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Curve Reconstruction

The simplest class of manifolds that pose nontrivial reconstruction problems are
curves in the plane. We will describe two algorithms for curve reconstruction,
CrusT and NN-CRUST in this chapter. First, we will develop some general
results that will be applied to prove the correctness of the both algorithms.

A single curve in the plane is defined by amap £ : [0, 1] — R2 where [0, 1]is
the closed interval between 0 and 1 on the real line. The function & is one-to-one
everywhere except at the endpoints where § (0) = &(1). The curveis C 1_smooth
if £ has a continuous nonzero first derivative in the interior of [0, 1] and the
right derivative at 0 is same as the left derivative at 1 both being nonzero. If &
has continuous ith derivatives, i > 1, at each point as well, the curve is called
Ci-smooth. When we refer to a curve ¥ in the plane, we actually mean the
image of one or more such maps. By definition % does not self-intersect though
it can have multiple components each of which is a closed curve, that is, without
any endpoint.

For a finite sample to be a e-sample for some & > 0, it is essential that the
local feature size f is strictly positive everywhere. While this is true for all
C2-smooth curves, there are C'-smooth curves with zero local feature size at
some point. For example, consider the curve

y=|x|§ for—1<x =<1

and join the endpoints (—1, 1) and (1, 1) with a smooth curve. This curve is C'-
smooth at (0, 0) and its medial axis passes through the point (0, 0). Therefore,
the local feature size is zero at (0, 0).

We learnt that C'-smooth curves do not necessarily have positive minimum
local feature size while C2-smooth curves do. Are there curves in between C L
and C2-smooth classes with positive local feature size everywhere? Indeed,
there is a class called C!!'-smooth curves with this property. These curves are
Cl-smooth and have normals satisfying a Lipschitz continuity property. To
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Figure 2.1. (a) A smooth curve and (b) its reconstruction from a sample shown with
solid edges.

avoid confusions about narrowing down the class, we explicitly assume that X
has strictly positive local feature size everywhere.

For any two points x, y in ¥ define two curve segments, ¥ (x, y) and y'(x, y)
between x and y, that is, £ = y(x, y)U y'(x,y) and y(x,y) Ny (x,y) =
{x, y}. Let P be a set of sample points from X. We say a curve segment is
empty if its interior does not contain any point from P. An edge connecting
two sample points, say p and g, is called correct if either y (p, q) or y'(p, q) is
empty. In other words, p and g are two consecutive sample points on X. Any
edge that is not correct is called incorrect. The goal of curve reconstruction is
to compute a piecewise linear curve consisting of all and only correct edges. In
Figure 2.1(b), all solid edges are correct and dotted edges are incorrect.

We will describe CRUST in Subsection 2.2 and NN-CRuST in Subsection 2.3.
Some general results are presented in Subsection 2.1 which are used later to
claim the correctness of the algorithms.

2.1 Consequences of e-Sampling

Let P be a e-sample of X. For sufficiently small ¢ > 0, several properties can
be proved.

Lemma 2.1 (Empty Segment). Let p € P andx € X sothat y(p, x) is empty.
Let the perpendicular bisector of px intersect the empty segment y(p, x) at z.
Ife < 1 then

(i) the ball B, |, intersects ¥ only in y(p, x),
(ii) the ball B, |, is empty, and
(iti) l|p —zll < &f(2).

Proof. Let B = B, p—,; and y =y(p,x). Suppose BNXI #y (see
Figure 2.2). Shrink B continuously centering z until Int B N ¥ becomes a
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Figure 2.2. Illustration for the Empty Segment Lemma 2.1. The picture on the left is
impossible while the one on the right is correct.

1-ball and it is tangent to some other point of 2. Let B’ be the shrunken

ball. The ball B’ exists as B; s N X is a 1-ball for some sufficiently small

§ > 0and BN Y isnot a 1-ball. The ball B” is empty of any sample point as

Int B’ intersects ¥ only in a subset of y which is empty. But, since B'N X is

not a 1-ball, it contains a medial axis point by the Feature Ball Lemma 1.1.

Thus, its radius is at least f(z). The point z does not have any sample point

within f(z) distance as B” is empty. This contradicts that P is a e-sample of &
>l where & < 1. Therefore, B intersects X only in y(p, x) completing the proof

L] .
AR Of (].)‘
|,';;: Property (ii) follows immediately as y(p, x) is empty and B intersects X
. only in y(p, x). By e-sampling, the nearest sample point p to z is within £f(z)
distance establishing (iii). a

The Empty Segment Lemma 2.1 implies that points in an empty segment are
close and any correct edge is Delaunay when & is small.

Lemma 2.2 (Small Segment). Let x, y be any two points 50 that y(x,y) is
empty. Then ||x — y|| < £ f(x) fore < L.

Proof. Since y(x, y) is empty, it is a subset of an empty segment y(p, q) for
two sample points p and g. Let z be the point where the perpendicular bisector
of pg meets y(p, g). Consider the ball B = B, |p—z|- Since y(p, g) is empty,
the ball B has the properties stated in the Empty Segment Lemma 2.1. Since
B contains ¥ (p, q), both x and y are in B. Therefore, ||z — x| < &f(z) by the
g-sampling condition. By the Feature Translation Lemma 1.3 f(z) < {(_i; We
have

lx —yll <2llp —zll < 2ef(2)
2
L.

t
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Figure 2.3. Illustration for the Segment Angle Lemma 2.4.

Lemma 2.3 (Small Edge). Let pg be a correct edge. For e < 1,

(i) lp—ql < &£ f(p)and
(ii) pq is Delaunay.

Proof. Any correct edge pg has the property that either y (g, p) or y(p, q)
is empty. Therefore, (i) is immediate from the Small Segment Lemma 2.2, It
follows from property (ii) of the Empty Segment Lemma 2.1 that there exists
an empty ball circumscribing the correct edge pg proving (ii). ]

If three points x, yr, and z on X are sufficiently close, the segments xy and
yz make small angles with the tangent at y. This implies that the angle Z/xyz
is close to . As a corollary two adjacent correct edges make an angle close
to .

Lemma 2.4 (Segment Angle). Let x, y, and z be three points on ¥ with ||x —
Y| and ||y — z|| being no more than lz%sf(y) for e < % Let o be the angle
between the tangent to X at y and the line segment yz. One has

(i) o < arcsin ﬁ and
£

(i) Lxyz > m — 2arcsin .

Proof. Consider the two medial balls sandwiching 3 at y as in Figure 2.3. Let
« be the angle between the tangent at y and the segment yz. Since z lies outside
the medial balls, the length of the segment yz' is no more than that of yz where
7' is the point of intersection of yz and a medial ball as shown.
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« < arcsin ((“lg—zﬂ) /(llm — yu))
— arcsin ((Hy ; ZH) / (Ilm — yli)) ]

It is given that ||y — z|| =< %f(y) where ¢ < % Also, |m — y|| = f(y) since
m is a medial axis point. Plugging in these values we get

In that case,

« < arcsin
—€

completing the proof of (i). We have
Zmyz = % —a

&

T

Zmyz = — — arcsin :
=2 1—¢

Similarly, it can be shown that Zmyx = 7 — arcsin = Property (ii) follows

immediately as Zxyz = Zmyz + Zmyx. B

Since any correct edge pg has a length no more than {“_iﬁ f(p) fore <1
(Small Edge Lemma 2.3), we have the following result.

Lemma 2.5 (Edge Angle). Let pg and pr be two correct edges incident to p.

s £ 1
We have Zqpr > 7 — 2arcsin 1= for € < 5.

2.2 Crust

We have already seen that all correct edges connecting consecutive sample
points in a e-sample are present in the Delaunay triangulation of the sample
points if € < 1. The main algorithmic challenge is to distinguish these edges
from the rest of the Delaunay edges. The CRuUsT algorithm achieves this by
observing some properties of the Voronoi vertices.

2.2.1 Algorithm

Consider Figure 2.4. The left picture shows the Voronoi diagram clipped within
a box for a dense sample of a curve. The picture on the right shows the Voronoi
vertices separately. A careful observation reveals that the Voronoi vertices lie
near the medial axis of the curve (Exercise 8). The CrusT algorithm exploits this
fact. All empty balls circumscribing incorrect edges in Del P cross the medial
axis and hence contain Voronoi vertices inside. Therefore, they cannot appear
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Figure 2.4. Voronoi vertices approximate the medial axis of a curve in the plane. The
Voronoi vertices are shown with hollow circles in the right picture.

in the Delaunay triangulation of P U V where V is the set of Voronoi vertices in
Vor P. On the other hand, all correct edges still survive in Del (P U V). So, the
algorithm first computes Vor P and then computes the Delaunay triangulation
of P UV where V is the set of Voronoi vertices of Vor P. The Delaunay edges
of Del (P U V) that connect two points in P are output. It is proved that an
edge is output if and only if it is correct.

CRruUsT(P)
1 compute Vor P;

compute Del (P U V);
E = (;

ifpe Pandge P
E :=EU pg;
endif
output E.

oo 1 Oy bh B0 2

let V be the Voronoi vertices of Vor P;

for each edge pg € Del(P UV)do

The Voronoi and the Delaunay diagrams of a set of n points in the plane |
can be computed in O(nlogn) time and O(n) space. The second Delaunay
triangulation in step 3 deals with O(n) points as the Voronoi diagram of n points
can have at most 2n Voronoi vertices. Therefore, CRUST runs in O(n log n) time

and takes O(n) space.
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Figure 2.5. Tllustration for the Correct Edge Lemma 2.6.

2.2.2 Correctness

The correctness of CRUST is proved in two parts. First, it is shown that each
correct edge is present in the output of CrusT (Correct Edge Lemma 2.6). Then,
it is shown that no incorrect edge is output (Incorrect Edge Lemma 2.7).

Lemma 2.6 (Correct Edge). Each correct edge is output by CRUST when
1

g iz

Proof. Let pq be a correct edge. Let z be the point where the perpendicular
bisector of pq intersects the empty segment y(p, q). Consider the ball B =
B_ | p—zy - This ball is empty of any point from P when & < 1 (Empty Segment
Lemma 2.1 (i)). We show that this ball does not contain any Voronoi vertex of
Vor P either.

Suppose that B contains a Voronoi vertex, say v, from V (Figure 2.5). Then
by simple circle geometry the maximum distance of v from p is 2||p — z]l.
Thus, ||p — v|| < 2|p — zll. Since ||p — z|| < &f(z) by the Empty Segment
Lemma 2.1(iii), we have

2
lp — vl <2ef(z) < l—f—gf(p)-

The Delaunay ball B’ centering v contains three points from P on its boundary.
This means bdB’ N X is not a O-sphere. So, B’ contains a medial axis point by
the Feature Ball Lemma 1.1. As the Delaunay ball B’ is empty, p cannot lie in
Int B’. So, the medial axis point in B’ lies within 2||p — v|| distance from p.
Therefore, 2| p — vl > f(p). But, [[p — vll < % f(p) enabling us to reach a
contradiction when % < %, that is, when ¢ < %

Therefore, for e < é, there is a circumscribing ball of pg empty of any point
from P U V. So, itappears in Del (P U V) and is output by CRUST as it connects

two points from P. |
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Figure 2.6. Illustration for the Incorrect Edge Lemma 2.7.

Lemma 2.7 (Incorrect Edge). No incorrect edge is output by CRUST when
e < 1/5.

Proof. We need to show that there is no ball, empty of both sample points and
Voronoi vertices, circumscribing an incorrect edge between two sample points,
say p and ¢q. For the sake of contradiction, assume that D is such a ball.

Let v and v" be the two points where the perpendicular bisector of pg inter-
sects the boundary of D (see Figure 2.6). Consider the two balls B = B, , and
B’ = B, that circumscribe pg.

We claim that both B and B’ are empty of any sample points. Suppose on the
contrary, any one of them, say B, contains a sample point. Then, one can push D
continually toward B by moving its center on the perpendicular bisector of pg
and keeping p, g on its boundary. During this motion, the deformed D would
hit a sample point s for the first time before its center reaches v. At that moment
D, g, and s define a ball empty of any other sample points. The center of this
ball is a Voronoi vertex in Vor P which resides inside D. This is a contradiction
as D is empty of any Voronoi vertex from V.

The angle Zvpv’ is w/2 as vv” is a diameter of D. The tangents to the
boundary circles of B and B’ at p are perpendicular to vp and v’ p respectively.
Therefore, the tangents make an angle of 7/2. This implies that & cannot be
tangent to both B and B’ at p.

First, consider the case where X is tangent neither to B nor to B’ at p. Let
p1 and p; be the points of intersection of % with the boundaries of B and B’
respectively that are consecutive to p among all such intersections. Our goal
will be to show that either the curve segment pp; or the curve segment pp;
intersects B or B’ rather deeply and thereby contributing a long empty segment
which is prohibited by the sampling condition.
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34 2 Curve Reconstruction

The curve segment between p and p; and the curve segment between p and
p donot have any sample point other than p. By the Small Segment Lemma 22

~both ||p — p1ll and ||p — p2|| are no more than 2 f(p) for e < §. So by the

Segment Angle Lemma 2.4, Zp1ppy = 7 — 2 arcsin %
Without loss of generality, let the angle between pp: and the tangent to B at
p be larger than the angle between pp; and the tangent to B’ at p. Then, pp;

makes an angle o with the tangent to B at p where

1 . & T
— (| 7 — 2arcsin - —
2(( 1—8) 2)

£

1—¢

R
v

4 :
= — — arcsin
4

Consider the other case where ¥ is tangent to one of the two balls B and B’
at p. Without loss of generality, assume that it is tangent to B’ at p. Again the
lower bound on the angle « as stated above holds.

Let x be the point where the perpendicular bisector of pp; intersects the
curve segment between p and p;. Clearly, x is in B. Since B intersects X at
p and g which are not consecutive sample points, it cannot contain y(p, g) or
v'(p, q) inside completely. This means B N ¥ cannot be a 1-ball. So, by the
Feature Ball Lemma 1.1, B has a medial axis point and thus its radius r is at
least f(x)/2. By simple geometry, one gets that

1
Ip—xll = 51p =il

=r sina

> %f(x) sin «.

By property (iii) of the Empty Segment Lemma 2.1|lp — x|l < &f(x). Wereach
a contradiction if

(T . £
2¢ < sin | — — arcsin ;
(4 1-—8)

For ¢ < 1, this inequality is satisfied. [ 4]

Combining the Correct Edge Lemma 2.6 and the Incorrect Edge Lemma 2.7
we get the following theorem.

Theorem 2.1. Fore < é CRusT outputs all and only correct edges.



2.3 NN-Crust 35
L ad
SN,

aJ
N _
q

(a) (b)

Figure 2.7. (a) Only nearest neighbor edges may not reconstruct a curve and (b) half
neighbor edges such as pr fill up the gaps.

2.3 NN-Crust

The next algorithm for curve reconstruction is based on the concept of nearest
neighbors. A point p € P is a nearest neighbor of g € P if there is no other
point s € P\ {p, g} with ||g — s|| < |lg — p||. Notice that p being a nearest
neighbor of g does not necessarily mean that g is a nearest neighbor of p.

We first observe that edges that connect nearest neighbors in P must be
correct edges if P is sufficiently dense. But, all correct edges do not connect
nearest neighbors. Figure 2.7 shows all edges that connect nearest neighbors.
The missing correct edges in this example connect points that are not nearest
neighbors. However, these correct edges connect points that are not very far
from being nearest neighbors. We capture them in NN-CRUST using the notion
of half neighbors.

2.3.1 Algorithm

Let pg be an edge connecting p to its nearest neighbor ¢ and EZJ be the vector
from p to g. Consider the closed half-plane H bounded by the line passing
through p with pg as outward normal. Clearly, ¢ ¢ H. The nearest neighbor
to p in the set H N P is called its half neighbor. In Figure 2.7(b), r is the half
neighbor of p. It can be shown that two correct edges incident to a sample point
connect it to its nearest and half neighbors.

The above discussion immediately suggests an algorithm for curve recon-
struction. But, we need efficient algorithms to compute nearest neighbor and
half neighbor for each sample point. The Delaunay triangulation Del P turns
out to be useful for this computation as all correct edges are Delaunay if P is
sufficiently dense. The Small Edge Lemma 2.3 implies that, for each sample
point p, it is sufficient to check only the Delaunay edges to determine correct
edges. We check all edges incident to p in Del P and determine the shortest
edge connecting it to its nearest neighbor, say g. Next, we check all other edges
incident to p which make at least 7 angle with pg at p and choose the shortest
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LN e,

Figure 2.8. Diametric ball of pg intersects ¥ in (a) two components and (b) single
component.

among them. This second edge connects p to its half neighbor. The entire com-
putation can be done in time proportional to the number of edges incident to p.
Since the sum of the number of incident edges over all vertices in the Delaunay
triangulation is O(n) where | P| = n, correct edge computation takes only O(n)
time once Del P is computed. The Delaunay triangulation of a set of n points
in the plane can be computed in O(n log n) time which implies that NN-crust
takes O(nlogn) time.

NN-CruUsT(P)
1 compute Del P;
2 E=0
3 foreach pe Pdo
4 compute the shortest edge pq in Del P;
5 compute the shortest edge ps so that Zpgs = 5
6 E=EU{pq,ps}h
7 endfor
8 output E.

2.3.2 Correctness

As we discussed before, NN-CRUST computes edges connecting each sample
point to its nearest and half neighbors. The correctness of NN-CrusT follows
from the proofs that these edges are correct.

Lemma 2.8 (Neighbor). Let p € P be any sample point and q be its nearest

neighbor. The edge pq is correct for &€ < %

Proof. Consider the ball B with pg as diameter. If B does not intersect X
in a 1-ball, it contains a medial axis point by the Feature Ball Lemma 1.1
(see Figure 2.8(a)). This means [|p — g|| > f(p). A correct edge ps satisfies
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(2) (b)

Figure 2.9. Diametric ball of pg intersects ¥ in (a) more than one component and (b) a
single component.

lp—s| < %f(p) by the Small Edge Lemma 2.3. Thus, for ¢ < % we have
lp — sl < |lp — ql|, a contradiction to the fact that g is the nearest neighbor
to p.

So, B intersects ¥ in a 1-ball, namely ¥y = y(p, ¢) as shown in Figure 2.8(b).
If pq is not correct, y contains a sample point, say s, between p and g inside
B. Again, we reach a contradiction as ||p — 5| < [|p — q]l. B

Next we show that edges connecting a sample point to its half neighbors are
also correct.

Lemma 2.9 (Half Neighbor). An edge pq where q is a half neighbor of p is

correct when & < %

Proof. Letr be the nearest neighbor of p. According to the definition ,5_5 makes
at least 7 angle with pF.

If pg is not correct, consider the correct edge ps incident to p other than
pr. By the Edge Angle Lemma 2.5, p5 also makes at least 7 angle with pr for
& < 1/3. We show that s is closer to p than g. This contradicts that g is the half
neighbor of p since both E?? and ;75 make an angle at least -’5- with ;T}.

Consider the ball B with pg as a diameter. If B does not intersect ¥
in a 1-ball (Figure 2.9(a)), it would contain a medial axis point and thus
Iz —qll = f(p). On the other hand, for ¢ < %, lp—s| < lz_—gsf(p) by the
Small Edge Lemma 2.3. We get ||p — 5| < ||[p — gl fore < -é— as required for
contradiction. Next, assume that B intersects ¥ in a 1-ball, namely in y(p, ¢),
as in Figure 2.9(b). Since pg is not a correct edge, s must be on this curve
segment. It implies ||p — s|| < ||p — ¢q|| as required for contradiction. |

Theorem 2.2. NN-CRUST computes all and only correct edges when & < %
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Proof. By the Small Edge Lemma 2.3 all correct edges are Delaunay. Steps 4 and
5 assure that all edges joining sample points to their nearest and half neighbors
are computed as output. These edges are correct by the Neighbor Lemma 2.8 and
the Half Neighbor Lemma 2.9 when € < % Also, there is no other correct edges
since each sample point can only be incident to exactly two correct edges. W

2.4 Notes and Exercises

In its simplest form the curve reconstruction problem appears in applications
such as pattern recognition, image boundary detection, and cluster analysis. In
‘the 1980s, several geometric graphs connecting a set of points in the plane were
discovered which reveal a pattern among the points. The influence graph of
Toussaint [11]; the B-skeleton of Kirkpatrick and Radke [62]; and the «-shapes
of Edelsbrunner, Kirkpatrick, and Seidel [46] are such graphs.

Recall that a sample of a curve X is called globally -uniform if each point
x € ¥ has a sample point within a fixed distance . Several algorithms were
devised to reconstruct curves from §-uniform samples with § being sufficiently
small. Attali proposed a Delaunay-based reconstruction for such samples [9]
(Exercise 3). de Figueiredo and de Miranda Gomes [27] showed that Euclidean
minimum spanning tree (EMST) can reconstruct curves with boundaries from
* sufficiently dense uniform sample.

For a point set P C R?, let N denote the space of all points covered by
open 2-balls of radius & around each point in P. The a-shape of P defined
by Edelsbrunner, Kirkpatrick, and Seidel [46] is the underlying space of the
restricted Delaunay triangulation Del P|y. Bernardini and Bajaj [12] proved
that the c-shapes reconstruct curves from globally uniform samples that is
sufficiently dense (Exercise 6).

The first breakthrough in reconstructing curves from nonuniform samples
was made by Amenta, Bern, and Eppstein [5]. The presented CRUST algorithm
is taken from this paper with some modifications in the proofs. Following the
development of CRUST, Dey and Kumar devised the NN-CrusT algorithm [36].
The presented NN-CRUST algorithm is taken from this paper again with some
modifications in the proofs. This algorithm also can reconstruct curves in three
and higher dimensions, albeit with appropriate modifications of the proofs (Ex-
ercise 4).

The CrusT and NN-CRUST assume that the sample is derived from a smooth
curve without boundaries. The questions of reconstructing nonsmooth curves
and curves with boundaries have also been studied.

Giesen [54] showed that a fairly large class of nonsmooth curves can be
reconstructed by Traveling Salesman Path (or Tour). A curve X is called benign
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if the left tangent and the right tangent exist at each point and make an angle
less than 7. Giesen proved that, a benign curve X can be reconstructed from a
sufficiently dense uniform sample by the Traveling Salesman Path (or Tour) in
case ¥ has a boundary (or no boundary). The uniform sampling condition was
later removed by Althaus and Mehlhorn [3], who also gave a polynomial time
algorithm to compute the Traveling Salesman Path (or Tour) in the special case
of curve reconstruction. The Traveling Salesman approach cannot handle curves
with multiple components. Also, the sample points representing the boundaries
need to be known a priori to choose between a path or a tour.

Dey, Mehlhorn, and Ramos [38] presented an algorithm named CONSERVA-
TIVE CRUST that provably reconstructs smooth curves with boundaries. Any
algorithm for handling curves with boundaries faces a dilemma when an in-
put point set samples a curve without boundary densely and simultaneously
samples densely another curve with boundary. This dilemma is resolved in
CONSERVATIVE CRUST by a justification on the output. For any input point set
P, the graph output by the algorithm is guaranteed to be the reconstruction of a
smooth curve possibly with boundary for which P is a dense sample. The main
idea of the algorithm is that an edge pg is output only if its diametric ball is
empty of all Voronoi vertices in Vor P. The rationale behind this choice is that
these edges are small enough with respect to local feature size of the sampled
curve since the Voronoi vertices approximate the medial axis. With a sampling
condition tailored to handle nonsmooth curves, Funke and Ramos [52] and Dey
and Wenger [41] proposed algorithms to reconstruct nonsmooth curves. The
algorithm of Funke and Ramos can handle boundaries as well.”

Exercises

(The exercise numbers with the superscript & and o indicate hard and open
questions respectively.)

1. Give an example of a point set P such that P is a 1-sample of two curves
for which the correct reconstructions are-different.

2. Givena %-sample P of a C?-smooth curve, show that all correct edges are
Gabriel in Del (P U V) where V is the set of Voronoi vertices in Vor P.

3. Let P be a e-sample of a C2-smooth curve without boundary. Let 1., be the
sum of the angles opposite to pg in the two (or one if pg is a convex hull
edge) triangles incident to pg in Del P. Prove that there is a ¢ for which
pq is correct if and only if ,, < 7.

4. Show that the NN-CRruUST algorithm can reconstruct curves in three dimen-
sions from sufficiently dense samples.
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8.

2 Curve Reconstruction

The Correct Edge Lemma 2.6 is proved fore < % . Show that it also holds for
¢ < 1. Similarly, show that the Neighbor Lemma 2.8 and the Half Neighbor
Lemma 2.9 hold for ¢ < %

Establish conditions for & and § to guarantee that an «-shape reconstructs
a C2-smooth curve in the plane from a globally §-uniform sample.

Gold and Snoeyink [58] showed that the CRUST algorithm can be modified
to guarantee a reconstruction with & < 0.42. Althaus [2] showed that the
NN-CRusT algorithm can be proved to reconstruct curves from e-samples
for & < 0.5. Can this bound on & be improved? What is the largest value of
e for which curves can be reconstructed from g-samples?

Letv € V, be a Voronoi vertex in the Voronoi diagram Vor P of a e-sample
P of a C2-smooth curve 3. Show that there exists a point m in the medial
axis of X so that |m —v| = O(e)f(p) when ¢ is sufficiently small (see
Section 1.2.3 for O definition).



