Triangulating a Polygon

Recall: PSLG = Planar Straightline graph.

Def (Simple) Polygonal chain is a PSLG consisting of a simple cycle P.

Claim A Polygonal chain has a unique interior.

Def Polygon is Polygonal chain + interior

Triangulation: Addition of seg so that
1) Still PSLG
2) Interior is decomposed into triangles
Then every simple polygon can be triangulated.

Proof: Induct on # of edges or points \(n \)

Base case: \(n = 3 \) \(\triangle \) done

Assume no \(180^\circ \) angles \(\quad \)

\(n > 3 \) true for \(m < n \)

Let \(v \) be left most point with \(m \geq 2 \) \& \(u \)

1) Case 1 \(\text{seg} = [w, u] \) is interior

\(w \) gets two Poly \(P_1 \left| = 3 \right. \quad P_2 \left| = n - 1 \right.

2) Case 2 3 point \(v \) interior to \(\text{Tri} = [v, v', w] \)

Let \(v' \) be left most such point

\(\text{seg} = [v, v'] \) is interior

\(P_1 \leq n \) \& \(P_2) \leq n \)
Thm Not Every simple polygonal surface in 3D can be decomposed in Tetrahedra

By Contra!

Consider Tet with faces B

Missing vertex in X or Y not Z

Not X since deg [X, Y] undercut

In general polyh in NP-Hard
Guarding A Polygon

Input: Polygon P

Output: locations $p_1, \ldots, p_k \in P$ (guards)

1) Guards cover P

2) k small.

Thm A polygon P with n vertices

$\frac{2n}{3}$ guards suffice and maybe necessary.

Necessary:

$P = \begin{array}{c}
\text{n/3 prongs} \\
|P| = n \quad \text{Needs a guard per prong}
\end{array}$
$\ell/3$-guards Alg (P)

1) Two $P \bar{P}$
2) 3-color \bar{P}
 a) Construct geometric dual T (a tree)
 b) 3-color \bar{P} by traversing trees in an inorder fashion.
3) Pick least used color.

Only non-linear time step is 1)
2D-Algorithm

Proof \(\Rightarrow O(n^2) \)

Known: \(O(n) \) Chazelle

Today: \(O(n \log n) \) (sweep line)

This Class: \(O(n \log^* n) \) Seidel (incremental, randomized)

Def \(\log^* n = \min_k \log \log \ldots \log n \) \(n \leq 1 \)

\(\text{Prob}^5 \) Give a \(O(n) \) time alg to determine which side of
an edge in interior/exterior of a simple poly.

\(\text{Prob}^5 \) test \(P \subseteq \text{Int}(P) \) in \(O(n) \) time.

3.14 \(O(n \log n) \) OK

\(O(n) \)?

\(\text{Trap} \Rightarrow T \)
Step 1: Partition into Monotone Polygons

Def: A y-monotone if
- Every horizontal line l
 - l ∩ P is connected or empty

Alg: Type: line sweep $O(n \log n)$ time

Def:
- \square = start vertex
- \blacksquare = end
- \bigcirc = edge
- \triangle = split
- \triangledown = merge
Claim 3.4 Pro v-motion iff no split or merge vertices

(⇒) easy

(⇐)

not move ⇒ 3 split or merge

⇒ 2 with at least 1 internal

⇒ 2" with one False

⇒ 2" sum lemma 2 to 1

Alg Line Sweep

1) Events are endpoints

2) Define any

 1) Even # of segments in pairs (intervals)

 2) Each IS has a helper vertex

helping (e, e') = lowest vertex above l and between e & e'

3) Degeneracy: no horizontal seg.
Make Monotone (if event)

Case (Start Vertex)
1) Add new interval
2) set helper <= e

Case (End Vertex)
1) if helper is a, merge vertex then add (g, helper)
2) remove interval & helper.

Case (Regular)
1) add (g, helper)
2) replace e with e''
3) helper <= g

Case (Split)
1) add (g, helper)
2) "split" interval
3) helps <= g
Case (Merge)

1) add(helpl, g) add(helpr, g)
2) "Merge" intervals
3) help < g
Another View

1) Make Trapegoidd Decom (swEEP line)
2) For each trap add a diagonal if possible
 a) types of traps

\[\text{Diagram showing types of traps} \]
Triangulating a Monotone Poly

Y-monotone

Q = 2-sided queue
1) push
2) pop
3) dequeue

Process points in decreasing Y-value.
Maintain this on Reflection

WLOG
Event 8

Case (8 in right chain)
1) Push 8
2) Pop until chain is concave

Case (8 in left chain)
1) Dequeue chain

\(O(n)\)
Each vertex push at most once.