of vertices directly connected tov
by an edge, andval(v) returns the size of this set.

3.2 QEM-based mesh simplification

The QEM method was originally defined for simplifica-
tion of triangle meshes. Each vertex of the original mesh
sits at the intersection of the planes of its adjacent triangles,
which amounts to a summed distance of zero to all these
planes. The squared distance of a vertex with positionp to
one such planeP =

[
a b c d

]
is elegantly expressed

in the quadratic formd(p) = pTQp, where

Q =


a2 ab ac ad
ab b2 bc bd
ac bc c2 dc
ad bd cd d2


Summing up a set of quadricsQi results in a new quadric
Q̃ =

∑
i Qi, which can be used to measure the sum of

squared distances to the set of planes defined by theQi.
The QEM simplification algorithm is initialized by as-

signing to each mesh vertex the sum of quadrics represent-
ing the planes of its adjacent triangles. For evaluating a
prospective collapse of edgee with end verticesu andv,
the quadricsQu andQv are summed up:Quv = Qu+Qv.
The position of the collapsed vertexpuv that minimizes the
squared distance to the set of planes defined byQuv is then
calculated by solving the linear equation∇d(puv) = 0.
The value ofd(puv) represents the estimated surface ap-
proximation error, and is used to rank this collapse oper-
ation. In the main loop of the algorithm, when the cur-
rent “best collapse” is read from the queue and carried
out, the new vertex position is set to the optimal position,
and the potential collapses along the changed edges are re-
evaluated. Due to the simple and fast evaluation of the error
metric, QEM simplification is very fast, and produces gen-
erally pleasing results.

3.3 Setup for Loop surface simplification

The original QEM error metric can be adapted for use
with a subdivision control mesh. A quadric does now not
measure the distance of a vertex to the mesh surface itself,
but the distance to the limit surfaceS defined by the Loop
scheme on the mesh.

We thus define the initial quadric of a control vertexv
through an approximation of the limit surface around that
vertex, whose triangles are used to set up the plane equa-
tions. First, we subdivide the control meshMc once to ob-
tain the subdivided meshMs. We then project the vertices
pv to their limit positionspv,∞. To set up the initial quadric
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Figure 1. Initial subdivision of a control mesh
triangle for setting up the quadric error metric

Qv for a mesh vertexv, we first initialize allQv to 0. For
each control mesh trianglet, the sub-triangles int are la-
belledAti∈{0,...,3} according to Figure 1. Iterating over allt,
the fundamental quadric[7] computed for each triangleAti
is then added to vertexi of t. Qv thus contains the contribu-
tions of the subdivided and projected sub-triangles adjacent
to v. EachQv is now used to define an error metric with
respect to the limit position of its associated control mesh
vertexv. Since the planes that are used to build theQv in
fact includepv,∞, the error will initially be zero. The error
quadric for the center pieceAt3 of each trianglet is initially
assigned to the adjacent edges of the mesh. Such an “edge
quadric” is added to the quadric of the vertex that results
from a collapse of that edge.

3.4 Distance metric

The error quadric that has been defined in the previous
section can be used to compute the surface difference after
an edge collapse. For the vertexv after the edge collapse
depicted in Figure 2, a distance valuedv, representing the
deviation of the limit position of control vertexv from its
original position, is computed:

dv = pT
v,∞Qvpv,∞.

To measure this error, given the positionpv on the control
meshMc, we expresspv,∞ as a linear combination ofpv:

dv = (λvpv + qv)TQv(λvpv + qv),

whereλv ∈ R, andqv ∈ R4 are computed from the one-
neighborhood ofv. If v is an inner vertex, and givenn =
val(v), we set

ϕ :=
1
n

(
5
8
− (

3
8

+
1
4

cos
2π
n

)2), χ :=
1

3/8ϕ+ n
,

and obtain

λv = (1− nχ),qv = χ
∑

w∈adj(v)

pw.
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Figure 2. collapsing an edge e = (va, vb) into a
vertex v influences the two-neighborhood of
v. Left: before edge collapse. Right: after
edge collapse. The dots mark the vertices
where Q has to be evaluated.

If v is on a boundary, then the limit position is evaluated
using the two neighboring boundary verticesu andw. λv
is set to2/3, andqv = 1/5(pu + pw). By expressing the
linear combination as a matrix

Tv =


λv 0 0 q0

v

0 λv 0 q1
v

0 0 λv q2
v

0 0 0 q3
i

 ,
this can be expressed more concisely as

dv = pT
vTT

vQvTvpv.

Since the change of a vertex on the control mesh influences
its two-neighbor region according to the support of the Loop
scheme, we take into account not only the center vertexv
but also its neighbor vertices to measure the distance differ-
ence, as shown in Figure 2 right. MatricesTw are computed
for the verticesw ∈ adj(v):

λw = χ,qw = (1− nχ)pw + χ
∑

u∈adj(w)/v

pu.

Finally, the distance error metric is defined as

Q̃v =
∑

w∈adj(v)

TT
wQwTw + TT

vQvTv, (1)

3.5 Smoothness metric

When we use the quadric error metric as derived above,
it shows that the surface resulting from simplification will
in some cases result in very sharply preserved features on
an otherwise smooth surface. Hence, we suggest a simple
but reasonable measure for smoothness similar to [10]. Es-
sentially, we compute the new position for a collapsed ver-
tex by a weighted average of its optimum limit position as

obtained from the distance error metric and the mean limit
position of its adjacent control vertices.

Similar to what was discussed in 3.4, the limit position
of a vertexw ∈ adj(v) can be computed by applying an
affine transformationTw to pv:

pw,∞ = Twpv.

The average limit position̄pv,∞ computed from the vertices
adjacent tov is then:

p̄v,∞ =
1

val(v)

∑
w∈adj(v)

pw,∞ =
1

val(v)

∑
w∈adj(v)

(Twpv).

Combining the above two equations, we obtain a matrixT̃v,
that transformspv to the difference vector frompv,∞ to
p̄v,∞:

p̄v,∞ − pv,∞ =
1

val(v)

∑
w∈adj(v)

(Twpv)−Tvpv

=

 1
val(v)

∑
w∈adj(v)

Tw −Tv

pv

= T̃vpv.

The squared distance betweenpv,∞ andp̄v,∞ is thus easily
calculated aspvT̃T

v T̃vpv. Finally, the quadric smoothness
metric for vertexv is now defined as

Qs
v = T̃T

v T̃v. (2)

3.6 Simplification Algorithm

We define the final error quadric̃Qs
v by combining Equa-

tions 1 and 2 :

Q̃s
v := δQ̃v + (1− δ)Qs

v, (3)

whereδ ∈ [0, 1] is a smoothing parameter that blends the
contributions of the two quadrics. This parameter influences
the surface smoothness as shown in Figure 3. With the new
error quadric, our Loop surface simplification is carried out
as follows:

Initialization: Quadrics are computed as approximations
of the limit surface, by subdividing and projecting the
control mesh to its limit position.

Priority evaluation: For every edge in the mesh, the error
that results from collapsing this edge into a vertexv is
calculated according tõQs

v, and the priority queue is
built.

Update: Due to the support of the Loop subdivision
scheme, we update the priority for all edges in the two-
neighborhood of a vertex after the collapse of an edge
on top of the queue (cf. Figure 2).



Figure 3. Simplified subdivision surfaces us-
ing different smoothing parameters (from left
to right: 1.0, 0.5, 0.1). The rightmost image
shows the result of the original QEM method.

4 Results and Conclusion

Figure 3 compares the results obtained with our algo-
rithm using different blending parameters to simplification
of the control mesh with the original QEM algorithm. All
control meshes were simplified from 134345 vertices down
to 2000 vertices. Surface features are well preserved on
the leftmost image even on a smooth subdivision surface by
our error metric. The middle left and middle right images
show a smoother result while some features are still pre-
served better in comparison to the rightmost image, which
was created using the original QEM algorithm. Figure 4
shows the difference between standard simplification of a
control mesh versus using our metric. The left image shows
a subdivision surface created from a complex control mesh
with 5600 vertices. The surface resulting from simplifica-
tion to 150 vertices using our method is displayed in the
center image. The right image shows the result from sim-
plification to the same number of vertices using the original
QEM method. Clearly, our method preserves the details of
the limit surface much better at a given target vertex count.

We have presented a quadric error metric for simplifying
Loop surfaces, in combination with a parameter that allows
the user to control surface smoothness by a scalar parame-
ter. For future work, we plan to make use of the smoothness
parameter for generation of domain surfaces for displaced
subdivision surfaces, and integrate other functionals into the
error metric, i.e. curvature, surface normals, etc.
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