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Abstract

An algorithm for generating a smooth surface from an irregular mesh of triangles
is presented. The method is based on a recursive subdivision process that refines
the mesh into a piecewise linear approximation of a smooth surface. The rules
which govern the mesh refinement are based on well known properties of B-spline
curves as well as more recent results from multivariate spline theory. A careful
analysis of the smoothness of the resulting surface is made. This analysis reveals
that a surface generated by this method is curvature continuous except at a fixed
number of extraordinary points corresponding to mesh vertices. At these points it
is found that the surface has a well defined tangent plane. An explicit formulation
of this tangent plane is gi‘/"en and the issue of curvature continuity at these points
is also discussed. Finally, a pseudo code implementation of the algorithm is given

which allows the surface to be treated as a collection of individual patches.
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Chapter 1

i

Introduction

The purpose of this thesis is to present an algorithm that allows a designer
to create a sculptured smooth surface. This surface is defined and manipulated
by a structured set of control points. The shape of the surface is determined by
the positions of the control points in space. A designer need only understand the
relationship between the control points and the surface, and not the mathematics
of the underlying implementation. This is one of the fundamental paradigms of
Computer Aided Geometric Design (CAGD) [Boehm, Farin, and Kahmann 1984].

Many techniques have been developed that exhibit this behavior. At issue in
this thesis is underlying structure of the control points. Most existing surface design
schemes require that the control points take on a regular structure. This shall be
described shortly. A regular structure can be quite restrictive from a design point
of view. This thesis will present a method for designing a smooth surface that is not
encumbered by this restriction, thereby giving a designer more freedom to create
complex shapes.

In most design schemes the underlying shape is represented in a piecewise fash-
ion by a polynomial basis. Piecewise polynomial means that a curve or surface is
represented by a collection of individual polynomial segments or patches. Control
point schemes are generally either interpolating or approximating. The choice of

which scheme to use depends upon the application. For all applications, the scheme



should be coordinate free. This means that the relationship between the control
points and the shape is independent of any coordinate system. The shape defined
by an interpolating scheme will pass through all of the control points. This type
of scheme is well suited for representation, i.e., if the control points are known to
belong to an existing shape. Interpolating methods may not be the natural choice
for design because they generally lack local control. This means that modifying
the shape by moving a control point will affect the entire shape. Local control is
important from a design point of view. A designer wants to be sure that moving a
control point is not going to affect some part of the shape that is already deemed
correct. In order to obtain local control, interpolation is sacrificed. This leaves
schemes which approximate the control points.

Several such approximating schemes exist; the simplest and best known are B-
splines (B for basic). The control points of a B-spline scheme are known as de Boor
points. For B-spline curves, the de Boor points are an ordered set that forms
the de Boor polygon. These points can be specified by a designer. The resulting
curve is a smooth approximation to the de Boor polygon. Figure 1.1 illustrates the
relationship between the de Boor points and a B-spline curve. B-spline schemes
exhibit the important local control property. The arrow in Figure 1.1 represents
the displacement of a single de Boor point, the local effect on the curve has been
shaded.

The classic approach of extehding B-spline curves to surfaces involves taking a
tensor product of B-spline curves. This can loosely be described as taking a series
of parallel curves in one direction, and sweeping these with another curve in the
perpendicular direction to form a surface. Similarly, a series of parallel de Boor
polygons may be connected in the perpendicular direction to form a de Boor net.
From this construction, the de Boor net takes on a rectangularstructure. Figure 1.2

illustrates the de Boor net and resulting tensor product B-spline surface. The



Figure 1.1: A B-spline curve.

tensor product B-spline scheme has local control and produces a smooth surface

that approximates the de Boor net.

A more recent addition to the class of smooth, locally controlled, approximating
surface schemes are triangular splines. Triangular spline surfaces behave much
like tensor product B-spline surfaces. A triangular spline surface is defined by a
de Boor net that has a regular triangular structure. Such a surface is illustrated in
Figure 1.3. The properties of triangular splines are of special interest in this thesis.
The surface design scheme to be presented is a generalization of triangular splines,

where the de Boor net need not be regular.

A variety of techniques exist for computing a representation of the underly-
ing shape of a B-spline scheme. Generally one explicitly evaluates the underlying
piecewise polynomials a sufficient number of times to obtain a piecewise linear
approximation to the curve or surface. B-spline schemes offer an interesting alter-

native. Each curve segment may be reparameterized as two or more sub-segments.



Figure 1.2: A tensor product B-spline surface and associated de Boor net.

This reparameterization has the effect of refining the de Boor polygon. The refined
de Boor polygon is a denser collection of points that is in some sense “closer” to
the underlying curve than the original de Boor polygon. Such a reparameteriza-
tion or subdivision of the polynomial segments may be done repeatedly, i.e., each
sub-segment may be subdivided. After repeated subdivision, the refined de Boor
polygon is indistinguishable from the B-spline curve. This same principle may be
applied to a surface, resulting in a refined de Boor net that is indistinguishable
from the surface. In this thesis, only binary subdivision is considered. For curves,

this means each polynomial segment is reparameterized as two sub-segments. For



Figure 1.3: A triangular spline surface and associated de Boor net.

surfaces, each polynomial patch is subdivided into four sub-patches.

In principle, refinement of the de Boor net is a geometric operation. A set of
geometric rules based on the regular structure of the de Boor net governs the re-
finement process. This geometric approach to subdivision will be adapted to work
for irregular or arbitrary control point sets. Such extensions of B-splines to arbi-
trary topologies are not new. Extending the geometric properties of tensor product
B-splines has been considered [Doo and Sabin 1978][Catmull and Clark 1978]. Ex-

tending the subdivision rules for triangular splines will be considered in this thesis.



Chapter 2

¢

Binary Subdivision of B-splines

In this chapter, B-spline curves, Tensor product B-spline surfaces, and Triangu-
lar spline surfaces will be discussed. Fundamental concepts, properties, and formu-
las are presented for each. Special attention is paid to deriving Binary subdivision

formulas.

2.1 Univariate B-splines

A degree r, piecewise polynomial B-spline curve S™(u) is defined:

5"(u) = S diNF (). 21)

The vector valued coefficients d} form the de Boor polygon. The N (u) are normal-
ized B-splines of degree r defined over a sequence of knots ¢ . This knot sequence
forms a partition of the real u-axis. Only the case of equidistant knot spacing is

discussed. For simplicity, knot sequences will be derived from the sequence
Z2=1{..,-2,-1,0,1,2,...}.
Under these restrictions, (2.1) becomes

ST(u) =Y dIN"(u — ). (2.2)
€2
The N7(u —2) can be viewed as translates of a single B-spline N"(u). N"(u) has

the following properties:



e Partition of unity : Y N"(u—1¢) =1
i€Z

o Positivity : N"(u) >0

Local support : N"(u—i) =0 ifué¢[i,i+7r+1]

Continuity : N"(u) is (r — 1) times continuously differentiable

uU—1

SNy — - 1)

N"‘l(u—i)+————z+r+rl_

e Recursion: N"(u —1) = -

0, ifuelii+1]
1, otherwise.

where NO(u) = {

Figure 2.1 illustrates some examples.

The first three properties imply the convex hull property, i.e., for any v , S™(u)
is a convex combination of a local subset of the de Boor points df . This local
nature means that a change in a de Boor point will affect only a small portion
of the curve. The local control property defines [i,i + r + 1] as the support of
N7(u —¢). The N7(u) form a basis for degree r polynomials, i.e., any univariate
degree r polynomial is a linear combination of B-splines. The important recursion
formula, independently discovered by Cox, de Boor, and Mansfield [de Boor 1978]
shows that a B-spline of degree r > 0 is a linear blend of lower degree B-splines. It

also provides a stable and efficient means of evaluating S”(u).

Nw-y N -3
/\ N
0 3 5 3 4 5 6 7 8 9 =u

Figure 2.1: Examples of univariate B-splines



2.2 Subdivision of B-spline curves

Subdivision of the de Boor polygon results in a refined polygon that more closely
approximates the shape of the underlying curve. It is well known [Riesenfeld 1975]
that under repeated subdivision, the de Boor polygon will converge to the under-
lying curve.

The idea behind a subdivision scheme is to rewrite the curve (2.2), as a curve
over a refined knot sequence. Binary refinement of the sequence Z results in the
sequence

Z/2={...,-1,-%,0,

(ST

,1,...}
From this, (2.2) becomes
S'(w)= Y d&IN"(2(u - j)) (2.3)
JEZ/2
where the (f; make up the refined de Boor polygon. Note that the support of N™(2u)
is half that of N"(u).

It is possible to determine the J; by considering the subdivision of a single
B-spline. A single B-spline may be decomposed into similar B-splines of half the
support, as in Figure 2.2. This is accomplished algebraically by rewriting N"(u)
as a linear combination of B-splines of degree r over the refined knot vector. This

results in

N'(w)y= 3 N"(2u— 5))- (2.4)
J€Z/2

The ¢ are the special case J; for a single B-spline. Each c] is a function of r and

r -r r+1

Proof that this formula is correct may be found by induction on r, using the B-spline

j, which may be written

recursion formula to relate B-splines of different degrees.



u

Figure 2.2: A single B-spline decomposed into similar B-splines of half the support.

The process of subdividing an entire curve follows. The translated B-splines
N7(u — t) are subdivided
N'(u—i)= 3 i ;N"(2(u—j)) (2.6)
JEZ/2
This is substituted into (2.1) to give
S(w) = df ¥ LN"u- ). (27)
€2 jezZ/2

Rearranging the order of summation gives

S = ¥ Y diN(2u - j). (2.8)
JEZ[2i€Z
It then follows that
di =Y ¢_.d.. (2.9)
€2

The importance of (2.9) is best understood by example. It is used to compute
points of the refined de Boor polygon. For example, if r = 2 then
Jg = Y

€2
= ...+(0)d%, + (3, + ()2 + (0)d? + ...
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and similarly

d"‘i;..-+(0)d32+(%)di1+(%)d%.’+(0)d§+--- :

Note that the (f; are a convex combination of only a few of the df. For r = 2
the refined de Boor points are created on edge segments of the de Boor polygon at
aratioof 1: 3, and 3 : 1 from each end point. These ratios of weights are referred
to as subdivision masks. Masks are important because they imply a geometric
construction algorithm. The masks can be thought of as being applied to the
de Boor polygon to create new points. The set of all such new points forms the
refined de Boor polygon. This procedure may be repeated until the refined de Boor
polygon is sufficiently close to the underlying curve. Figure 2.3 illustrates two

iterations of a geometric construction algorithm.

Figure 2.3: Construction of the new de Boor points from the old.



11

2.3 Tensor Product B-spline Surfaces

A piecewise polynomial tensor product B-spline surface S™*(u) is defined
S™(u) = Y di*N™(u—1i) (2.10)
iez?
where u € R?. The coefficients dj”’ ag‘e a rectangular structure of points that form
the de Boor net. N™*(u — 1) are normalized tensor product B-splines of degree rs
defined over the knots i. The knot set i forms a rectangular grid of points which is

naturally ordered by Z2. Figure 2.4 illustrates some examples.

A tensor product B-spline is the product of two independently parameterized

univariate B-splines , i.e.,

N™(u=1) = N"(u = §)N*(v - j)

Figure 2.4: Examples of tensor product B-splines .
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where N"(u —¢) and N*(v — j) are univariate B-splines of degree r and s, such that
u = (u,v) and i = (4,5). It is not surprising that the properties and formulas for
tensor product B-splines are found directly from univariate B-splines.

The N™*(u — i) form a partition of unity and are non-negative. This implies
that a tensor product B-spline surface lies in the convex hull of its de Boor points.
N™*(u) has local support, that is, N "*(u — i) is nonzero only over a finite support,
ie, whenu € [{,i+r+1]and v € (5,7 +s+1], foru = (u,v) and i = (2,7). Thus a
change in a single de Boor point will only affect the surface locally. N " (u,v)is r—1

and s — 1 times continuously differentiable in the u and v directions respectively.

2.4 Subdivision of Tensor Product B-spline Surfaces

Subdivision of tensor product B-spline surfaces is analogous to subdivision of
B-spline curves. Similarly, the de Boor net is refined and becomes a better approx-
imation to the underlying surface. As with curves, this process will converge to the
underlying surface.

The knot set i is refined to i/2 = Jysoje 222 ie je {(%, %)Iz,] €Z}. A
single translated tensor product B-spline N™*(u — i) is rewitten over the refined
grid as

N™(u—-i)= Z c}'_‘iN'*"(z(u— 1)) (2.11)
jez3/2

This is substituted into (2.10) to give
S™(u)= Y d* Y 5N (2(u - j)). (2.12)
iez? jez?/2
It follows that
=Y dnd®  jez?)2 (2.13)
iez2
where the Jj ** form the refined de Boor net. Also

TS _ 7
CJ’ — 4
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where j = (7, 7). So from (2.5)

re _ o=(r4s)(TH1) (841
grerea( 20 (1 216

where j = (¢,7). Equations (2.13) and (2.14) describe the construction of new

de Boor points of the refined net. For example, if r = s = 2 then
“2, ’ ’
do,(2) = ...+ (%)dﬁ,—l + (%)dlz),il +...
...g-(%)d’_{o + (L) + ...
Again, the d}” are a convex combination of a local subset of the d;”’. The ratio of

weights in this convex combination forms the subdivision mask. From the above

example, the mask set :

9—3 3—9 3—1 1—3
|| | || ||
3—1 1—3 9——3 3—9

will completely determine all new de Boor points. Each mask is applied to each
rectangular face of the de Boor net to create a new de Boor point. This is implied
by the structure of the mask. Figure 2.5 illustrates the construction of the refined
de Boor net.

Such symmetric simplicity is not always the case. The masks for bicubic (r =

8 = 3) tensor product B-splines are :

{——6 — 1 4—4 4—24—24 16—16
| | |l

6—36—6 24— 24 4—24—4 16 —16
ol .

1—6—1 4—4

The application of these masks is implied from their structure. The weights are
arranged to form a template, and applied to every configuration of de Boor points

with the same structure. Three iterations of the geometric construction algorithm
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Figure 2.5: Construction of the refined de Boor net for $22(u).

implied by the bicubic binary subdivision masks are shown in Figure 2.6.

2.5 Triangular Splines

Another class of splines sharing the properties of univariate and tensor product
B-splines are Triangular splines. Triangular splines are a type of Boz Spline surface
[Boehm 1985] [Boehm 1984] [Dahmen 1984]. A triangular spline surface STt(u)
may be written

Sr,s,t(u) - Z d;v"’tN",a,t(u —_ i) (2.15)
i

where u € R? and i € Z2. The d; form a triangular de Boor net. The set i is a
triangular grid with three primary directions, u, v, and w, labeled as in Figure 2.7.

N7™**(u) is a normalized triangular spline of degree r + s + ¢ — 2 over the grid i.
The support of N™**(u) is characterized by r, s, and t. This support is the convex

set of r, s, and ¢ grid units in the u, v, and w directions respectively. Figure 2.8



Figure 2.6: Binary refinement of a bicubic de Boor net.

15
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N \VA . y
(0,2) (1,2) (2,2) (3,2)
(0,1) (2,1)
\
(~1,0)
w [
\ (-1, -1 \ (0,-1) \ (L-1) /N

Figure 2.7: Triangular grid.

shows some examples. The N™**(u — i) form a partition of unity, are non-zero,
and have local support. Unlike univariate B-splines , triangular splines do not, in

general, span the space of polynomials of their total degree.

A triangular spline can be defined as the shadow of a cube in an n-dimensional
space, projected onto a 2-dimensional space [Boehm 1986]. This shadow for a 3-
cube is shown in Figure 2.9. Note that the vertices of the cube project onto the
grid. N™*!(u) is the intersection of the n-cube with the projector that has u as its
image in the plane. A recursion formula for triangular splines was found by de Boor

and Hollig [Boehm 1985] [Boehm 1983b).

2.6 Subdivsion of Triangular Splines
The procedure for subdividing triangular splines exactly parallels the subdivi-

sion schemes presented so far. The grid i is refined to a grid j = i/2. The surface
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Figure 2.8: Examples of triangular splines.

corresponding to equation (2.15) is rewritten over the refined grid to become
S™*Hu) = 2d3”"N"”‘(2(u -1)). (2.16)
J

A single triangular spline is decomposed into splines of identical degree over the
refined grid, i.e.,
N (u) = ch”’tN””‘(2(u -1)). (2.17)
J

By substituting (2.17) into (2.16) and rearranging the order of summation it is
found that
ditt = 3o qrdr. (2.18)
1
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Figure 2.9: A triangular spline as the shadow of a cube.

For the special case of binary subdivision it is possible to show that

) S s (¢ 2.19)
9= E\2i-k)\2j—k)\k) (@

It is cautioned that this formula depends on the labeling of the grid. Equation (2.19)
represents the weights associated with the binary decompositon of a triangular
spline. Equations (2.18) and (2.19) give a complete description of how to refine the
de Boor net for triangular splines. As in the case of univariate and tensor product
B-splines, the Jg”'t are dependent only on a local subset of the d['”*. The ratio
of weights used to compute the new de Boor points from these local subsets form

the binary subdivision masks. Of particular interest in this thesis are the binary
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subdivision masks for the triangular spline N%%2(u), which are :

1/;-1—0—1—\1 6/2—\6 /—6\6/2 2
\/\/ \ / N/
T—1 2 6 —2

These masks describe the geometric constructions needed to refine the de Boor net

for a surface $2%2(u). Three interations of this algorithm are shown in Figure 2.10.
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Figure 2.10: Refinement of the de Boor net for triangular splines.



Chapter 3
Generalized Subdivision

Binary subdivision formulas for B-spline curves and surfaces that generate a
refined set of de Boor points have been presented. Repeated refinement will con-
verge to the underlying curve or surface defined by the original de Boor points.
The refinement approach to generating surfaces is generalized in this chapter. The
result is a wider range of surfaces that share many of the positive design attributes

of conventional B-spline surfaces.

3.1 Chaikin’s algorithm

In 1974, Chaikin presented ‘An algorithm for high speed curve generation’
[Chaikin 1974]. This algorithm generates a smooth curve that is approximately
the shape of a user specified control polygon. The algorithm works by ‘clipping’
the corners of the control polygon to form a new smoother control polygon. For
each point of the control polygon clipped, two new points are found. Repeated
application of this clipping process produces finer control polygons that converge
to a smooth curve. Chaikin’s algorithm stops clipping when the distance between
adjacent control points is below the resolution of a display device.

Chaikin devised simple rules for clipping the corners of the control polygon.
On each segment of the control polygon, two new points are found at a distance
1.3

1 and 2 between the end points. The ratio %

5 1 § was chosen for the speed and

ease of performing the clipping operation on a digital computer. The new control
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points can be computed as add and shift operations on the old control points. This
justified Chaikin’s claim of ‘high speed’.

By choosing the ratio § : 2 the curve generated by this algorithm is piecewise
quadratic. In fact, Chaikin’s algorithm is the refinement algorithm for quadratic
B-splines presented in Chapter 2. It is presented here mainly for its historical
interest, and due to the geometric approach taken. Refinement of the univariate
B-spline basis is generally associated with Chaikin. His original formulation is
recursive in nature, subdividing segments locally until their lengths fall below a
certain tolerance. Chaikin’s geometric approach to refinement was soon extended

to surfaces.

3.2 The Doo/Sabin algorithm

Subdivision formulas for tensor product B-spline surfaces were presented in
Chapter 2. When r = s = 2, the result is the tensor product extension of Chaikin’s
algorithm. However, some very rigid restrictions are placed on the topology (i.e.,
connectivity relationships) of the de Boor net. Specifically, each vertex of the net
must have order 4, i.e., a vertex is the endpoint of 4 edges. This may be relaxed
to define a surface with boundary, but in general, the net must have a rectangular
structure. This restriction makes the design of many surfaces difficult. For example,
closed surfaces seldom exhibit a rectangular topology.

In 1978, Doo and Sabin [Doo 1978] presented an algorithm that eliminated
this restriction by generalizing the biquadratic B-spline subdivision rules to include
arbitrary topologies. They created an algorithm with the corner clipping notion
of Chaikin, that generates smooth surfaces from an arbitrary control point net
or mesh. In the special case of a rectangular mesh, the algorithm generates a
biquadratic B-spline surface.

To derive the Doo/Sabin algorithm, recall the subdivision masks for biquadratic
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B-splines :

Application of these masks generates four new de Boor points on each face of the
original de Boor net. These new de Boor points are found by taking a convex
combination of the four vertices of each face of the de Boor net. However, the
new de Boor points can also be found indirectly by observing that each lies at the
midpoint of the line segment connecting each vertex to the centroid of a face.
This geometric view of biquadratic B-spline subdivision may be generalized to
include control point meshes of arbitrary topology. In a mesh of arbitrary topology,
the faces may be n-sided (n > 3). The centroid of a face is easily found as the
average of its vertices. A new control point may be created at the midpoint of the
line segment connecting a face’s centroid to each of its vertices, as in Figure 3.1.

This is the essence of the Doo/Sabin algorithm.

These steps are repeated until a control point mesh of the desired smoothness
has been obtained. Three iterations of the Doo/Sabin algorithm are illustrated in
Figure 3.2. At each step, the faces, edges, and vertices of the old mesh are clipped
to form the new mesh. As subdivision proceeds, the refined control point mesh
becomes locally rectangular everywhere except at a fixed number of points. These
points, referred to as extraordinary points, correspond to the vertices and faces of
the original mesh. It is interesting to note that over every group of four rectangles
with an order 4 vertex in common, a biquadratic B-spline surface is locally an
exact representation. As the refined mesh becomes increasingly regular, more of
the surface is exactly representable. Only in neighborhoods of the extraordinary
points does the surface defy this explicit representation. Doo and Sabin considered

these regions as holes in an exact representation using biquadratic B-splines.
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Figure 3.1: Construction of new control points using the Doo/Sabin algorithm.

This representation maintains all the properties of piecewise biquadratic B-
splin&. Since biquadratic B-splines are C 1, the surfaces generated by the Doo/Sabin
| algorithm are considered locally C'! everywhere except at the extraordinary points.
Since all new control points are found by taking convex combinations of the old
control points, the refined mesh (and ultimately the surface) is guaranteed to lie in
the convex hull of the original control point mesh. Also, each new control point is
only dependent on a single face of the control point mesh. Thus, changing a control
point will affect only a few faces, giving the Doo/Sabin surfaces a local control

property.



Figure 3.2: Three iterations of the Doo/Sabin algorithm.

25



26

3.3 The Catmull/Clark algorithm

At roughly the same time as Doo and Sabin, Catmull and Clark presented a
similar algorithm for génerating a smooth surface from an arbitrary control point
mesh [Catmull and Clark 1978]. Their approach is a generalization of bicubic,
as opposed to biquadratic, B-spline subdivision. Since bicubic surfaces are higher
order than biquadratic, the resulting ;a,lgorithm is more complex.

The Catmull/Clark algorithm is derived by abstracting the geometric properties

of the bicubic B-spline subdivision masks :

1=—6 —1 -4 4 —24—4 16—16
|1 | || | |
6—36—26 24 —24 4—24—14 16 —16
|| | | s c
1—6—1 4 —4

A

The application of mask A generates a new control point corresponding to each ver-
tex of the old control point mesh. The masks B generate new points corresponding
to each edge, and mask C generates a new point corresponding to each face of the
control point mesh. These shall be referred to as new vertez, edge, and face points
respectively. The geometric properties of the subdivision masks used to generate
these points may be abstracted to control point meshes of arbitrary topology.

To determine the rule for computing new face points, consider mask C. This
mask gives equal weight to all the vertices belonging to a face, i.e., it computes
the centroid of the face. An obvious generalization is to create a new face point
at the centroid of each face of the arbitrary mesh. Consider masks B to determine
the rule for computing new edge points. These masks generate new edge points as
convex combinations of the vertices of the two faces adjacent at an edge. Geometric
insight reveals that the point is found by taking the average of the centroids of the

two adjacent faces along with the midpoint of the shared edge. This idea is easily
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applied to an arbitrary mesh. Generalizing the rules to generate a new vertex point
is not as simple.

Catmull and Clark determined that the vertex point S generated by mask A
is found by taking a convex combination of three points. These points are : Q,
the average of the new face points of all faces sharing an old vertex point; R, the
average of the midpoints of all old edges incident on the old vertex point; S the
old vertex point. These three points may be similarly found for each vertex of an

arbitrary mesh. The initial convex combination Catmull and Clark proposed was
S=31Q+3iR+ S (3.1)

The generalization of the new vertex point subdivision rule, like the new face
and edge point rules, is equivalent to bicubic B-spline subdivision in the special
case of a rectangular mesh. The rules just described were initially used by Catmull
and Clark to generate smooth surfaces from arbitrary meshes. These surfaces, like
those of the Doo/Sabin algorithm, are locally regular except at a constant number
of extraordinary points. These points correspond to the faces and vertices of the
original control point mesh. It was observed that in some arbitrary meshes, such as
tetrahedra, tangent plane continuity was not maintained at extraordinary points.
This was remedied by modifying the generalization of the new vertex point rule to

take into account the order of the vertex. The modified rule is
S=1Q+ iR+ 23S (3.2)

where N is the order of the vertex. This rule generates surfaces that exhibit tangent
plane continuity at all extraordinary points. Figure 3.3 shows three iterations of

the Catmull/Clark algorithm.

Note that as the algorithm proceeds, the mesh becomes increasingly regular.

Over these regions, the surface is exactly representable with bicubic B-splines. For



Figure 3.3: Three iterations of the Catmull/Clark algorithm.
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this reason, Catmull/Clark surfaces inherit many of the important properties from
bicubic B-splines. Catmull/Clark surfaces have the convex hull property, local
control, and are locally C? everywhere except at the extraordinary points. A proof
that Catmull/Clark surfaces have a continuous tangent plane at the extraordinary
points was given by Doo and Sabin [Doo and Sabin 1978].

The Doo/Sabin and Catmull/Clark algorithms were derived from geometric
properties of tensor product B-spline subdivision. Since then, other non-tensor
product B-spline surfaces have appeared. The triangular splines presented in Chap-

ter 2 are an example. From properties of these surfaces, an algorithm analogous to

the Doo/Sabin and Catmull/Clark algorithms will be derived.

3.4 A generalized triangular subdivision surface

In Chapter 2, triangular spline surfaces were presented as a more recent surface
extension of B-splines. Special attention was given to the triangular spline N2>:2(u).
This triangular spline was chosen for study because it is the lowest order (in this case
degree 4) triangular spline that has trilateral symmetry and C? smoothness. The
surface generated by N%22%(u) is a smooth approximation to a de Boor net that
is topologically a regular triangular grid. In generalizing the subdivision of this
type of surface, it is natural to consider only the special case of arbitrary ¢riangular
meshes. A triangular mesh is a control point mesh whose faces are all triangles.
This may at first seem restrictive. However, when one considers the frequency with
which triangulations and triangle based algorithms appear in computer graphics
and CAGD, it becomes more reasonable.

Like the Doo/Sabin and Catmull/Clark algorithms, derivation of the generalized

subdivision rules for this new algorithm begins with an abstraction of the geometric
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properties of the subdivision masks for N2?%2(u). These masks are :

YA A NVA VA
\/\/ \ / \/\
— 1 2 B 6 —2

Mask A generates new control points for each vertex, and masks B generate new
control points for each edge of the original regular triangular mesh.

The masks B compute the new edge points as convex combinations of the ver-
tices of the two triangles that share the edge. In an arbitrary triangular mesh, each
edge will be shared by two triangles. Therefore, an obvious generalization is to leave
this subdivision rule intact. Like the Catmull/Clark algorithm, generalization of a
vertex point rule is more difficult.

To derive the new vertex point rule, consider mask A. The new vertex point V,
can be computed as a convex combination of the old vertex, and all old vertices
that share an edge with it. Alternatively, this same point may be found indirectly
as a convex combination of two points. These points are : V, the old vertex point,
and Q, the average of the old points that share an edge with V. The new vertex
point is computed as

A

V=2V+

0o jon
oW

Q (3.3)

This same idea may be applied to an arbitrary triangular mesh.

In the special case of a regular triangulation, the algorithm is equivalent to bi-
nary subdivision of a surface based on N%?2?(u). Three iterations of the algorithm
based on the rules just described are shown in Figure 3.4. As subdivision pro-
ceeds, the triangular control point mesh becomes locally regular, except at a fixed
number of extraordinary points. For this new algorithm, the extraordinary points

correspond only to vertices of the original mesh, and not to its faces. Because of
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the properties inherited from N%?2(u) it will be shown that the underlying surface

of this algorithm is locally C? everywhere, except at the extraordinary points.

Note that in Figure 34 tangent plane continuity is apparently lost at one of the
extraordinary points. This situation is similar to the one encountered by Catmull
and Clark in the initial formulation of their algorithm. This may be remedied by
considering the order of the vertex vw;hen taking the convex combination of V and

Q. This results in a new vertex point rule of the form

A

V=ayV+ (1 - aN)Q (3.4)

where an is a function of the vertex order N. As long as ag = %, the subdi-
vision algorithm will be a superset of the subdivision algorithm for N?>%(u). If
0 < any < 1, the resulting surface will lie in the convex hull of the control mesh.
In the next chapter, a value of any will be derived to satisfy these conditions, and

will be shown to generate a highly smooth surface.
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Figure 3.4: Three iterations of the initial triangular subdivision algorithm.



Chapter 4

Subdivision Analyzed

In the last chapter, an algorithm for refining an arbitrary triangular mesh was
presented. This algorithm is a generalization of binary subdivision of surfaces
based on the triangular spline N??%(u). In its initial formulation, the algorithm
generated surfaces that did not appear to have a well defined tangent plane at all of
the extraordinary points. The algorithm was modified with the intent of remedying
this situation. A parameter ay was introduced, but not defined for general N (N
= vertex order). In this chapter, ay is defined and the effect it has on the surface

is carefully analyzed.

4.1 Definitions and Notation

In order to study the geometric characteristics of the triangular subdivision
algorithm presented in Chapter 3, precise notation must be introduced that allows
for appropriate algebraic manipulation. Notation is simplified by the observation
that each extraordinary point is isolated after one step of the algorithm. In other
words, after one step, all edge sharing neighbors of an extraordinary point are
ordinary points (N=6). This can be seen in Figure 3.4. For this reason, analysis
of the surface may be done locally.

The local region to be studied consists of an extraordinary point V, and all

the vertices of the triangular mesh sharing an edge with V. These points shall be
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contained in the set

P ={Po,...,Pn_1}

where N is the vertex order of V, and P;pean shares an edge with P(iy1)moan. In
this way, P is cyclicly ordered. It is always assumed that all subscripts are to be
taken mod V.

As subdivision proceeds, the geometry of V and P changes, but their structure
does not. It is useful to superscript these points with the corresponding level of
subdivision. Thus, V¢ refers to the image of point V after £ iterations of the
subdivision algorithm. Figure 4.1 illustrates an initial local configuration of points.

The subdivision rules derived in Chapter 3 may be applied to this configura-
tion. On the £ iteration, the new vertex point V* is found by taking a convex

combination of the points V-1, the extraordinary point ; and Q‘~?, the average of

Figure 4.1: The initial configuration of points.
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V41’5 edge sharing neighbors. Formally let
N-1
Q'=4> PL (4.1)
1=0

The new vertex point rule states
Vi=anV&l 4+ (1 - an)Q-L (4.2)
The masks for determining new edge points indicate that
Pl =Pl + 3P + 5P +5V (43)

With the above definitions, the configuration of points about an extraordinary point
may be found for any level of subdivision. In particular, it is possible to study this
configuration as ¢ — oo.
In the following discussion, it will be useful to use an alternate definition of Q.
By substituting (4.3) into (4.1) it is found that
N-1
Q= FL GPIoI+EPITHIPEI+EVTY
= N-1
= VO HGER R
i=0
_ avelipiqel, (49)
Next, a few points should be made to clarify possible confusion with subsequent
notation. These clarifications regard ambiguities that might be caused by type
clashes. The set P is considered a periodic vector valued function with argument ¢,
whereas V and Q are points. It will be the case that on occasion a function such as
P occurs in an equation with a point. In such cases, the point should be considered
as a constant function. This is an instance of function notation. It will also be
the case that the set elements (i.e., function values) need individual treatment. In

these cases, the function is subscripted and should be considered as a point. This

is an instance of function value notation.
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4.2 Convergence

Figure 3.4 suggests that the triangular subdivision surface converges at extraor-
dinary points. An empi;'ica.l justification of convergence is not very insightful, nor
does it guarantee success in the realm of strange and unforeseen configurations of
triangles. Perhaps a triangular mesh exists that causes a loss of convergence in
much the same way that tangent pla;le continuity is lost in Figure 3.4. With the
introduction of the parameter ay to the subdivision algorithm, this possibility be-
comes very real. In this section, bounds on ay are derived which generate surfaces
that are guarenteed to converge. Once it has been established that the surfaces
converge at extraordinary points for an’s in a specific range, an explicit formula
for this point of convergence is given.

The proof of convergence is given in two parts. In the first part, it is shown
that as £ — oo (i.e., as subdivision proceeds) V¢ — Q% If V¢ /4 Qf as £ — oo,
then V¢ must be disjoint from the surface, but the fact that V¢ — Qf as £ — oo
does not guarantee convergence. Q° is an average of the P{’s. While this average
may be approaching V¢ as £ — oo, the individual P{’s might be diverging. It is
therefore also necessary to show that the components of P — Q‘ as £ — oco. This
constitutes the second part of the proof.

In order to show that V¢ — Q* as £ — oo , consider the vector
D‘=V{-Q. (4.5)
If V{ » Q! as £ — oo , then D* — 0 (the zero vector). Substituting equations
(4.2) and (4.4) into (4.5) yields

D! = (anV*'+(1-en)QY) - (V1 + 5@
= (an - VI -QY

(aN _ %)Dt—l

= (av— §)(an - 3D*?
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(aN - -)tDo (46)

D° is not, in general, zero. If D = 0 as £ — oo, it must be that (ay — £)* — 0.
This is always the case for —1 < (ay — %) < 1, that is for —% <an< %. Therefore
V¢ - Qf as £ — oo for values of ay in this range. The rate at which V{ — Q* is
(an = 3)

The second part of the proof is more complicated. The goal is to show that
each P{ - Q¢ for: =0,...,N —1 as £ — oo. It is convenient to introduce some

new notation. Let
= {g’ ;, 0 0’ %}

be considered as a discrete periodic function (period N) such that Mo = £, M, = £,
Mp_; =}, and M; =0, for all i # (N —1,0,1) mod N. Using M, equation (4.3)
may be rewritten

2 M,PoL 4 2V (4.7)

'_J
1=0
Equation (4.7) is a discrete convolution [Brigham 1974] of the periodic function

P%! with the even function M. Thus equation (4.7) may be written
P‘=Mx+P& 4+ 3V (4.8)

where * is the convolution operator.
Q¢ may also, when treated as a constant function, be expressed as a discrete

convolution, with the aid of the following, let

A={%% .- %}

be the discrete function of N values identically equal to #. Equation (4.1) may

now be written as
N-1

Q= Y A P,_J

7=0

= AxP. (4.9)
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Combining (4.8) and (4.9) gives

P! = M#+P“l43ve?
= M*Pl—l_%A*Pl—l+%vl—l+%A*Pt—l

= M-%A)«P"1+ Q% (4.10)
Let M =M — 2A , (4.10) may be written
P'=Mx+P“1+Q (4.11)

Equation (4.11) may be further simplified by observing that

N-1 N-1
EM,':% and Z%A,=%
1=0 1=0
therefore
N-1 _
M; =0.
1=0
From (4.11),

Pl = M*Pl—l-i"ql
Mx(M+P~24+ Q1) +Q

Since M sums to zero and Q%! is a constant function, it follows that M* Q%! =0,

therefore (4.11) may be written
P!=M'+P°+ Q* (4.12)

where M? denotes the function M convolved with itself £ — 1 times.

Recall that the goal is to show that P* — QF as £ — co. From (4.12) it is clear
that this is equivalent to showing that M‘* P° — 0 as £ — oco. For this to occur
for any set P?, it must be that M¢? — 0 as £ — oco. This can be shown quite easily
with the aid of the Convolution Theorem [Brigham 1974]. This theorem states

that convolution of two functions is equivalent to multiplication of their Fourier
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transforms in the frequency domain. In order to avoid digression, the properties of
discrete Fourier transforms relevant to the current discussion are described in the
Appendix.

From the Convolution Theorem
F(MY) = [F(M)]* (4.13)

where F(M?¢) denotes the discrete Fourier transform of M‘. Therefore, to show
that M? — 0 is equivalent to showing that [F(M)]¢ — 0, since F(G) = 0 implies
that G = 0. Since the function M is different for every vertex order N, the discrete
Fourier transform of M should be found for general N. This is done by using the
linearity property of discrete Fourier transforms (Appendix). The discrete periodic
even function M is illustrated in Figure 4.2. M may be decomposed into the
sum of three simpler functions whose Fourier transforms are well known. Recall
that M = M — 2A, let —2A represent one of these functions. M is the sum
of two discrete periodic even functions {2,0,...,0} and {0, 50,...,0,1}. These
three functions, and their discrete Fourier transforms are illustrated graphically in
Figure 4.2. These discrete Fourier transforms are combined to form the discrete

Fourier transform of M, which has the form

_ 0 ifj=0
FM); = { 2+Lcos¥i otherwise. (4.14)

Since values of the cosine are between —1 and 1, values of F(M) are between

and 2, for all N. Upon repeated multiplication, these terms will vanish. So, as
- £ — oo, [F(M)]* = 0, and consequently M — 0. Therefore from (4.12), P — Q*
as £ — oo, concluding the proof.

The second part of this proof did not involve ay. It showed that as subdivision
proceeds, the edge sharing neighbors of the extraordinary point will converge to

a constant function , i.e., a single point. The first part of the proof showed that
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Figure 4.2: Computing F(M) by a decomposition into simpler functions.
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the extraordinary point will converge to this point only if an lies within a specific
range. It can be concluded that surfaces generated by the triangular subdivision

algorithm converge when —% < ay < 1.

4.3 Explicit Point of Cbnvergelice

The surface generating algorithrqé presented in this paper are all ‘approximat-
ing’ as opposed to ‘interpolating’. This means that the resulting surface in general
will not contain any of the original triangular mesh points. It might be argued
that with a refinement algorithm, one has only an approximation to a surface and
not the surface itself. This is not the case. Since all ordinary points belong to a
well defined surface element (a local patch based on N 222(u)), they are explicitly
represented. The entire surface has an explicit representation if an explicit repre-
sentation can be found for the limiting position of each extraordinary point. This
amounts to finding an explicit representation of Q’ as £ — oo. This is accomplished

with some algebraic manipulation using equations (4.4), (4.5), and (4.6)

Ql — %Vl—l_‘_%ql—l

= g(Vl—l _ Ql—-l) +Ql—l

—_ %Dt—l_i_ql—l

— %Dl—l +(§Dl-2+ql—2)

= %Dl-l + %Dl—2+ %D‘—3+“°+ %DO-I-QO
-1

= §1D'+Q°
k=0
-1

= 1Y Day- D+ @
k=0

-1
= D3 (ev -9+ Q°
k=0
= (V°-Q%nx+Q°
= ANV +(1-87)Q° (4.15)
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Therefore, the point of convergence is a convex combination of V? and Q° depending

on
-1
Byv=3> (an—32) as £— oo
k=0

This is a geometric series with a limit of the form

°° 1
Y aF = if —l<a<l.
k=0 l—a

The bounds on ay to satisfy this expression are the same bounds found previously,

so as £ — oo

3 3
T 11 — 8an’

Thus the point of convergence corresponding to each extraordinary point can be

BN (4.16)

found explicitly. For example, if ay = 53, BN = % So the point of convergence for

the extraordinary point is at the midpoint of V° and Q°.

4.4 Tangent Plane Continuity

It has been established that with an appropriate choice of ay, the triangular
subdivision surface converges at extraordinary points. The next logical step is to
consider the behavior of the tangent plane at extraordinary points. Figure 3.4 gives
empirical evidence that for ay = £, tangent plane continuity is not always guar-
anteed; this observation shall be confirmed algebraically. The parameter ay was
introduced in the hope that some amount of control might be had over the geomet-
ric characteristics of the surface. The bounds on ay that guaranteed convergence
are narrowed to guarantee tangent plane continuity. Once it has been established
that the surface has a well defined tangent plane at extraordinary points , an ex-
plicit formulation of the plane is given. From this plane, a well defined surface
normal may be found.

h component is the vector from V*

Let T* represent a periodic function whose z*
to P%. Therefore

T = (L)4(P* - V). (4.17)
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The term (1) represents a series of scalars that exactly cancels the contraction of
(P? — V*) between iterations of the algorithm. An exact value for r will be found
shortly. By substituting (4.12) into (4.17) and using (4.5) and (4.6), (4.17) may be

rewritten

Tl = (};)l(Mt * PO-I- Ql _ Vl)
= ()M« P° - D)

3
— (%M)l * PO _ (GN:s)tDO. (418)

From (4.18) it is clear that the limiting behavior of T* depends on (M)’ * P° and
(O'—NT_-%-)‘Do as £ — oo.

The behavior of (:M)’ * P? as £ — oo can be determined by examining the
behavior of [F(1M)}*. By the linearity property of discrete Fourier transforms,
F(IM) = LF(M). Let r =  + % cos 2%; using (4.14) it is found that the non-zero
components of LF(M) are of the form

3 1 27y
§+3c08 F

tF(M); = T lomir
8 4

j=1,...,N—1. (4.19)

This is illustrated graphically in Figure 4.3. Note that with this choice of r,
LFM); = 1for j =1, N —1 and, LFM)j <1lfor j#1,N—1. As £ — oo, all
terms of [LF(M)]¢ will vanish except for the pair of 1’s at j = 1, N — 1. Therefore,

as £ — oo,

prem =} Ei=LN-1 (4:20)

0 otherwise.

The discrete inverse Fourier transform of this result is # cos 2Nﬁ (Appendix). Or,

in function notation, %C where C; = cos 2%, Therefore, as £ — oo, (M)t — £C.

With the above argument equation (4.18) may be written

3
T - 2C+P°— (Z-2)'D° as {— oo (4.21)
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Figure 4.3: Determination of (M) as £ — oo.

In the limit, (aN—:%-)‘ will be 0, £1 , or oo depending on the value of a—N;——g- The
parameter ay may be chosen to give any of these effects. The appropriate choice
will be made shortly. For the time being, set k! = (?-'—vr;%-)‘Do, so that equation
(4.21) becomes

T!= 2C+P° -k’ (4.22)

Converting (4.22) to function value notation gives

N-1

T = %Zocosm;;,;ij?—kl
J=
N_l . . . .
= %Y (cos g cos 3L + sin X sin gf,ﬂ’-)P? — k¢
j=o
-1
= cos —-7-P0 cos <&t 2’“ + sin —1P° sin = 2’" -kt 4.23
0 N 0
.7— Jj=

Since the coefficients of cos %? and sin 2;51 are constants, the vectors represented by

T will lie in plane as £ — oo, if k! — 0 as £ — oo.
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3 _3
Recall that k* = (ﬁ’ir_s.)lDO, this is zero as £ — oo, when —1 < O'N—rs- < 1. This
provides bounds on ay which assure a well defined tangent plane. These bounds
are

—LleosT <ay <24 fcos ¥ (4.24)

Note that this range of ax lies within the range that assured convergence for the
surface.

In Figure 3.4, tangent plane continuity is apparently lost at the vertex of order
3. This surface was generated by an algorithm, which used a3 = £. The bounds
on aj from (4.24) are } < a3 < . In this case a3 = 2 is not strictly within the
range necessary for tangent plane continuity. This analysis confirms the empirical
evidence that at this point, the surface does not have a well defined tangent plane.

If the an’s are chosen to satisfy (4.24), then the tangent vector function at each

extraordinary point can be written
T= %C *P° (4.25)

where T denotes T as £ — 0o. Note that T is a function of P° and does not depend
on VO A surface normal for any extraordinary point can be found by evaluating
(4.25) at any 7 and 1+ 1, and taking the cross product of the resulting vectors. Also

note that for N = 6, (4.25) is the directional derivative function for the parametric

surface based on N%2?(u).

4.5 Curvature Continuity

It has been demonstrated in the previous section that the triangular subdivision
surface has a well defined tangent plane everywhere with correctly chosen an’s.
This range of ay’s still allows a certain amount of ‘control’ over the shape of the
surface. It is known that when ag = % the underlying parametric surface is locally

C? at the corresponding ordinary point. This means that the surface has well
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defined Gaussian curvature at this points. In this section, the issue of curvature
continuity is discussed for general N. In what follows, the analysis has been guided
by intuition and heuristics, the most important being that everything works for the
case N = 6. Some argumenté are made that are not fully justified.

The curvature function about a pg;int on the surface refers to the normal curva-
ture at the point in all directions. Therefore this function is periodic. Rather than
trying to explicitly formulate a curvature function about an extraordinary point ,
a related function is developed instead, the justification being that if this function
is well defined, then so is the curvature function. This related function is the rate
of change of the tangent function “with respect to” the subdivision process. The

rate of change of the tangent function at an extraordinary point may be defined as
N _ 1\eme
T = (L)Y(T'-T). (4.26)

Where again, the term (1)¢ is a series of scalars that should cancel the convergent

effect of T — T as £ — co. Using (4.5),(4.12),and (4.17), (4.26) may be written
T = (DR - V) - FCxP)
= (H(M *P°+ QY - V! - ZLCx P9

()M +P° - 2ZC+ P° — DY). (4.27)

Let M = M — ZC. With this substition, and using (4.6), (4.27) reduces to

T = (L)(M P’ - (an - 3)'D°)

(EM) + PO — (°'—’:,——§)‘D°. (4.28)

This equation represents the rate of change of T¢ about an extraordinary point.

The limiting behavior of (4.28) may be analyzed in terms of the discrete Fourier
- an—3

transform of the term (M) P°. The remaining term (—2)‘D° is analyzed as

a geometric sequence.
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To obtain the discrete Fourier transform of r%-1\=/l, recall that M = M — 2C, thus
F(M) = F(M) — ZF(C). F(M) is known from (4.14). FF(C) is the § function
illustrated in Figure 4.4. Subtracting ZF(C) from F(M) gives Fi (M), which is of

the form

= 0 ifj=0,1,N-1
FM); = { 2 4 %cos 27-’\',1 otherwise (4.29)

and is illustrated in Figure 4.4.

Recall that r = 2 + Lcos 27, thus the non-zero components of ;F (M) are of

the form

34109270
g T 3008 °§

341 27)2
(34 zco8 F

1 |
=7 (M); = j#0,1,N -1 (4.30)

which is at a maximum when j = 2. Therefore, the limiting behavior of (%M)* is
determined by % F(M). Values of %7 (M), for various N are given in Table 4.1.

Note that %F (M) does not depend on ay, therefore ay cannot affect the
limiting behavior of % Fi (M)!. From the above table, it is clear that T, as £ — oo,
is stable only when N = 6, i.e., at ordinary points. It is concluded that no choice of
ay can, in general, assure well defined curvature function at extraordinary points.
This result has been confirmed by numerous attempts to estimate second order
effects at extraordinary points.

In practice, the rate at which T* vanishes or diverges can be influenced by the
remaining (O'—N;s,;-—%-)‘D0 in (4.28). This term has some remaining freedom in that ay
may take on a range of values. A natural choice of a is one where (a—’g—%)‘ — 1 as
£ — oo. This assured if (a—Nr;—%-) = 1. Under this restriction, ay takes on a unique
value. Namely

an=(2+LcosdF)?+ 2. (4.31)

Values of ay chosen in this way satisfy the previous bounds for a well defined
tangent plane. Note that ag = £, the correct value for ordinary points. A surface

using this definition of ey is illustrated in Figure 4.5.
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Figure 4.4: Derivation of F(M).
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Table 4.1: Values of 5F (M) for various N

I N | FF(M),
3 [ 0.000000 |
4 | 0.888889
5 | 0.844582
6 | 1.000000
7 1] 1.133218
8 | 1.231699
9 | 1.303729
10 | 1.357214
11 | 1.397739
12 | 1.429062
oo | 1.600000

4.6 Conclusion of analysis

An analysis of the triangular subdivision surface has been presented which con-
firms empirical evidence and predicts a value of ay which leads to the best looking
surface. It has been shown that this value of an results in surfaces which converge
to a well defined tangent plane. Analysis of second order effects suggest that well
defined Gaussian curvature does not exist at all points of the surface. However,
there are only a finite number of such points and with appropriate ay, the surface

appears quite smooth.
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Figure 4.5: A surface using the modified new vertex point rule.



Chapter 5
Subdivision Implemented

An algorithm for refining an arbitrary triangular mesh was roughly outlined
in Chapter 3. Chapter 4 presented further details of the algorithm, and some
structures used for its analysis. In this chapter, these ideas are incorporated into a
pseudo code outline of a working implementation of the subdivision algorithm.

An important aspect of any control point scheme for generating curves or sur-
faces is the ability to establish relationships among the control points. Two points
are considered to be related if they are end points of a common edge in a structure.
For curves, relationships are trivially established by the ordering of the control
points. For example, given a control point c;, it is clear that (c;_;, ¢;) and (c;, ¢;41)
are segments of the control polygon. This is also true for surfaces whose control
points exhibit a regular grid structure. With appropriate addition and subtraction
of the double indices, it is easy to determine the edge sharing neighbors of a con-
trol point. In the case of an arbitrary control point mesh, no such simple indexing
scheme exists.

In order to establish relationships among control points in an arbitrary mesh,
a special data structure must be built. This data structure amounts to a graph
corresponding to the topology of the mesh. The construction of such a data struc-
ture is non-trivial (compared to implementing a regular grid), and it will not be

described. The most important feature of this structure is its ability to provide an
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ordered adjacency list for each control point of the mesh. An ordered adjacency
list is a list of points with a common edge sharing neighbor, such that any pair of
consecutive points in the list are edge sharing neighbors. In Chapter 4, the set P
is an ordered adjacency list for the point V. The set of all points and associated
ordered adjacency list is the required description of the control point mesh.

Each triangular face of the control point mesh is composed of three points
denoted Vr,Vs, and Vt with corresponding ordered adjacency lists Pr,Ps, and Pt
of lengths Nr,Ns, and Nt respectively. Note that Nr,Ns,and Nt are the vertex orders
of Vr, Vs, and Vt respectively. Since the points of a triangle all share edges with one
another, each point’s ordered adjacency list will contain the other two points. By
convention, the first two elements of each point’s ordered adjacency list are the other
two points of the triangle such that the list has a counterclockwise orientation when
viewed from above the triangle. An illustration of the information associated with a
single triangular face is given in Figure 5.1. Note that the first element of a point’s
ordered adjacency list would be different for different triangles. The three ordered
adjacency lists associated with the points of each triangle completely determine
a patch of the subdivision surface. The algorithm SUBDIVIDE is presented in
Figure 5.2 which computes a piecewise linear approximation to this patch. The

input £ indicates the depth of subdivision for the patch.

Note that * is the discrete convolution operator. In practice, this operation
computes a sum (see Appendix), which is implemented with a for loop. The con-
volution operands A and M are defined in Chapter 4. Values of ay, and By,
(: = r,s,t) may be stored in a table indexed by N;. The set of points qr,qs, and
qt correspond to the adjacency lists of new edge points. These sets are of length
8 rather than 6 (new edge points are ordinary points (N = 6)), and qig = qi, ,
qi; = qi,. This is done so that the starting element may be either qi,, qi;, or

qi,, depending on which sub patch is to be computed. This is indicated by the set
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Psy,_»

Figure 5.1: The configuration of control points needed to compute one surface
patch.

offset in the recursive invocation of SUBDIVIDE.

This algorithm may easily be modified to handle adaptive subdivision. Rather
than subdividing to a fixed depth, each patch is tested for flatness. Patches that
are not deemed flat are further subdivided. The surface in Figure 5.3 was computed
in this manner.

Using the algorithm just outlined, smooth surfaces may be created with very
simple input. The input is a set of control points that roughly approximate a desired
shape. The behavior of the resulting surface is completely analogous to much less

general splines, for which the technique is a superset.
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SUBDIVIDE(Pr,Ps,Pt ,Nr,Ns,Nt £)

let Vr,Vs,Vt ,vr,.vs,vt be points;
let pr,ps,pt be a set {0,...,mazN} of points;
let qr,qs,qt be a set {0,...,7} of points;

Begin
Vr = Pt,; Vs = Pry; Vt = Psy;

if (£ > 0) then
begin

vr = ay, Vr+ (1 — ay, )A *Pr;
vs = ay, Vs + (1 — ay, )A * Ps;
vt = ay, Vt + (1 - ay,)A xPt;

pr=M=x*Pr+ 3Vr;
Ps = M xPs + $Vs;
pt =M=« Pt + 2Vt
qr, = vt; qs, = Vr; qt, = vs;
qr, = pt,; qs, = Pry; qt, = ps,;
qr, = pry; qs, = Ps,; qt, = pt,;
qr; = vs; gs; = vt; qt; = vr;
qr, = Psy,_,; 98, = pty,_,; qt, = pry__,;
qr; = pt,; gss = pry; qts = ps,;
- qrg = qr; qsg = q8,; qts = qt,;
qr; = qry; qs,; = Qs,; qt; = qt,;
SUBDIVIDE(qr+1,qs+1,qt+1,6, 6, 6, £— 1);
SUBDIVIDE(pr, qt+2,qs, Nr,6, 6, {— 1);
SUBDIVIDE(qt, ps, qr+2,6, Ns, 6, ¢— 1);
SUBDIVIDE(qs+2,qr, pt, 6, 6, Nt ,—1);

end;
else

begin

vr = By, Vr + (1 - By, )A * Pr;
vs = By, Vs + (1 - fy,)A * Ps;
vt = By, Vt + (1 - Bx,)A + Pt;

OUTPUT(vr,vs,vt);

end;
end if;

end;

Figure 5.2: Pseudo code for the algorithm SUBDIVIDE.



Figure 5.3: A surface and its defining control point set.
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Appendix
Discrete Fourier Transforms

This appendix describes a few of the important properties of discrete Fourier
transforms that are relevant to this work [Brigham 1974].
Let G be a discrete function in 7 with period N. Let ¢« = v/—1, then
N-1 2miig
F(G)j= Y G j=0,...,.N—1 (A.1)
1=0
is the discrete Fourier transform of G. If H = F(G) then
N-1 =2miig
F'Hi=%Y He 7"  i=0,...,N-1 (A.2)
7=0
is the discrete inverse Fourier transform of H, and F~!(H) = G.

If G; = G_;, then G is an even function. In this case, the discrete Fourier

transform of G simplifies to

N-1 .
F(G)j= Y Gycos i  j=0,...,N—1 (A.3)
1=0

If H = F(G) the discrete inverse Fourier transform simplifies to

N-1 .
FI(H);=#ZHjCOSHﬁu i=0,...,N—1 (A4)
=0

The discrete Fourier transform and its inverse are linear transformations. If G

and H are discrete periodic functions then

F(G + H) = F(G) + F(H). (A.5)
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The convolution of the discrete periodic functions G and H is defined
N-1
G*H=EG;HJ'_; j=0,...,N—1 (A.G)
=0
where * is the convolution operator. The convolution theorem for discrete Fourier

transforms states :
F(G *H) = F(G)F(H). (A.7)

The discrete Fourier transform of a few simple and useful periodic function are

illustrated in Figure A.1.
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F(G) = {k,k,... .k}

F(G) = 2kcos b

F(G) = {Nk,o,...,0}

Figure A.1: Some discrete periodic functions and their Fourier transforms
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